sched.h 59.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
20
#include <linux/irqflags.h>
L
Linus Torvalds 已提交
21
#include <linux/seccomp.h>
22
#include <linux/nodemask.h>
23
#include <linux/rcupdate.h>
24
#include <linux/refcount.h>
25
#include <linux/resource.h>
A
Arjan van de Ven 已提交
26
#include <linux/latencytop.h>
27
#include <linux/sched/prio.h>
28
#include <linux/sched/types.h>
29
#include <linux/signal_types.h>
30
#include <linux/syscall_user_dispatch.h>
31 32
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
33
#include <linux/posix-timers.h>
34
#include <linux/rseq.h>
35
#include <linux/seqlock.h>
36
#include <linux/kcsan.h>
37
#include <asm/kmap_size.h>
38

39
/* task_struct member predeclarations (sorted alphabetically): */
40 41
struct audit_context;
struct backing_dev_info;
42
struct bio_list;
43
struct blk_plug;
44
struct bpf_local_storage;
45
struct capture_control;
46 47 48 49
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
50
struct io_uring_task;
51
struct mempolicy;
52
struct nameidata;
53 54 55 56 57 58 59
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
60 61
struct root_domain;
struct rq;
62 63
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
64
struct seq_file;
65 66 67
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
68
struct task_group;
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76 77 78 79
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
80 81

/* Used in tsk->state: */
82 83 84 85 86
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
87
/* Used in tsk->exit_state: */
88 89
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
90 91
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
92 93 94 95
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
96 97 98
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
#define TASK_STATE_MAX			0x1000
99 100 101 102 103 104 105 106 107 108 109 110 111 112

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 114
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
115 116 117 118 119 120 121

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

P
Peter Zijlstra 已提交
122 123
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

124 125 126 127 128
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
129
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130

P
Peter Zijlstra 已提交
131 132
#define __set_current_state(state_value)			\
	do {							\
133
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
134 135 136
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
137

P
Peter Zijlstra 已提交
138 139
#define set_current_state(state_value)				\
	do {							\
140
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
141
		current->task_state_change = _THIS_IP_;		\
142
		smp_store_mb(current->state, (state_value));	\
P
Peter Zijlstra 已提交
143 144
	} while (0)

145 146 147 148 149 150 151 152 153
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->task_state_change = _THIS_IP_;			\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)
P
Peter Zijlstra 已提交
154
#else
155 156 157 158 159
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
160
 *   for (;;) {
161
 *	set_current_state(TASK_UNINTERRUPTIBLE);
P
Peter Zijlstra 已提交
162 163
 *	if (CONDITION)
 *	   break;
164 165 166 167 168 169
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
P
Peter Zijlstra 已提交
170
 * CONDITION test and condition change and wakeup are under the same lock) then
171 172 173 174
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
P
Peter Zijlstra 已提交
175
 *   CONDITION = 1;
176
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
177
 *
P
Peter Zijlstra 已提交
178 179
 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 * accessing p->state.
180 181 182 183
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184
 *
185
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
186
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
187 188
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
189
 *
190
 * Also see the comments of try_to_wake_up().
191
 */
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#define __set_current_state(state_value)				\
	current->state = (state_value)

#define set_current_state(state_value)					\
	smp_store_mb(current->state, (state_value))

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 * will not collide with our state change.
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

P
Peter Zijlstra 已提交
212 213
#endif

214 215
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
216 217 218

extern void scheduler_tick(void);

219 220 221 222 223 224 225
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
226
asmlinkage void schedule(void);
227
extern void schedule_preempt_disabled(void);
228
asmlinkage void preempt_schedule_irq(void);
L
Linus Torvalds 已提交
229

230 231
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
232
extern long io_schedule_timeout(long timeout);
233
extern void io_schedule(void);
234

235
/**
236
 * struct prev_cputime - snapshot of system and user cputime
237 238
 * @utime: time spent in user mode
 * @stime: time spent in system mode
239
 * @lock: protects the above two fields
240
 *
241 242
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
243
 */
244 245
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
246 247 248
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
249
#endif
250 251
};

252 253 254
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
255 256
	/* Task is idle */
	VTIME_IDLE,
257 258
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
259 260
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
261 262
	/* Task runs as guests in a CPU with VTIME active: */
	VTIME_GUEST,
263 264 265 266 267 268
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
269
	unsigned int		cpu;
270 271 272
	u64			utime;
	u64			stime;
	u64			gtime;
273 274
};

275 276 277 278 279 280 281 282 283 284 285 286
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

287 288 289 290 291
#ifdef CONFIG_SMP
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
#endif

L
Linus Torvalds 已提交
292
struct sched_info {
293
#ifdef CONFIG_SCHED_INFO
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
309

310
#endif /* CONFIG_SCHED_INFO */
311
};
L
Linus Torvalds 已提交
312

313 314 315 316 317 318 319
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
320 321
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
322

323 324 325 326
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
327
struct load_weight {
328 329
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
330 331
};

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
358
} __attribute__((__aligned__(sizeof(u64))));
359

360
/*
361
 * The load/runnable/util_avg accumulates an infinite geometric series
362
 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
363 364 365 366 367
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
368 369 370
 * [runnable_avg definition]
 *
 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
371 372 373 374 375
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
376 377 378 379 380
 * where runnable% is the time ratio that a sched_entity is runnable and
 * running% the time ratio that a sched_entity is running.
 *
 * For cfs_rq, they are the aggregated values of all runnable and blocked
 * sched_entities.
381
 *
王文虎 已提交
382
 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
383 384
 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 * for computing those signals (see update_rq_clock_pelt())
385
 *
386 387 388 389
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
390 391 392 393 394 395 396 397 398 399 400 401 402 403
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
404
 */
405
struct sched_avg {
406 407
	u64				last_update_time;
	u64				load_sum;
408
	u64				runnable_sum;
409 410 411
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
412
	unsigned long			runnable_avg;
413
	unsigned long			util_avg;
414
	struct util_est			util_est;
415
} ____cacheline_aligned;
416

417
struct sched_statistics {
418
#ifdef CONFIG_SCHEDSTATS
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
450
#endif
451
};
452 453

struct sched_entity {
454 455 456 457 458
	/* For load-balancing: */
	struct load_weight		load;
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
459

460 461 462 463
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
464

465
	u64				nr_migrations;
466

467
	struct sched_statistics		statistics;
468

I
Ingo Molnar 已提交
469
#ifdef CONFIG_FAIR_GROUP_SCHED
470 471
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
472
	/* rq on which this entity is (to be) queued: */
473
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
474
	/* rq "owned" by this entity/group: */
475
	struct cfs_rq			*my_q;
476 477
	/* cached value of my_q->h_nr_running */
	unsigned long			runnable_weight;
I
Ingo Molnar 已提交
478
#endif
479

480
#ifdef CONFIG_SMP
481 482 483 484 485 486
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
487
	struct sched_avg		avg;
488
#endif
I
Ingo Molnar 已提交
489
};
490

P
Peter Zijlstra 已提交
491
struct sched_rt_entity {
492 493 494 495 496 497 498 499
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
500
#ifdef CONFIG_RT_GROUP_SCHED
501
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
502
	/* rq on which this entity is (to be) queued: */
503
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
504
	/* rq "owned" by this entity/group: */
505
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
506
#endif
507
} __randomize_layout;
P
Peter Zijlstra 已提交
508

509
struct sched_dl_entity {
510
	struct rb_node			rb_node;
511 512 513

	/*
	 * Original scheduling parameters. Copied here from sched_attr
514 515
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
516
	 */
517 518 519
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
520
	u64				dl_bw;		/* dl_runtime / dl_period		*/
521
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
522 523 524

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
525
	 * they are continuously updated during task execution. Note that
526 527
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
528 529 530
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
531 532 533 534 535 536 537 538

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
539 540
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
541 542
	 * exit the critical section);
	 *
543
	 * @dl_yielded tells if task gave up the CPU before consuming
544
	 * all its available runtime during the last job.
545 546 547 548 549 550 551
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
552 553 554
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
555
	 */
556 557 558
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
559
	unsigned int			dl_overrun	  : 1;
560 561 562 563 564

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
565
	struct hrtimer			dl_timer;
566 567 568 569 570 571 572 573 574

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
575 576 577 578 579 580 581 582 583

#ifdef CONFIG_RT_MUTEXES
	/*
	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
	 * pi_se points to the donor, otherwise points to the dl_se it belongs
	 * to (the original one/itself).
	 */
	struct sched_dl_entity *pi_se;
#endif
584
};
585

586 587 588 589 590 591 592 593
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
594
 * @active:		the se is currently refcounted in a rq's bucket
595
 * @user_defined:	the requested clamp value comes from user-space
596 597 598 599
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
600 601 602 603 604
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
605 606 607 608 609 610 611
 *
 * The user_defined bit is set whenever a task has got a task-specific clamp
 * value requested from userspace, i.e. the system defaults apply to this task
 * just as a restriction. This allows to relax default clamps when a less
 * restrictive task-specific value has been requested, thus allowing to
 * implement a "nice" semantic. For example, a task running with a 20%
 * default boost can still drop its own boosting to 0%.
612 613 614 615
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
616
	unsigned int active		: 1;
617
	unsigned int user_defined	: 1;
618 619 620
};
#endif /* CONFIG_UCLAMP_TASK */

621 622
union rcu_special {
	struct {
623 624
		u8			blocked;
		u8			need_qs;
625
		u8			exp_hint; /* Hint for performance. */
626
		u8			need_mb; /* Readers need smp_mb(). */
627
	} b; /* Bits. */
628
	u32 s; /* Set of bits. */
629
};
630

P
Peter Zijlstra 已提交
631 632 633
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
634
	perf_sw_context,
P
Peter Zijlstra 已提交
635 636 637
	perf_nr_task_contexts,
};

638 639 640 641
struct wake_q_node {
	struct wake_q_node *next;
};

642 643 644 645 646 647 648
struct kmap_ctrl {
#ifdef CONFIG_KMAP_LOCAL
	int				idx;
	pte_t				pteval[KM_MAX_IDX];
#endif
};

L
Linus Torvalds 已提交
649
struct task_struct {
650 651 652 653 654
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
655
	struct thread_info		thread_info;
656
#endif
657 658
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state;
K
Kees Cook 已提交
659 660 661 662 663 664 665

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

666
	void				*stack;
667
	refcount_t			usage;
668 669 670
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
671

672
#ifdef CONFIG_SMP
673
	int				on_cpu;
674
	struct __call_single_node	wake_entry;
675
#ifdef CONFIG_THREAD_INFO_IN_TASK
676 677
	/* Current CPU: */
	unsigned int			cpu;
678
#endif
679 680 681
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
682

683 684 685 686 687 688 689 690
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
691
	int				wake_cpu;
692
#endif
693 694 695 696 697 698
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
699

700 701 702
	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
P
Peter Zijlstra 已提交
703
#ifdef CONFIG_CGROUP_SCHED
704
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
705
#endif
706
	struct sched_dl_entity		dl;
L
Linus Torvalds 已提交
707

708
#ifdef CONFIG_UCLAMP_TASK
709 710 711 712
	/*
	 * Clamp values requested for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
713
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
714 715 716 717
	/*
	 * Effective clamp values used for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
718 719 720
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

721
#ifdef CONFIG_PREEMPT_NOTIFIERS
722 723
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
724 725
#endif

726
#ifdef CONFIG_BLK_DEV_IO_TRACE
727
	unsigned int			btrace_seq;
728
#endif
L
Linus Torvalds 已提交
729

730 731
	unsigned int			policy;
	int				nr_cpus_allowed;
732 733
	const cpumask_t			*cpus_ptr;
	cpumask_t			cpus_mask;
734
	void				*migration_pending;
735
#ifdef CONFIG_SMP
736
	unsigned short			migration_disabled;
P
Peter Zijlstra 已提交
737
#endif
738
	unsigned short			migration_flags;
L
Linus Torvalds 已提交
739

P
Paul E. McKenney 已提交
740
#ifdef CONFIG_PREEMPT_RCU
741 742 743 744
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
745
#endif /* #ifdef CONFIG_PREEMPT_RCU */
746

P
Paul E. McKenney 已提交
747
#ifdef CONFIG_TASKS_RCU
748
	unsigned long			rcu_tasks_nvcsw;
749 750
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
751
	int				rcu_tasks_idle_cpu;
752
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
753
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
754

755 756 757
#ifdef CONFIG_TASKS_TRACE_RCU
	int				trc_reader_nesting;
	int				trc_ipi_to_cpu;
758
	union rcu_special		trc_reader_special;
759 760 761 762
	bool				trc_reader_checked;
	struct list_head		trc_holdout_list;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */

763
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
764

765
	struct list_head		tasks;
766
#ifdef CONFIG_SMP
767 768
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
769
#endif
L
Linus Torvalds 已提交
770

771 772
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
773 774

	/* Per-thread vma caching: */
775
	struct vmacache			vmacache;
776

777 778
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
779
#endif
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
795 796 797 798
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

799 800 801 802 803
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

P
Peter Zijlstra 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	/*
	 * This field must not be in the scheduler word above due to wakelist
	 * queueing no longer being serialized by p->on_cpu. However:
	 *
	 * p->XXX = X;			ttwu()
	 * schedule()			  if (p->on_rq && ..) // false
	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
	 *   deactivate_task()		      ttwu_queue_wakelist())
	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
	 *
	 * guarantees all stores of 'current' are visible before
	 * ->sched_remote_wakeup gets used, so it can be in this word.
	 */
	unsigned			sched_remote_wakeup:1;

819 820 821 822 823
	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
824
#endif
T
Tejun Heo 已提交
825
#ifdef CONFIG_MEMCG
826
	unsigned			in_user_fault:1;
827
#endif
828
#ifdef CONFIG_COMPAT_BRK
829
	unsigned			brk_randomized:1;
830
#endif
831 832 833
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
834 835
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
836
#endif
837 838 839
#ifdef CONFIG_BLK_CGROUP
	unsigned			use_memdelay:1;
#endif
840 841 842 843
#ifdef CONFIG_PSI
	/* Stalled due to lack of memory */
	unsigned			in_memstall:1;
#endif
844

845
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
846

847
	struct restart_block		restart_block;
848

849 850
	pid_t				pid;
	pid_t				tgid;
851

852
#ifdef CONFIG_STACKPROTECTOR
853 854
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
855
#endif
856
	/*
857
	 * Pointers to the (original) parent process, youngest child, younger sibling,
858
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
859
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
860
	 */
861 862 863 864 865 866 867

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
868
	/*
869
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
870
	 */
871 872 873
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
874

R
Roland McGrath 已提交
875
	/*
876 877
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
878
	 * This includes both natural children and PTRACE_ATTACH targets.
879
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
880
	 */
881 882
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
883

L
Linus Torvalds 已提交
884
	/* PID/PID hash table linkage. */
885 886
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
887 888 889 890
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
891

892 893
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
894

895 896 897
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

898 899 900
	/* PF_IO_WORKER */
	void				*pf_io_worker;

901 902
	u64				utime;
	u64				stime;
903
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
904 905
	u64				utimescaled;
	u64				stimescaled;
906
#endif
907 908
	u64				gtime;
	struct prev_cputime		prev_cputime;
909
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
910
	struct vtime			vtime;
911
#endif
912 913

#ifdef CONFIG_NO_HZ_FULL
914
	atomic_t			tick_dep_mask;
915
#endif
916 917 918 919 920 921 922 923
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
924
	u64				start_boottime;
925 926 927 928

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
929

930 931
	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;
L
Linus Torvalds 已提交
932

933 934 935 936
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
	struct posix_cputimers_work	posix_cputimers_work;
#endif

937 938 939 940 941 942 943 944 945 946 947
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

948 949 950 951 952
#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

953 954 955 956 957 958 959 960 961 962 963
	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

964
#ifdef CONFIG_SYSVIPC
965 966
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
967
#endif
968
#ifdef CONFIG_DETECT_HUNG_TASK
969
	unsigned long			last_switch_count;
970
	unsigned long			last_switch_time;
971
#endif
972 973 974 975 976 977
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

978 979 980 981
#ifdef CONFIG_IO_URING
	struct io_uring_task		*io_uring;
#endif

982 983 984 985 986
	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
987
	struct sighand_struct __rcu		*sighand;
988
	struct sigqueue			*sigqueue_cache;
989 990 991 992 993 994 995 996 997 998 999
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

1000
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
1001
#ifdef CONFIG_AUDITSYSCALL
1002 1003
	struct audit_context		*audit_context;
#endif
1004 1005
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
1006
#endif
1007
	struct seccomp			seccomp;
1008
	struct syscall_user_dispatch	syscall_dispatch;
1009 1010

	/* Thread group tracking: */
1011 1012
	u64				parent_exec_id;
	u64				self_exec_id;
L
Linus Torvalds 已提交
1013

1014 1015
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
1016

1017
	/* Protection of the PI data structures: */
1018
	raw_spinlock_t			pi_lock;
1019

1020
	struct wake_q_node		wake_q;
1021

I
Ingo Molnar 已提交
1022
#ifdef CONFIG_RT_MUTEXES
1023
	/* PI waiters blocked on a rt_mutex held by this task: */
1024
	struct rb_root_cached		pi_waiters;
1025 1026
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
1027 1028
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
1029 1030
#endif

1031
#ifdef CONFIG_DEBUG_MUTEXES
1032 1033
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
1034
#endif
1035

1036 1037 1038 1039
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	int				non_block_count;
#endif

1040
#ifdef CONFIG_TRACE_IRQFLAGS
1041
	struct irqtrace_events		irqtrace;
1042
	unsigned int			hardirq_threaded;
1043
	u64				hardirq_chain_key;
1044 1045
	int				softirqs_enabled;
	int				softirq_context;
1046
	int				irq_config;
1047
#endif
1048 1049 1050
#ifdef CONFIG_PREEMPT_RT
	int				softirq_disable_cnt;
#endif
1051

I
Ingo Molnar 已提交
1052
#ifdef CONFIG_LOCKDEP
1053 1054 1055 1056 1057
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
1058
#endif
1059

1060
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1061
	unsigned int			in_ubsan;
1062
#endif
1063

1064 1065
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
1066

1067 1068
	/* Stacked block device info: */
	struct bio_list			*bio_list;
1069

1070
#ifdef CONFIG_BLOCK
1071 1072
	/* Stack plugging: */
	struct blk_plug			*plug;
1073 1074
#endif

1075 1076 1077 1078
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1079

1080
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1081

1082 1083 1084
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1085 1086
	/* Ptrace state: */
	unsigned long			ptrace_message;
1087
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1088

1089
	struct task_io_accounting	ioac;
1090 1091 1092 1093
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1094 1095 1096 1097 1098 1099 1100
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1101 1102
#endif
#ifdef CONFIG_CPUSETS
1103 1104
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
I
Ingo Molnar 已提交
1105
	/* Sequence number to catch updates: */
1106
	seqcount_spinlock_t		mems_allowed_seq;
1107 1108
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1109
#endif
1110
#ifdef CONFIG_CGROUPS
1111 1112 1113 1114
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1115
#endif
1116
#ifdef CONFIG_X86_CPU_RESCTRL
1117
	u32				closid;
1118
	u32				rmid;
F
Fenghua Yu 已提交
1119
#endif
1120
#ifdef CONFIG_FUTEX
1121
	struct robust_list_head __user	*robust_list;
1122 1123 1124
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1125 1126
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1127
	struct mutex			futex_exit_mutex;
1128
	unsigned int			futex_state;
1129
#endif
1130
#ifdef CONFIG_PERF_EVENTS
1131 1132 1133
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1134
#endif
1135
#ifdef CONFIG_DEBUG_PREEMPT
1136
	unsigned long			preempt_disable_ip;
1137
#endif
1138
#ifdef CONFIG_NUMA
1139 1140
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1141
	short				il_prev;
1142
	short				pref_node_fork;
1143
#endif
1144
#ifdef CONFIG_NUMA_BALANCING
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

1156 1157 1158 1159 1160 1161 1162 1163 1164
	/*
	 * This pointer is only modified for current in syscall and
	 * pagefault context (and for tasks being destroyed), so it can be read
	 * from any of the following contexts:
	 *  - RCU read-side critical section
	 *  - current->numa_group from everywhere
	 *  - task's runqueue locked, task not running
	 */
	struct numa_group __rcu		*numa_group;
1165

1166
	/*
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1179
	 */
1180 1181
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1182

1183 1184
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1185 1186 1187
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1188
	 */
1189
	unsigned long			numa_faults_locality[3];
1190

1191
	unsigned long			numa_pages_migrated;
1192 1193
#endif /* CONFIG_NUMA_BALANCING */

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1204
	struct tlbflush_unmap_batch	tlb_ubc;
1205

1206 1207 1208 1209
	union {
		refcount_t		rcu_users;
		struct rcu_head		rcu;
	};
1210

1211 1212
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1213

1214
	struct page_frag		task_frag;
1215

1216 1217
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1218
#endif
1219

1220
#ifdef CONFIG_FAULT_INJECTION
1221
	int				make_it_fail;
1222
	unsigned int			fail_nth;
1223
#endif
1224
	/*
1225 1226
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1227
	 */
1228 1229 1230 1231
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1232

A
Arjan van de Ven 已提交
1233
#ifdef CONFIG_LATENCYTOP
1234 1235
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1236
#endif
1237
	/*
1238
	 * Time slack values; these are used to round up poll() and
1239 1240
	 * select() etc timeout values. These are in nanoseconds.
	 */
1241 1242
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1243

1244
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1245
	unsigned int			kasan_depth;
1246
#endif
1247

1248 1249
#ifdef CONFIG_KCSAN
	struct kcsan_ctx		kcsan_ctx;
1250 1251 1252
#ifdef CONFIG_TRACE_IRQFLAGS
	struct irqtrace_events		kcsan_save_irqtrace;
#endif
1253
#endif
1254

1255 1256 1257 1258
#if IS_ENABLED(CONFIG_KUNIT)
	struct kunit			*kunit_test;
#endif

1259
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1260 1261
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1262
	int				curr_ret_depth;
1263 1264 1265 1266 1267 1268 1269

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1270 1271
	/*
	 * Number of functions that haven't been traced
1272
	 * because of depth overrun:
1273
	 */
1274 1275 1276 1277
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1278
#endif
1279

1280
#ifdef CONFIG_TRACING
1281 1282 1283 1284 1285
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1286
#endif /* CONFIG_TRACING */
1287

D
Dmitry Vyukov 已提交
1288
#ifdef CONFIG_KCOV
A
Andrey Konovalov 已提交
1289 1290
	/* See kernel/kcov.c for more details. */

1291
	/* Coverage collection mode enabled for this task (0 if disabled): */
1292
	unsigned int			kcov_mode;
1293 1294 1295 1296 1297 1298 1299 1300 1301

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
A
Andrey Konovalov 已提交
1302 1303 1304 1305 1306 1307

	/* KCOV common handle for remote coverage collection: */
	u64				kcov_handle;

	/* KCOV sequence number: */
	int				kcov_sequence;
1308 1309 1310

	/* Collect coverage from softirq context: */
	unsigned int			kcov_softirq;
D
Dmitry Vyukov 已提交
1311
#endif
1312

1313
#ifdef CONFIG_MEMCG
1314 1315 1316
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1317

1318 1319
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1320 1321 1322

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1323
#endif
1324

1325 1326 1327 1328
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1329
#ifdef CONFIG_UPROBES
1330
	struct uprobe_task		*utask;
1331
#endif
K
Kent Overstreet 已提交
1332
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1333 1334
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1335
#endif
1336
	struct kmap_ctrl		kmap_ctrl;
P
Peter Zijlstra 已提交
1337
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1338
	unsigned long			task_state_change;
P
Peter Zijlstra 已提交
1339
#endif
1340
	int				pagefault_disabled;
1341
#ifdef CONFIG_MMU
1342
	struct task_struct		*oom_reaper_list;
1343
#endif
1344
#ifdef CONFIG_VMAP_STACK
1345
	struct vm_struct		*stack_vm_area;
1346
#endif
1347
#ifdef CONFIG_THREAD_INFO_IN_TASK
1348
	/* A live task holds one reference: */
1349
	refcount_t			stack_refcount;
1350 1351 1352
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1353
#endif
1354 1355 1356
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1357
#endif
1358 1359 1360 1361
#ifdef CONFIG_BPF_SYSCALL
	/* Used by BPF task local storage */
	struct bpf_local_storage __rcu	*bpf_storage;
#endif
K
Kees Cook 已提交
1362

1363 1364
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1365
	unsigned long			prev_lowest_stack;
1366 1367
#endif

1368
#ifdef CONFIG_X86_MCE
1369 1370
	void __user			*mce_vaddr;
	__u64				mce_kflags;
1371
	u64				mce_addr;
1372 1373 1374
	__u64				mce_ripv : 1,
					mce_whole_page : 1,
					__mce_reserved : 62;
1375 1376 1377
	struct callback_head		mce_kill_me;
#endif

P
Peter Zijlstra 已提交
1378 1379 1380 1381
#ifdef CONFIG_KRETPROBES
	struct llist_head               kretprobe_instances;
#endif

K
Kees Cook 已提交
1382 1383 1384 1385 1386 1387
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1388 1389 1390 1391 1392 1393 1394 1395 1396
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1397 1398
};

A
Alexey Dobriyan 已提交
1399
static inline struct pid *task_pid(struct task_struct *task)
1400
{
1401
	return task->thread_pid;
1402 1403
}

1404 1405 1406 1407 1408
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1409 1410
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1411 1412 1413 1414
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1415
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1416

A
Alexey Dobriyan 已提交
1417
static inline pid_t task_pid_nr(struct task_struct *tsk)
1418 1419 1420 1421
{
	return tsk->pid;
}

1422
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1423 1424 1425
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1426 1427 1428

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1429
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1430 1431 1432
}


A
Alexey Dobriyan 已提交
1433
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1434 1435 1436 1437
{
	return tsk->tgid;
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1450
	return p->thread_pid != NULL;
1451
}
1452

1453
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1454
{
1455
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1456 1457 1458 1459
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1460
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1461 1462 1463
}


1464
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1465
{
1466
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1467 1468 1469 1470
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1471
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1472 1473
}

1474 1475
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1476
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1477 1478 1479 1480
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1481
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1501
/* Obsolete, do not use: */
1502 1503 1504 1505
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1506

1507 1508 1509
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1510
static inline unsigned int task_state_index(struct task_struct *tsk)
1511
{
1512 1513
	unsigned int tsk_state = READ_ONCE(tsk->state);
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1514

1515 1516 1517 1518 1519
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1520 1521 1522
	return fls(state);
}

1523
static inline char task_index_to_char(unsigned int state)
1524
{
1525
	static const char state_char[] = "RSDTtXZPI";
1526

1527
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1528

1529 1530 1531 1532 1533
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1534
	return task_index_to_char(task_state_index(tsk));
1535 1536
}

1537
/**
1538 1539
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1540 1541 1542
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1543 1544
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1545
 */
A
Alexey Dobriyan 已提交
1546
static inline int is_global_init(struct task_struct *tsk)
1547
{
1548
	return task_tgid_nr(tsk) == 1;
1549
}
1550

1551 1552
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1553 1554 1555
/*
 * Per process flags
 */
1556
#define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1557 1558
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
1559
#define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1572 1573 1574
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1575 1576
#define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
						 * I am cleaning dirty pages from some other bdi. */
1577 1578 1579
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1580
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1581
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1582
#define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1583 1584
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1597 1598 1599 1600 1601
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1602 1603
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1604 1605 1606

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1607 1608
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1609

L
Linus Torvalds 已提交
1610
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1611 1612
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1613

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1624
/* Per-process atomic flags. */
1625 1626 1627
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1628 1629
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1630 1631
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1632
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1633

1634 1635 1636
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1637

1638 1639 1640
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1641

1642 1643 1644 1645 1646 1647
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1648

1649 1650 1651 1652 1653 1654 1655
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1656

1657 1658 1659 1660
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1661 1662 1663 1664
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1665 1666 1667
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1668 1669 1670 1671 1672 1673 1674
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1675
static inline void
1676
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1677
{
1678 1679
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1680 1681
}

1682 1683
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1684
#ifdef CONFIG_SMP
1685 1686
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
L
Linus Torvalds 已提交
1687
#else
1688
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1689 1690
{
}
1691
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1692
{
1693
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1694 1695 1696 1697
		return -EINVAL;
	return 0;
}
#endif
1698

1699
extern int yield_to(struct task_struct *p, bool preempt);
1700 1701
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1702

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1713

1714 1715
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1716
extern int idle_cpu(int cpu);
1717
extern int available_idle_cpu(int cpu);
1718 1719
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1720 1721 1722
extern void sched_set_fifo(struct task_struct *p);
extern void sched_set_fifo_low(struct task_struct *p);
extern void sched_set_normal(struct task_struct *p, int nice);
1723
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1724
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1725
extern struct task_struct *idle_task(int cpu);
1726

1727 1728
/**
 * is_idle_task - is the specified task an idle task?
1729
 * @p: the task in question.
1730 1731
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1732
 */
1733
static __always_inline bool is_idle_task(const struct task_struct *p)
1734
{
1735
	return !!(p->flags & PF_IDLE);
1736
}
1737

1738
extern struct task_struct *curr_task(int cpu);
1739
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1740 1741 1742 1743

void yield(void);

union thread_union {
1744 1745 1746
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1747
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1748
	struct thread_info thread_info;
1749
#endif
L
Linus Torvalds 已提交
1750 1751 1752
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1753 1754 1755 1756 1757 1758
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1759 1760 1761 1762 1763 1764 1765 1766 1767
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1768 1769 1770 1771 1772
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1773 1774
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1775
 *
1776
 * see also find_vpid() etc in include/linux/pid.h
1777 1778
 */

1779
extern struct task_struct *find_task_by_vpid(pid_t nr);
1780
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1781

1782 1783 1784 1785 1786
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1787 1788
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1789
extern void wake_up_new_task(struct task_struct *tsk);
1790

L
Linus Torvalds 已提交
1791
#ifdef CONFIG_SMP
1792
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1793
#else
1794
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1795 1796
#endif

1797
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1798

1799 1800 1801 1802
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1803

1804 1805 1806 1807 1808
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1809 1810

#ifdef CONFIG_SMP
1811 1812 1813 1814 1815 1816 1817 1818 1819
static __always_inline void scheduler_ipi(void)
{
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	preempt_fold_need_resched();
}
R
Roland McGrath 已提交
1820
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
L
Linus Torvalds 已提交
1821
#else
1822
static inline void scheduler_ipi(void) { }
1823
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
R
Roland McGrath 已提交
1824 1825 1826
{
	return 1;
}
L
Linus Torvalds 已提交
1827 1828
#endif

1829 1830 1831
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1832 1833 1834
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1835
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1836 1837 1838 1839
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1840
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1841 1842
}

1843 1844 1845 1846 1847 1848
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1849 1850
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1851
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1852 1853 1854 1855
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1856
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1857 1858 1859 1860
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1861
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1874 1875 1876 1877 1878
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
1885 1886 1887 1888 1889 1890 1891 1892 1893
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
extern int __cond_resched(void);

#ifdef CONFIG_PREEMPT_DYNAMIC

DECLARE_STATIC_CALL(cond_resched, __cond_resched);

static __always_inline int _cond_resched(void)
{
P
Peter Zijlstra 已提交
1894
	return static_call_mod(cond_resched)();
1895 1896
}

1897
#else
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

static inline int _cond_resched(void)
{
	return __cond_resched();
}

#endif /* CONFIG_PREEMPT_DYNAMIC */

#else

1908
static inline int _cond_resched(void) { return 0; }
1909 1910

#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1911

1912
#define cond_resched() ({			\
1913
	___might_sleep(__FILE__, __LINE__, 0);	\
1914 1915
	_cond_resched();			\
})
1916

1917
extern int __cond_resched_lock(spinlock_t *lock);
B
Ben Gardon 已提交
1918 1919
extern int __cond_resched_rwlock_read(rwlock_t *lock);
extern int __cond_resched_rwlock_write(rwlock_t *lock);
1920 1921

#define cond_resched_lock(lock) ({				\
1922
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1923 1924 1925
	__cond_resched_lock(lock);				\
})

B
Ben Gardon 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
#define cond_resched_rwlock_read(lock) ({			\
	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
	__cond_resched_rwlock_read(lock);			\
})

#define cond_resched_rwlock_write(lock) ({			\
	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
	__cond_resched_rwlock_write(lock);			\
})

1936 1937 1938 1939 1940 1941 1942 1943 1944
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
1945 1946
/*
 * Does a critical section need to be broken due to another
1947
 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
N
Nick Piggin 已提交
1948
 * but a general need for low latency)
L
Linus Torvalds 已提交
1949
 */
N
Nick Piggin 已提交
1950
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
1951
{
1952
#ifdef CONFIG_PREEMPTION
N
Nick Piggin 已提交
1953 1954
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
1955
	return 0;
N
Nick Piggin 已提交
1956
#endif
L
Linus Torvalds 已提交
1957 1958
}

B
Ben Gardon 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
/*
 * Check if a rwlock is contended.
 * Returns non-zero if there is another task waiting on the rwlock.
 * Returns zero if the lock is not contended or the system / underlying
 * rwlock implementation does not support contention detection.
 * Technically does not depend on CONFIG_PREEMPTION, but a general need
 * for low latency.
 */
static inline int rwlock_needbreak(rwlock_t *lock)
{
#ifdef CONFIG_PREEMPTION
	return rwlock_is_contended(lock);
#else
	return 0;
#endif
}

1976 1977 1978 1979 1980
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986 1987
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
1988
#ifdef CONFIG_THREAD_INFO_IN_TASK
1989
	return READ_ONCE(p->cpu);
1990
#else
1991
	return READ_ONCE(task_thread_info(p)->cpu);
1992
#endif
L
Linus Torvalds 已提交
1993 1994
}

I
Ingo Molnar 已提交
1995
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

2010 2011 2012 2013 2014 2015 2016 2017 2018
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
2019 2020 2021 2022
static inline bool vcpu_is_preempted(int cpu)
{
	return false;
}
2023 2024
#endif

2025 2026
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2027

D
Dave Hansen 已提交
2028 2029 2030 2031
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

2032 2033 2034 2035 2036
#ifdef CONFIG_SMP
/* Returns effective CPU energy utilization, as seen by the scheduler */
unsigned long sched_cpu_util(int cpu, unsigned long max);
#endif /* CONFIG_SMP */

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

2061
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2062

2063 2064
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2065 2066
{
	if (current->rseq)
2067
		__rseq_handle_notify_resume(ksig, regs);
2068 2069
}

2070 2071
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2072 2073 2074 2075
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
2076
	rseq_handle_notify_resume(ksig, regs);
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
2095
 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2096 2097 2098
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
2099
	if (clone_flags & CLONE_VM) {
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
2122 2123
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2124 2125
{
}
2126 2127
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

2157 2158 2159 2160 2161 2162 2163 2164 2165
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);
2166
int sched_trace_rq_cpu_capacity(struct rq *rq);
2167
int sched_trace_rq_nr_running(struct rq *rq);
2168 2169 2170

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

L
Linus Torvalds 已提交
2171
#endif