sched.h 59.5 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
20
#include <linux/irqflags.h>
L
Linus Torvalds 已提交
21
#include <linux/seccomp.h>
22
#include <linux/nodemask.h>
23
#include <linux/rcupdate.h>
24
#include <linux/refcount.h>
25
#include <linux/resource.h>
A
Arjan van de Ven 已提交
26
#include <linux/latencytop.h>
27
#include <linux/sched/prio.h>
28
#include <linux/sched/types.h>
29
#include <linux/signal_types.h>
30
#include <linux/syscall_user_dispatch.h>
31 32
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
33
#include <linux/posix-timers.h>
34
#include <linux/rseq.h>
35
#include <linux/seqlock.h>
36
#include <linux/kcsan.h>
37
#include <asm/kmap_size.h>
38

39
/* task_struct member predeclarations (sorted alphabetically): */
40 41
struct audit_context;
struct backing_dev_info;
42
struct bio_list;
43
struct blk_plug;
44
struct capture_control;
45 46 47 48
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
49
struct io_uring_task;
50
struct mempolicy;
51
struct nameidata;
52 53 54 55 56 57 58
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
59 60
struct root_domain;
struct rq;
61 62
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
63
struct seq_file;
64 65 66
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
67
struct task_group;
L
Linus Torvalds 已提交
68

69 70 71 72 73 74 75 76 77 78
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
79 80

/* Used in tsk->state: */
81 82 83 84 85
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
86
/* Used in tsk->exit_state: */
87 88
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
89 90
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
91 92 93 94
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
95 96 97
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
#define TASK_STATE_MAX			0x1000
98 99 100 101 102 103 104 105 106 107 108 109 110 111

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
112 113
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
114 115 116 117 118 119 120

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

P
Peter Zijlstra 已提交
121 122
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

123 124 125 126 127
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
128
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
129

P
Peter Zijlstra 已提交
130 131
#define __set_current_state(state_value)			\
	do {							\
132
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
133 134 135
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
136

P
Peter Zijlstra 已提交
137 138
#define set_current_state(state_value)				\
	do {							\
139
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
140
		current->task_state_change = _THIS_IP_;		\
141
		smp_store_mb(current->state, (state_value));	\
P
Peter Zijlstra 已提交
142 143
	} while (0)

144 145 146 147 148 149 150 151 152
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->task_state_change = _THIS_IP_;			\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)
P
Peter Zijlstra 已提交
153
#else
154 155 156 157 158
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
159
 *   for (;;) {
160
 *	set_current_state(TASK_UNINTERRUPTIBLE);
P
Peter Zijlstra 已提交
161 162
 *	if (CONDITION)
 *	   break;
163 164 165 166 167 168
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
P
Peter Zijlstra 已提交
169
 * CONDITION test and condition change and wakeup are under the same lock) then
170 171 172 173
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
P
Peter Zijlstra 已提交
174
 *   CONDITION = 1;
175
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
176
 *
P
Peter Zijlstra 已提交
177 178
 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 * accessing p->state.
179 180 181 182
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
183
 *
184
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
185
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
186 187
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
188
 *
189
 * Also see the comments of try_to_wake_up().
190
 */
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#define __set_current_state(state_value)				\
	current->state = (state_value)

#define set_current_state(state_value)					\
	smp_store_mb(current->state, (state_value))

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 * will not collide with our state change.
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

P
Peter Zijlstra 已提交
211 212
#endif

213 214
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
215 216 217

extern void scheduler_tick(void);

218 219 220 221 222 223 224
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
225
asmlinkage void schedule(void);
226
extern void schedule_preempt_disabled(void);
227
asmlinkage void preempt_schedule_irq(void);
L
Linus Torvalds 已提交
228

229 230
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
231
extern long io_schedule_timeout(long timeout);
232
extern void io_schedule(void);
233

234
/**
235
 * struct prev_cputime - snapshot of system and user cputime
236 237
 * @utime: time spent in user mode
 * @stime: time spent in system mode
238
 * @lock: protects the above two fields
239
 *
240 241
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
242
 */
243 244
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
245 246 247
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
248
#endif
249 250
};

251 252 253
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
254 255
	/* Task is idle */
	VTIME_IDLE,
256 257
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
258 259
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
260 261
	/* Task runs as guests in a CPU with VTIME active: */
	VTIME_GUEST,
262 263 264 265 266 267
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
268
	unsigned int		cpu;
269 270 271
	u64			utime;
	u64			stime;
	u64			gtime;
272 273
};

274 275 276 277 278 279 280 281 282 283 284 285
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

286 287 288 289 290
#ifdef CONFIG_SMP
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
#endif

L
Linus Torvalds 已提交
291
struct sched_info {
292
#ifdef CONFIG_SCHED_INFO
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
308

309
#endif /* CONFIG_SCHED_INFO */
310
};
L
Linus Torvalds 已提交
311

312 313 314 315 316 317 318
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
319 320
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
321

322 323 324 325
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
326
struct load_weight {
327 328
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
329 330
};

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
357
} __attribute__((__aligned__(sizeof(u64))));
358

359
/*
360
 * The load/runnable/util_avg accumulates an infinite geometric series
361
 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
362 363 364 365 366
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
367 368 369
 * [runnable_avg definition]
 *
 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
370 371 372 373 374
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
375 376 377 378 379
 * where runnable% is the time ratio that a sched_entity is runnable and
 * running% the time ratio that a sched_entity is running.
 *
 * For cfs_rq, they are the aggregated values of all runnable and blocked
 * sched_entities.
380
 *
王文虎 已提交
381
 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
382 383
 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 * for computing those signals (see update_rq_clock_pelt())
384
 *
385 386 387 388
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
389 390 391 392 393 394 395 396 397 398 399 400 401 402
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
403
 */
404
struct sched_avg {
405 406
	u64				last_update_time;
	u64				load_sum;
407
	u64				runnable_sum;
408 409 410
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
411
	unsigned long			runnable_avg;
412
	unsigned long			util_avg;
413
	struct util_est			util_est;
414
} ____cacheline_aligned;
415

416
struct sched_statistics {
417
#ifdef CONFIG_SCHEDSTATS
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
449
#endif
450
};
451 452

struct sched_entity {
453 454 455 456 457
	/* For load-balancing: */
	struct load_weight		load;
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
458

459 460 461 462
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
463

464
	u64				nr_migrations;
465

466
	struct sched_statistics		statistics;
467

I
Ingo Molnar 已提交
468
#ifdef CONFIG_FAIR_GROUP_SCHED
469 470
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
471
	/* rq on which this entity is (to be) queued: */
472
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
473
	/* rq "owned" by this entity/group: */
474
	struct cfs_rq			*my_q;
475 476
	/* cached value of my_q->h_nr_running */
	unsigned long			runnable_weight;
I
Ingo Molnar 已提交
477
#endif
478

479
#ifdef CONFIG_SMP
480 481 482 483 484 485
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
486
	struct sched_avg		avg;
487
#endif
I
Ingo Molnar 已提交
488
};
489

P
Peter Zijlstra 已提交
490
struct sched_rt_entity {
491 492 493 494 495 496 497 498
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
499
#ifdef CONFIG_RT_GROUP_SCHED
500
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
501
	/* rq on which this entity is (to be) queued: */
502
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
503
	/* rq "owned" by this entity/group: */
504
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
505
#endif
506
} __randomize_layout;
P
Peter Zijlstra 已提交
507

508
struct sched_dl_entity {
509
	struct rb_node			rb_node;
510 511 512

	/*
	 * Original scheduling parameters. Copied here from sched_attr
513 514
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
515
	 */
516 517 518
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
519
	u64				dl_bw;		/* dl_runtime / dl_period		*/
520
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
521 522 523

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
524
	 * they are continuously updated during task execution. Note that
525 526
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
527 528 529
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
530 531 532 533 534 535 536 537

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
538 539
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
540 541
	 * exit the critical section);
	 *
542
	 * @dl_yielded tells if task gave up the CPU before consuming
543
	 * all its available runtime during the last job.
544 545 546 547 548 549 550
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
551 552 553
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
554
	 */
555 556 557
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
558
	unsigned int			dl_overrun	  : 1;
559 560 561 562 563

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
564
	struct hrtimer			dl_timer;
565 566 567 568 569 570 571 572 573

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
574 575 576 577 578 579 580 581 582

#ifdef CONFIG_RT_MUTEXES
	/*
	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
	 * pi_se points to the donor, otherwise points to the dl_se it belongs
	 * to (the original one/itself).
	 */
	struct sched_dl_entity *pi_se;
#endif
583
};
584

585 586 587 588 589 590 591 592
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
593
 * @active:		the se is currently refcounted in a rq's bucket
594
 * @user_defined:	the requested clamp value comes from user-space
595 596 597 598
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
599 600 601 602 603
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
604 605 606 607 608 609 610
 *
 * The user_defined bit is set whenever a task has got a task-specific clamp
 * value requested from userspace, i.e. the system defaults apply to this task
 * just as a restriction. This allows to relax default clamps when a less
 * restrictive task-specific value has been requested, thus allowing to
 * implement a "nice" semantic. For example, a task running with a 20%
 * default boost can still drop its own boosting to 0%.
611 612 613 614
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
615
	unsigned int active		: 1;
616
	unsigned int user_defined	: 1;
617 618 619
};
#endif /* CONFIG_UCLAMP_TASK */

620 621
union rcu_special {
	struct {
622 623
		u8			blocked;
		u8			need_qs;
624
		u8			exp_hint; /* Hint for performance. */
625
		u8			need_mb; /* Readers need smp_mb(). */
626
	} b; /* Bits. */
627
	u32 s; /* Set of bits. */
628
};
629

P
Peter Zijlstra 已提交
630 631 632
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
633
	perf_sw_context,
P
Peter Zijlstra 已提交
634 635 636
	perf_nr_task_contexts,
};

637 638 639 640
struct wake_q_node {
	struct wake_q_node *next;
};

641 642 643 644 645 646 647
struct kmap_ctrl {
#ifdef CONFIG_KMAP_LOCAL
	int				idx;
	pte_t				pteval[KM_MAX_IDX];
#endif
};

L
Linus Torvalds 已提交
648
struct task_struct {
649 650 651 652 653
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
654
	struct thread_info		thread_info;
655
#endif
656 657
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state;
K
Kees Cook 已提交
658 659 660 661 662 663 664

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

665
	void				*stack;
666
	refcount_t			usage;
667 668 669
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
670

671
#ifdef CONFIG_SMP
672
	int				on_cpu;
673
	struct __call_single_node	wake_entry;
674
#ifdef CONFIG_THREAD_INFO_IN_TASK
675 676
	/* Current CPU: */
	unsigned int			cpu;
677
#endif
678 679 680
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
681

682 683 684 685 686 687 688 689
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
690
	int				wake_cpu;
691
#endif
692 693 694 695 696 697
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
698

699 700 701
	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
P
Peter Zijlstra 已提交
702
#ifdef CONFIG_CGROUP_SCHED
703
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
704
#endif
705
	struct sched_dl_entity		dl;
L
Linus Torvalds 已提交
706

707
#ifdef CONFIG_UCLAMP_TASK
708 709 710 711
	/*
	 * Clamp values requested for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
712
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
713 714 715 716
	/*
	 * Effective clamp values used for a scheduling entity.
	 * Must be updated with task_rq_lock() held.
	 */
717 718 719
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

720
#ifdef CONFIG_PREEMPT_NOTIFIERS
721 722
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
723 724
#endif

725
#ifdef CONFIG_BLK_DEV_IO_TRACE
726
	unsigned int			btrace_seq;
727
#endif
L
Linus Torvalds 已提交
728

729 730
	unsigned int			policy;
	int				nr_cpus_allowed;
731 732
	const cpumask_t			*cpus_ptr;
	cpumask_t			cpus_mask;
733
	void				*migration_pending;
734
#ifdef CONFIG_SMP
735
	unsigned short			migration_disabled;
P
Peter Zijlstra 已提交
736
#endif
737
	unsigned short			migration_flags;
L
Linus Torvalds 已提交
738

P
Paul E. McKenney 已提交
739
#ifdef CONFIG_PREEMPT_RCU
740 741 742 743
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
744
#endif /* #ifdef CONFIG_PREEMPT_RCU */
745

P
Paul E. McKenney 已提交
746
#ifdef CONFIG_TASKS_RCU
747
	unsigned long			rcu_tasks_nvcsw;
748 749
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
750
	int				rcu_tasks_idle_cpu;
751
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
752
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
753

754 755 756
#ifdef CONFIG_TASKS_TRACE_RCU
	int				trc_reader_nesting;
	int				trc_ipi_to_cpu;
757
	union rcu_special		trc_reader_special;
758 759 760 761
	bool				trc_reader_checked;
	struct list_head		trc_holdout_list;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */

762
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
763

764
	struct list_head		tasks;
765
#ifdef CONFIG_SMP
766 767
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
768
#endif
L
Linus Torvalds 已提交
769

770 771
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
772 773

	/* Per-thread vma caching: */
774
	struct vmacache			vmacache;
775

776 777
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
778
#endif
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
794 795 796 797
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

798 799 800 801 802
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

P
Peter Zijlstra 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	/*
	 * This field must not be in the scheduler word above due to wakelist
	 * queueing no longer being serialized by p->on_cpu. However:
	 *
	 * p->XXX = X;			ttwu()
	 * schedule()			  if (p->on_rq && ..) // false
	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
	 *   deactivate_task()		      ttwu_queue_wakelist())
	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
	 *
	 * guarantees all stores of 'current' are visible before
	 * ->sched_remote_wakeup gets used, so it can be in this word.
	 */
	unsigned			sched_remote_wakeup:1;

818 819 820 821 822
	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
823
#endif
T
Tejun Heo 已提交
824
#ifdef CONFIG_MEMCG
825
	unsigned			in_user_fault:1;
826
#endif
827
#ifdef CONFIG_COMPAT_BRK
828
	unsigned			brk_randomized:1;
829
#endif
830 831 832
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
833 834
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
835
#endif
836 837 838
#ifdef CONFIG_BLK_CGROUP
	unsigned			use_memdelay:1;
#endif
839 840 841 842
#ifdef CONFIG_PSI
	/* Stalled due to lack of memory */
	unsigned			in_memstall:1;
#endif
843

844
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
845

846
	struct restart_block		restart_block;
847

848 849
	pid_t				pid;
	pid_t				tgid;
850

851
#ifdef CONFIG_STACKPROTECTOR
852 853
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
854
#endif
855
	/*
856
	 * Pointers to the (original) parent process, youngest child, younger sibling,
857
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
858
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
859
	 */
860 861 862 863 864 865 866

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
867
	/*
868
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
869
	 */
870 871 872
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
873

R
Roland McGrath 已提交
874
	/*
875 876
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
877
	 * This includes both natural children and PTRACE_ATTACH targets.
878
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
879
	 */
880 881
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
882

L
Linus Torvalds 已提交
883
	/* PID/PID hash table linkage. */
884 885
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
886 887 888 889
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
890

891 892
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
893

894 895 896
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

897 898 899
	/* PF_IO_WORKER */
	void				*pf_io_worker;

900 901
	u64				utime;
	u64				stime;
902
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
903 904
	u64				utimescaled;
	u64				stimescaled;
905
#endif
906 907
	u64				gtime;
	struct prev_cputime		prev_cputime;
908
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
909
	struct vtime			vtime;
910
#endif
911 912

#ifdef CONFIG_NO_HZ_FULL
913
	atomic_t			tick_dep_mask;
914
#endif
915 916 917 918 919 920 921 922
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
923
	u64				start_boottime;
924 925 926 927

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
928

929 930
	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;
L
Linus Torvalds 已提交
931

932 933 934 935
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
	struct posix_cputimers_work	posix_cputimers_work;
#endif

936 937 938 939 940 941 942 943 944 945 946
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

947 948 949 950 951
#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

952 953 954 955 956 957 958 959 960 961 962
	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

963
#ifdef CONFIG_SYSVIPC
964 965
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
966
#endif
967
#ifdef CONFIG_DETECT_HUNG_TASK
968
	unsigned long			last_switch_count;
969
	unsigned long			last_switch_time;
970
#endif
971 972 973 974 975 976
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

977 978 979 980
#ifdef CONFIG_IO_URING
	struct io_uring_task		*io_uring;
#endif

981 982 983 984 985
	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
986
	struct sighand_struct __rcu		*sighand;
987 988 989 990 991 992 993 994 995 996 997
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

998
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
999
#ifdef CONFIG_AUDITSYSCALL
1000 1001
	struct audit_context		*audit_context;
#endif
1002 1003
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
1004
#endif
1005
	struct seccomp			seccomp;
1006
	struct syscall_user_dispatch	syscall_dispatch;
1007 1008

	/* Thread group tracking: */
1009 1010
	u64				parent_exec_id;
	u64				self_exec_id;
L
Linus Torvalds 已提交
1011

1012 1013
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
1014

1015
	/* Protection of the PI data structures: */
1016
	raw_spinlock_t			pi_lock;
1017

1018
	struct wake_q_node		wake_q;
1019

I
Ingo Molnar 已提交
1020
#ifdef CONFIG_RT_MUTEXES
1021
	/* PI waiters blocked on a rt_mutex held by this task: */
1022
	struct rb_root_cached		pi_waiters;
1023 1024
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
1025 1026
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
1027 1028
#endif

1029
#ifdef CONFIG_DEBUG_MUTEXES
1030 1031
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
1032
#endif
1033

1034 1035 1036 1037
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	int				non_block_count;
#endif

1038
#ifdef CONFIG_TRACE_IRQFLAGS
1039
	struct irqtrace_events		irqtrace;
1040
	unsigned int			hardirq_threaded;
1041
	u64				hardirq_chain_key;
1042 1043
	int				softirqs_enabled;
	int				softirq_context;
1044
	int				irq_config;
1045
#endif
1046

I
Ingo Molnar 已提交
1047
#ifdef CONFIG_LOCKDEP
1048 1049 1050 1051 1052
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
1053
#endif
1054

1055
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1056
	unsigned int			in_ubsan;
1057
#endif
1058

1059 1060
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
1061

1062 1063
	/* Stacked block device info: */
	struct bio_list			*bio_list;
1064

1065
#ifdef CONFIG_BLOCK
1066 1067
	/* Stack plugging: */
	struct blk_plug			*plug;
1068 1069
#endif

1070 1071 1072 1073
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1074

1075
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1076

1077 1078 1079
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1080 1081
	/* Ptrace state: */
	unsigned long			ptrace_message;
1082
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1083

1084
	struct task_io_accounting	ioac;
1085 1086 1087 1088
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1089 1090 1091 1092 1093 1094 1095
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1096 1097
#endif
#ifdef CONFIG_CPUSETS
1098 1099 1100
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
1101
	seqcount_spinlock_t		mems_allowed_seq;
1102 1103
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1104
#endif
1105
#ifdef CONFIG_CGROUPS
1106 1107 1108 1109
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1110
#endif
1111
#ifdef CONFIG_X86_CPU_RESCTRL
1112
	u32				closid;
1113
	u32				rmid;
F
Fenghua Yu 已提交
1114
#endif
1115
#ifdef CONFIG_FUTEX
1116
	struct robust_list_head __user	*robust_list;
1117 1118 1119
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1120 1121
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1122
	struct mutex			futex_exit_mutex;
1123
	unsigned int			futex_state;
1124
#endif
1125
#ifdef CONFIG_PERF_EVENTS
1126 1127 1128
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1129
#endif
1130
#ifdef CONFIG_DEBUG_PREEMPT
1131
	unsigned long			preempt_disable_ip;
1132
#endif
1133
#ifdef CONFIG_NUMA
1134 1135
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1136
	short				il_prev;
1137
	short				pref_node_fork;
1138
#endif
1139
#ifdef CONFIG_NUMA_BALANCING
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

1151 1152 1153 1154 1155 1156 1157 1158 1159
	/*
	 * This pointer is only modified for current in syscall and
	 * pagefault context (and for tasks being destroyed), so it can be read
	 * from any of the following contexts:
	 *  - RCU read-side critical section
	 *  - current->numa_group from everywhere
	 *  - task's runqueue locked, task not running
	 */
	struct numa_group __rcu		*numa_group;
1160

1161
	/*
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1174
	 */
1175 1176
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1177

1178 1179
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1180 1181 1182
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1183
	 */
1184
	unsigned long			numa_faults_locality[3];
1185

1186
	unsigned long			numa_pages_migrated;
1187 1188
#endif /* CONFIG_NUMA_BALANCING */

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1199
	struct tlbflush_unmap_batch	tlb_ubc;
1200

1201 1202 1203 1204
	union {
		refcount_t		rcu_users;
		struct rcu_head		rcu;
	};
1205

1206 1207
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1208

1209
	struct page_frag		task_frag;
1210

1211 1212
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1213
#endif
1214

1215
#ifdef CONFIG_FAULT_INJECTION
1216
	int				make_it_fail;
1217
	unsigned int			fail_nth;
1218
#endif
1219
	/*
1220 1221
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1222
	 */
1223 1224 1225 1226
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1227

A
Arjan van de Ven 已提交
1228
#ifdef CONFIG_LATENCYTOP
1229 1230
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1231
#endif
1232
	/*
1233
	 * Time slack values; these are used to round up poll() and
1234 1235
	 * select() etc timeout values. These are in nanoseconds.
	 */
1236 1237
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1238

1239
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1240
	unsigned int			kasan_depth;
1241
#endif
1242

1243 1244
#ifdef CONFIG_KCSAN
	struct kcsan_ctx		kcsan_ctx;
1245 1246 1247
#ifdef CONFIG_TRACE_IRQFLAGS
	struct irqtrace_events		kcsan_save_irqtrace;
#endif
1248
#endif
1249

1250 1251 1252 1253
#if IS_ENABLED(CONFIG_KUNIT)
	struct kunit			*kunit_test;
#endif

1254
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1255 1256
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1257
	int				curr_ret_depth;
1258 1259 1260 1261 1262 1263 1264

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1265 1266
	/*
	 * Number of functions that haven't been traced
1267
	 * because of depth overrun:
1268
	 */
1269 1270 1271 1272
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1273
#endif
1274

1275
#ifdef CONFIG_TRACING
1276 1277 1278 1279 1280
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1281
#endif /* CONFIG_TRACING */
1282

D
Dmitry Vyukov 已提交
1283
#ifdef CONFIG_KCOV
A
Andrey Konovalov 已提交
1284 1285
	/* See kernel/kcov.c for more details. */

1286
	/* Coverage collection mode enabled for this task (0 if disabled): */
1287
	unsigned int			kcov_mode;
1288 1289 1290 1291 1292 1293 1294 1295 1296

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
A
Andrey Konovalov 已提交
1297 1298 1299 1300 1301 1302

	/* KCOV common handle for remote coverage collection: */
	u64				kcov_handle;

	/* KCOV sequence number: */
	int				kcov_sequence;
1303 1304 1305

	/* Collect coverage from softirq context: */
	unsigned int			kcov_softirq;
D
Dmitry Vyukov 已提交
1306
#endif
1307

1308
#ifdef CONFIG_MEMCG
1309 1310 1311
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1312

1313 1314
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1315 1316 1317

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1318
#endif
1319

1320 1321 1322 1323
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1324
#ifdef CONFIG_UPROBES
1325
	struct uprobe_task		*utask;
1326
#endif
K
Kent Overstreet 已提交
1327
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1328 1329
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1330
#endif
1331
	struct kmap_ctrl		kmap_ctrl;
P
Peter Zijlstra 已提交
1332
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1333
	unsigned long			task_state_change;
P
Peter Zijlstra 已提交
1334
#endif
1335
	int				pagefault_disabled;
1336
#ifdef CONFIG_MMU
1337
	struct task_struct		*oom_reaper_list;
1338
#endif
1339
#ifdef CONFIG_VMAP_STACK
1340
	struct vm_struct		*stack_vm_area;
1341
#endif
1342
#ifdef CONFIG_THREAD_INFO_IN_TASK
1343
	/* A live task holds one reference: */
1344
	refcount_t			stack_refcount;
1345 1346 1347
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1348
#endif
1349 1350 1351
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1352
#endif
K
Kees Cook 已提交
1353

1354 1355
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1356
	unsigned long			prev_lowest_stack;
1357 1358
#endif

1359
#ifdef CONFIG_X86_MCE
1360 1361
	void __user			*mce_vaddr;
	__u64				mce_kflags;
1362
	u64				mce_addr;
1363 1364 1365
	__u64				mce_ripv : 1,
					mce_whole_page : 1,
					__mce_reserved : 62;
1366 1367 1368
	struct callback_head		mce_kill_me;
#endif

P
Peter Zijlstra 已提交
1369 1370 1371 1372
#ifdef CONFIG_KRETPROBES
	struct llist_head               kretprobe_instances;
#endif

K
Kees Cook 已提交
1373 1374 1375 1376 1377 1378
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1379 1380 1381 1382 1383 1384 1385 1386 1387
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1388 1389
};

A
Alexey Dobriyan 已提交
1390
static inline struct pid *task_pid(struct task_struct *task)
1391
{
1392
	return task->thread_pid;
1393 1394
}

1395 1396 1397 1398 1399
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1400 1401
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1402 1403 1404 1405
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1406
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1407

A
Alexey Dobriyan 已提交
1408
static inline pid_t task_pid_nr(struct task_struct *tsk)
1409 1410 1411 1412
{
	return tsk->pid;
}

1413
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1414 1415 1416
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1417 1418 1419

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1420
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1421 1422 1423
}


A
Alexey Dobriyan 已提交
1424
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1425 1426 1427 1428
{
	return tsk->tgid;
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1441
	return p->thread_pid != NULL;
1442
}
1443

1444
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1445
{
1446
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1447 1448 1449 1450
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1451
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1452 1453 1454
}


1455
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1456
{
1457
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1458 1459 1460 1461
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1462
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1463 1464
}

1465 1466
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1467
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1468 1469 1470 1471
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1472
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1492
/* Obsolete, do not use: */
1493 1494 1495 1496
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1497

1498 1499 1500
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1501
static inline unsigned int task_state_index(struct task_struct *tsk)
1502
{
1503 1504
	unsigned int tsk_state = READ_ONCE(tsk->state);
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1505

1506 1507 1508 1509 1510
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1511 1512 1513
	return fls(state);
}

1514
static inline char task_index_to_char(unsigned int state)
1515
{
1516
	static const char state_char[] = "RSDTtXZPI";
1517

1518
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1519

1520 1521 1522 1523 1524
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1525
	return task_index_to_char(task_state_index(tsk));
1526 1527
}

1528
/**
1529 1530
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1531 1532 1533
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1534 1535
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1536
 */
A
Alexey Dobriyan 已提交
1537
static inline int is_global_init(struct task_struct *tsk)
1538
{
1539
	return task_tgid_nr(tsk) == 1;
1540
}
1541

1542 1543
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1544 1545 1546
/*
 * Per process flags
 */
1547
#define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1548 1549
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
1550
#define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1563 1564 1565
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1566 1567
#define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
						 * I am cleaning dirty pages from some other bdi. */
1568 1569 1570
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1571
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1572
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1573
#define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1574 1575
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1588 1589 1590 1591 1592
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1593 1594
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1595 1596 1597

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1598 1599
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1600

L
Linus Torvalds 已提交
1601
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1602 1603
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1615
/* Per-process atomic flags. */
1616 1617 1618
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1619 1620
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1621 1622
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1623
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1624

1625 1626 1627
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1628

1629 1630 1631
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1632

1633 1634 1635 1636 1637 1638
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1639

1640 1641 1642 1643 1644 1645 1646
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1647

1648 1649 1650 1651
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1652 1653 1654 1655
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1656 1657 1658
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1659 1660 1661 1662 1663 1664 1665
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1666
static inline void
1667
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1668
{
1669 1670
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1671 1672
}

1673 1674
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1675
#ifdef CONFIG_SMP
1676 1677
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
L
Linus Torvalds 已提交
1678
#else
1679
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1680 1681
{
}
1682
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1683
{
1684
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1685 1686 1687 1688
		return -EINVAL;
	return 0;
}
#endif
1689

1690
extern int yield_to(struct task_struct *p, bool preempt);
1691 1692
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1704

1705 1706
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1707
extern int idle_cpu(int cpu);
1708
extern int available_idle_cpu(int cpu);
1709 1710
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1711 1712 1713
extern void sched_set_fifo(struct task_struct *p);
extern void sched_set_fifo_low(struct task_struct *p);
extern void sched_set_normal(struct task_struct *p, int nice);
1714
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1715
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1716
extern struct task_struct *idle_task(int cpu);
1717

1718 1719
/**
 * is_idle_task - is the specified task an idle task?
1720
 * @p: the task in question.
1721 1722
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1723
 */
1724
static __always_inline bool is_idle_task(const struct task_struct *p)
1725
{
1726
	return !!(p->flags & PF_IDLE);
1727
}
1728

1729
extern struct task_struct *curr_task(int cpu);
1730
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1731 1732 1733 1734

void yield(void);

union thread_union {
1735 1736 1737
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1738
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1739
	struct thread_info thread_info;
1740
#endif
L
Linus Torvalds 已提交
1741 1742 1743
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1744 1745 1746 1747 1748 1749
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1750 1751 1752 1753 1754 1755 1756 1757 1758
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1759 1760 1761 1762 1763
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1764 1765
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1766
 *
1767
 * see also find_vpid() etc in include/linux/pid.h
1768 1769
 */

1770
extern struct task_struct *find_task_by_vpid(pid_t nr);
1771
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1772

1773 1774 1775 1776 1777
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1778 1779
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1780
extern void wake_up_new_task(struct task_struct *tsk);
1781

L
Linus Torvalds 已提交
1782
#ifdef CONFIG_SMP
1783
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1784
#else
1785
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1786 1787
#endif

1788
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1789

1790 1791 1792 1793
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1794

1795 1796 1797 1798 1799
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1800 1801

#ifdef CONFIG_SMP
1802 1803 1804 1805 1806 1807 1808 1809 1810
static __always_inline void scheduler_ipi(void)
{
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
	preempt_fold_need_resched();
}
R
Roland McGrath 已提交
1811
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
L
Linus Torvalds 已提交
1812
#else
1813
static inline void scheduler_ipi(void) { }
1814
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
R
Roland McGrath 已提交
1815 1816 1817
{
	return 1;
}
L
Linus Torvalds 已提交
1818 1819
#endif

1820 1821 1822
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1823 1824 1825
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1826
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1827 1828 1829 1830
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1831
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1832 1833
}

1834 1835 1836 1837 1838 1839
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1840 1841
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1842
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1843 1844 1845 1846
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1847
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1848 1849 1850 1851
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1852
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1865 1866 1867 1868 1869
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
1876 1877 1878 1879 1880 1881 1882 1883 1884
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
extern int __cond_resched(void);

#ifdef CONFIG_PREEMPT_DYNAMIC

DECLARE_STATIC_CALL(cond_resched, __cond_resched);

static __always_inline int _cond_resched(void)
{
P
Peter Zijlstra 已提交
1885
	return static_call_mod(cond_resched)();
1886 1887
}

1888
#else
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

static inline int _cond_resched(void)
{
	return __cond_resched();
}

#endif /* CONFIG_PREEMPT_DYNAMIC */

#else

1899
static inline int _cond_resched(void) { return 0; }
1900 1901

#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1902

1903
#define cond_resched() ({			\
1904
	___might_sleep(__FILE__, __LINE__, 0);	\
1905 1906
	_cond_resched();			\
})
1907

1908
extern int __cond_resched_lock(spinlock_t *lock);
B
Ben Gardon 已提交
1909 1910
extern int __cond_resched_rwlock_read(rwlock_t *lock);
extern int __cond_resched_rwlock_write(rwlock_t *lock);
1911 1912

#define cond_resched_lock(lock) ({				\
1913
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1914 1915 1916
	__cond_resched_lock(lock);				\
})

B
Ben Gardon 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
#define cond_resched_rwlock_read(lock) ({			\
	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
	__cond_resched_rwlock_read(lock);			\
})

#define cond_resched_rwlock_write(lock) ({			\
	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
	__cond_resched_rwlock_write(lock);			\
})

1927 1928 1929 1930 1931 1932 1933 1934 1935
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
1936 1937
/*
 * Does a critical section need to be broken due to another
1938
 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
N
Nick Piggin 已提交
1939
 * but a general need for low latency)
L
Linus Torvalds 已提交
1940
 */
N
Nick Piggin 已提交
1941
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
1942
{
1943
#ifdef CONFIG_PREEMPTION
N
Nick Piggin 已提交
1944 1945
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
1946
	return 0;
N
Nick Piggin 已提交
1947
#endif
L
Linus Torvalds 已提交
1948 1949
}

B
Ben Gardon 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/*
 * Check if a rwlock is contended.
 * Returns non-zero if there is another task waiting on the rwlock.
 * Returns zero if the lock is not contended or the system / underlying
 * rwlock implementation does not support contention detection.
 * Technically does not depend on CONFIG_PREEMPTION, but a general need
 * for low latency.
 */
static inline int rwlock_needbreak(rwlock_t *lock)
{
#ifdef CONFIG_PREEMPTION
	return rwlock_is_contended(lock);
#else
	return 0;
#endif
}

1967 1968 1969 1970 1971
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977 1978
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
1979
#ifdef CONFIG_THREAD_INFO_IN_TASK
1980
	return READ_ONCE(p->cpu);
1981
#else
1982
	return READ_ONCE(task_thread_info(p)->cpu);
1983
#endif
L
Linus Torvalds 已提交
1984 1985
}

I
Ingo Molnar 已提交
1986
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

2001 2002 2003 2004 2005 2006 2007 2008 2009
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
2010 2011 2012 2013
static inline bool vcpu_is_preempted(int cpu)
{
	return false;
}
2014 2015
#endif

2016 2017
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2018

D
Dave Hansen 已提交
2019 2020 2021 2022
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

2023 2024 2025 2026 2027
#ifdef CONFIG_SMP
/* Returns effective CPU energy utilization, as seen by the scheduler */
unsigned long sched_cpu_util(int cpu, unsigned long max);
#endif /* CONFIG_SMP */

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

2052
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2053

2054 2055
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2056 2057
{
	if (current->rseq)
2058
		__rseq_handle_notify_resume(ksig, regs);
2059 2060
}

2061 2062
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2063 2064 2065 2066
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
2067
	rseq_handle_notify_resume(ksig, regs);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
2086
 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2087 2088 2089
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
2090
	if (clone_flags & CLONE_VM) {
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
2113 2114
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
2115 2116
{
}
2117 2118
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

2148 2149 2150 2151 2152 2153 2154 2155 2156
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);
2157
int sched_trace_rq_cpu_capacity(struct rq *rq);
2158
int sched_trace_rq_nr_running(struct rq *rq);
2159 2160 2161

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

L
Linus Torvalds 已提交
2162
#endif