sched.h 55.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19 20
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
21
#include <linux/seccomp.h>
22
#include <linux/nodemask.h>
23
#include <linux/rcupdate.h>
24
#include <linux/refcount.h>
25
#include <linux/resource.h>
A
Arjan van de Ven 已提交
26
#include <linux/latencytop.h>
27 28 29 30
#include <linux/sched/prio.h>
#include <linux/signal_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
31
#include <linux/posix-timers.h>
32
#include <linux/rseq.h>
33

34
/* task_struct member predeclarations (sorted alphabetically): */
35 36
struct audit_context;
struct backing_dev_info;
37
struct bio_list;
38
struct blk_plug;
39
struct capture_control;
40 41 42 43 44
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct mempolicy;
45
struct nameidata;
46 47 48 49 50 51 52
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
53 54
struct root_domain;
struct rq;
55 56
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
57
struct seq_file;
58 59 60
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
61
struct task_group;
L
Linus Torvalds 已提交
62

63 64 65 66 67 68 69 70 71 72
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
73 74

/* Used in tsk->state: */
75 76 77 78 79
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
80
/* Used in tsk->exit_state: */
81 82
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
83 84
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
85 86 87 88
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
89 90 91
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
#define TASK_STATE_MAX			0x1000
92 93 94 95 96 97 98 99 100 101 102 103 104 105

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
106 107
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
108 109 110 111 112 113 114 115 116 117

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

#define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
					 (task->flags & PF_FROZEN) == 0 && \
					 (task->state & TASK_NOLOAD) == 0)
L
Linus Torvalds 已提交
118

P
Peter Zijlstra 已提交
119 120
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

121 122 123 124 125
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
126
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
127

P
Peter Zijlstra 已提交
128 129
#define __set_current_state(state_value)			\
	do {							\
130
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
131 132 133
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
134

P
Peter Zijlstra 已提交
135 136
#define set_current_state(state_value)				\
	do {							\
137
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
138
		current->task_state_change = _THIS_IP_;		\
139
		smp_store_mb(current->state, (state_value));	\
P
Peter Zijlstra 已提交
140 141
	} while (0)

142 143 144 145 146 147 148 149 150
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->task_state_change = _THIS_IP_;			\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)
P
Peter Zijlstra 已提交
151
#else
152 153 154 155 156
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
157
 *   for (;;) {
158
 *	set_current_state(TASK_UNINTERRUPTIBLE);
159 160 161 162 163 164 165 166 167 168 169 170 171
 *	if (!need_sleep)
 *		break;
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
 * condition test and condition change and wakeup are under the same lock) then
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
172 173
 *   need_sleep = false;
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
174
 *
175 176
 * where wake_up_state() executes a full memory barrier before accessing the
 * task state.
177 178 179 180
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
181
 *
182
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
183
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
184 185
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
186
 *
187
 * Also see the comments of try_to_wake_up().
188
 */
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define __set_current_state(state_value)				\
	current->state = (state_value)

#define set_current_state(state_value)					\
	smp_store_mb(current->state, (state_value))

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 * will not collide with our state change.
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

P
Peter Zijlstra 已提交
209 210
#endif

211 212
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
213 214 215

extern void scheduler_tick(void);

216 217 218 219 220 221 222
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
223
asmlinkage void schedule(void);
224
extern void schedule_preempt_disabled(void);
L
Linus Torvalds 已提交
225

226 227
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
228
extern long io_schedule_timeout(long timeout);
229
extern void io_schedule(void);
230

231
/**
232
 * struct prev_cputime - snapshot of system and user cputime
233 234
 * @utime: time spent in user mode
 * @stime: time spent in system mode
235
 * @lock: protects the above two fields
236
 *
237 238
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
239
 */
240 241
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
242 243 244
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
245
#endif
246 247
};

248 249
/**
 * struct task_cputime - collected CPU time counts
250 251
 * @utime:		time spent in user mode, in nanoseconds
 * @stime:		time spent in kernel mode, in nanoseconds
252
 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
253
 *
254 255 256
 * This structure groups together three kinds of CPU time that are tracked for
 * threads and thread groups.  Most things considering CPU time want to group
 * these counts together and treat all three of them in parallel.
257 258
 */
struct task_cputime {
259 260 261
	u64				utime;
	u64				stime;
	unsigned long long		sum_exec_runtime;
262
};
263

264 265 266 267
/* Alternate field names when used on cache expirations: */
#define virt_exp			utime
#define prof_exp			stime
#define sched_exp			sum_exec_runtime
268

269 270 271 272 273 274 275 276 277 278 279 280 281
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
282 283 284
	u64			utime;
	u64			stime;
	u64			gtime;
285 286
};

287 288 289 290 291 292 293 294 295 296 297 298
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

L
Linus Torvalds 已提交
299
struct sched_info {
300
#ifdef CONFIG_SCHED_INFO
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
316

317
#endif /* CONFIG_SCHED_INFO */
318
};
L
Linus Torvalds 已提交
319

320 321 322 323 324 325 326
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
327 328
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
329

330 331 332 333
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
334
struct load_weight {
335 336
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
337 338
};

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
365
} __attribute__((__aligned__(sizeof(u64))));
366

367
/*
368 369 370 371 372 373 374 375 376
 * The load_avg/util_avg accumulates an infinite geometric series
 * (see __update_load_avg() in kernel/sched/fair.c).
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
 * where runnable% is the time ratio that a sched_entity is runnable.
 * For cfs_rq, it is the aggregated load_avg of all runnable and
377
 * blocked sched_entities.
378 379 380 381 382 383 384 385 386
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
 * where running% is the time ratio that a sched_entity is running on
 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 * and blocked sched_entities.
 *
387 388 389
 * load_avg and util_avg don't direcly factor frequency scaling and CPU
 * capacity scaling. The scaling is done through the rq_clock_pelt that
 * is used for computing those signals (see update_rq_clock_pelt())
390
 *
391 392 393 394
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
395 396 397 398 399 400 401 402 403 404 405 406 407 408
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
409
 */
410
struct sched_avg {
411 412
	u64				last_update_time;
	u64				load_sum;
413
	u64				runnable_load_sum;
414 415 416
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
417
	unsigned long			runnable_load_avg;
418
	unsigned long			util_avg;
419
	struct util_est			util_est;
420
} ____cacheline_aligned;
421

422
struct sched_statistics {
423
#ifdef CONFIG_SCHEDSTATS
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
455
#endif
456
};
457 458

struct sched_entity {
459 460
	/* For load-balancing: */
	struct load_weight		load;
461
	unsigned long			runnable_weight;
462 463 464
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
465

466 467 468 469
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
470

471
	u64				nr_migrations;
472

473
	struct sched_statistics		statistics;
474

I
Ingo Molnar 已提交
475
#ifdef CONFIG_FAIR_GROUP_SCHED
476 477
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
478
	/* rq on which this entity is (to be) queued: */
479
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
480
	/* rq "owned" by this entity/group: */
481
	struct cfs_rq			*my_q;
I
Ingo Molnar 已提交
482
#endif
483

484
#ifdef CONFIG_SMP
485 486 487 488 489 490
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
491
	struct sched_avg		avg;
492
#endif
I
Ingo Molnar 已提交
493
};
494

P
Peter Zijlstra 已提交
495
struct sched_rt_entity {
496 497 498 499 500 501 502 503
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
504
#ifdef CONFIG_RT_GROUP_SCHED
505
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
506
	/* rq on which this entity is (to be) queued: */
507
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
508
	/* rq "owned" by this entity/group: */
509
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
510
#endif
511
} __randomize_layout;
P
Peter Zijlstra 已提交
512

513
struct sched_dl_entity {
514
	struct rb_node			rb_node;
515 516 517

	/*
	 * Original scheduling parameters. Copied here from sched_attr
518 519
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
520
	 */
521 522 523
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
524
	u64				dl_bw;		/* dl_runtime / dl_period		*/
525
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
526 527 528

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
529
	 * they are continuously updated during task execution. Note that
530 531
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
532 533 534
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
535 536 537 538 539 540 541 542

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
543 544
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
545 546
	 * exit the critical section);
	 *
547
	 * @dl_yielded tells if task gave up the CPU before consuming
548
	 * all its available runtime during the last job.
549 550 551 552 553 554 555
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
556 557 558
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
559
	 */
560 561 562 563
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_boosted        : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
564
	unsigned int			dl_overrun	  : 1;
565 566 567 568 569

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
570
	struct hrtimer			dl_timer;
571 572 573 574 575 576 577 578 579

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
580
};
581

582 583 584 585 586 587 588 589
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
590
 * @active:		the se is currently refcounted in a rq's bucket
591
 * @user_defined:	the requested clamp value comes from user-space
592 593 594 595
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
596 597 598 599 600
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
601 602 603 604 605 606 607
 *
 * The user_defined bit is set whenever a task has got a task-specific clamp
 * value requested from userspace, i.e. the system defaults apply to this task
 * just as a restriction. This allows to relax default clamps when a less
 * restrictive task-specific value has been requested, thus allowing to
 * implement a "nice" semantic. For example, a task running with a 20%
 * default boost can still drop its own boosting to 0%.
608 609 610 611
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
612
	unsigned int active		: 1;
613
	unsigned int user_defined	: 1;
614 615 616
};
#endif /* CONFIG_UCLAMP_TASK */

617 618
union rcu_special {
	struct {
619 620
		u8			blocked;
		u8			need_qs;
621
		u8			exp_hint; /* Hint for performance. */
622
		u8			deferred_qs;
623
	} b; /* Bits. */
624
	u32 s; /* Set of bits. */
625
};
626

P
Peter Zijlstra 已提交
627 628 629
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
630
	perf_sw_context,
P
Peter Zijlstra 已提交
631 632 633
	perf_nr_task_contexts,
};

634 635 636 637
struct wake_q_node {
	struct wake_q_node *next;
};

L
Linus Torvalds 已提交
638
struct task_struct {
639 640 641 642 643
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
644
	struct thread_info		thread_info;
645
#endif
646 647
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state;
K
Kees Cook 已提交
648 649 650 651 652 653 654

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

655
	void				*stack;
656
	refcount_t			usage;
657 658 659
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
660

661
#ifdef CONFIG_SMP
662 663
	struct llist_node		wake_entry;
	int				on_cpu;
664
#ifdef CONFIG_THREAD_INFO_IN_TASK
665 666
	/* Current CPU: */
	unsigned int			cpu;
667
#endif
668 669 670
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
671

672 673 674 675 676 677 678 679
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
680
	int				wake_cpu;
681
#endif
682 683 684 685 686 687
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
688

689 690 691
	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
P
Peter Zijlstra 已提交
692
#ifdef CONFIG_CGROUP_SCHED
693
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
694
#endif
695
	struct sched_dl_entity		dl;
L
Linus Torvalds 已提交
696

697
#ifdef CONFIG_UCLAMP_TASK
698 699 700
	/* Clamp values requested for a scheduling entity */
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
	/* Effective clamp values used for a scheduling entity */
701 702 703
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

704
#ifdef CONFIG_PREEMPT_NOTIFIERS
705 706
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
707 708
#endif

709
#ifdef CONFIG_BLK_DEV_IO_TRACE
710
	unsigned int			btrace_seq;
711
#endif
L
Linus Torvalds 已提交
712

713 714
	unsigned int			policy;
	int				nr_cpus_allowed;
715 716
	const cpumask_t			*cpus_ptr;
	cpumask_t			cpus_mask;
L
Linus Torvalds 已提交
717

P
Paul E. McKenney 已提交
718
#ifdef CONFIG_PREEMPT_RCU
719 720 721 722
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
723
#endif /* #ifdef CONFIG_PREEMPT_RCU */
724

P
Paul E. McKenney 已提交
725
#ifdef CONFIG_TASKS_RCU
726
	unsigned long			rcu_tasks_nvcsw;
727 728
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
729
	int				rcu_tasks_idle_cpu;
730
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
731
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
732

733
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
734

735
	struct list_head		tasks;
736
#ifdef CONFIG_SMP
737 738
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
739
#endif
L
Linus Torvalds 已提交
740

741 742
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
743 744

	/* Per-thread vma caching: */
745
	struct vmacache			vmacache;
746

747 748
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
749
#endif
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
	unsigned			sched_remote_wakeup:1;
766 767 768 769
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

770 771 772 773 774 775 776 777 778 779
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
780
#endif
T
Tejun Heo 已提交
781
#ifdef CONFIG_MEMCG
782
	unsigned			in_user_fault:1;
783
#endif
784
#ifdef CONFIG_COMPAT_BRK
785
	unsigned			brk_randomized:1;
786
#endif
787 788 789
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
790 791
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
792
#endif
793 794 795 796
#ifdef CONFIG_BLK_CGROUP
	/* to be used once the psi infrastructure lands upstream. */
	unsigned			use_memdelay:1;
#endif
797

798
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
799

800
	struct restart_block		restart_block;
801

802 803
	pid_t				pid;
	pid_t				tgid;
804

805
#ifdef CONFIG_STACKPROTECTOR
806 807
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
808
#endif
809
	/*
810
	 * Pointers to the (original) parent process, youngest child, younger sibling,
811
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
812
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
813
	 */
814 815 816 817 818 819 820

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
821
	/*
822
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
823
	 */
824 825 826
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
827

R
Roland McGrath 已提交
828
	/*
829 830
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
831
	 * This includes both natural children and PTRACE_ATTACH targets.
832
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
833
	 */
834 835
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
836

L
Linus Torvalds 已提交
837
	/* PID/PID hash table linkage. */
838 839
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
840 841 842 843
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
844

845 846
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
847

848 849 850 851 852
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

	u64				utime;
	u64				stime;
853
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
854 855
	u64				utimescaled;
	u64				stimescaled;
856
#endif
857 858
	u64				gtime;
	struct prev_cputime		prev_cputime;
859
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
860
	struct vtime			vtime;
861
#endif
862 863

#ifdef CONFIG_NO_HZ_FULL
864
	atomic_t			tick_dep_mask;
865
#endif
866 867 868 869 870 871 872 873 874 875 876 877 878
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
	u64				real_start_time;

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
879

880
#ifdef CONFIG_POSIX_TIMERS
881
	struct task_cputime		cputime_expires;
882
#endif
883 884
	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;
L
Linus Torvalds 已提交
885

886 887 888 889 890 891 892 893 894 895 896
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

897 898 899 900 901
#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

902 903 904 905 906 907 908 909 910 911 912
	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

913
#ifdef CONFIG_SYSVIPC
914 915
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
916
#endif
917
#ifdef CONFIG_DETECT_HUNG_TASK
918
	unsigned long			last_switch_count;
919
	unsigned long			last_switch_time;
920
#endif
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
	struct sighand_struct		*sighand;
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

944
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
945
#ifdef CONFIG_AUDITSYSCALL
946 947
	struct audit_context		*audit_context;
#endif
948 949
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
950
#endif
951 952 953 954 955
	struct seccomp			seccomp;

	/* Thread group tracking: */
	u32				parent_exec_id;
	u32				self_exec_id;
L
Linus Torvalds 已提交
956

957 958
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
959

960
	/* Protection of the PI data structures: */
961
	raw_spinlock_t			pi_lock;
962

963
	struct wake_q_node		wake_q;
964

I
Ingo Molnar 已提交
965
#ifdef CONFIG_RT_MUTEXES
966
	/* PI waiters blocked on a rt_mutex held by this task: */
967
	struct rb_root_cached		pi_waiters;
968 969
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
970 971
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
972 973
#endif

974
#ifdef CONFIG_DEBUG_MUTEXES
975 976
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
977
#endif
978

979
#ifdef CONFIG_TRACE_IRQFLAGS
980 981 982 983 984 985 986 987 988 989 990 991 992
	unsigned int			irq_events;
	unsigned long			hardirq_enable_ip;
	unsigned long			hardirq_disable_ip;
	unsigned int			hardirq_enable_event;
	unsigned int			hardirq_disable_event;
	int				hardirqs_enabled;
	int				hardirq_context;
	unsigned long			softirq_disable_ip;
	unsigned long			softirq_enable_ip;
	unsigned int			softirq_disable_event;
	unsigned int			softirq_enable_event;
	int				softirqs_enabled;
	int				softirq_context;
993
#endif
994

I
Ingo Molnar 已提交
995
#ifdef CONFIG_LOCKDEP
996 997 998 999 1000
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
1001
#endif
1002

1003
#ifdef CONFIG_UBSAN
1004
	unsigned int			in_ubsan;
1005
#endif
1006

1007 1008
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
1009

1010 1011
	/* Stacked block device info: */
	struct bio_list			*bio_list;
1012

1013
#ifdef CONFIG_BLOCK
1014 1015
	/* Stack plugging: */
	struct blk_plug			*plug;
1016 1017
#endif

1018 1019 1020 1021
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1022

1023
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1024

1025 1026 1027
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1028 1029
	/* Ptrace state: */
	unsigned long			ptrace_message;
1030
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1031

1032
	struct task_io_accounting	ioac;
1033 1034 1035 1036
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1037 1038 1039 1040 1041 1042 1043
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1044 1045
#endif
#ifdef CONFIG_CPUSETS
1046 1047 1048 1049 1050 1051
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
	seqcount_t			mems_allowed_seq;
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1052
#endif
1053
#ifdef CONFIG_CGROUPS
1054 1055 1056 1057
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1058
#endif
1059
#ifdef CONFIG_X86_CPU_RESCTRL
1060
	u32				closid;
1061
	u32				rmid;
F
Fenghua Yu 已提交
1062
#endif
1063
#ifdef CONFIG_FUTEX
1064
	struct robust_list_head __user	*robust_list;
1065 1066 1067
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1068 1069
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1070
#endif
1071
#ifdef CONFIG_PERF_EVENTS
1072 1073 1074
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1075
#endif
1076
#ifdef CONFIG_DEBUG_PREEMPT
1077
	unsigned long			preempt_disable_ip;
1078
#endif
1079
#ifdef CONFIG_NUMA
1080 1081
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1082
	short				il_prev;
1083
	short				pref_node_fork;
1084
#endif
1085
#ifdef CONFIG_NUMA_BALANCING
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

	struct numa_group		*numa_group;
1098

1099
	/*
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1112
	 */
1113 1114
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1115

1116 1117
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1118 1119 1120
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1121
	 */
1122
	unsigned long			numa_faults_locality[3];
1123

1124
	unsigned long			numa_pages_migrated;
1125 1126
#endif /* CONFIG_NUMA_BALANCING */

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1137
	struct tlbflush_unmap_batch	tlb_ubc;
1138

1139
	struct rcu_head			rcu;
1140

1141 1142
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1143

1144
	struct page_frag		task_frag;
1145

1146 1147
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1148
#endif
1149

1150
#ifdef CONFIG_FAULT_INJECTION
1151
	int				make_it_fail;
1152
	unsigned int			fail_nth;
1153
#endif
1154
	/*
1155 1156
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1157
	 */
1158 1159 1160 1161
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1162

A
Arjan van de Ven 已提交
1163
#ifdef CONFIG_LATENCYTOP
1164 1165
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1166
#endif
1167
	/*
1168
	 * Time slack values; these are used to round up poll() and
1169 1170
	 * select() etc timeout values. These are in nanoseconds.
	 */
1171 1172
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1173

1174
#ifdef CONFIG_KASAN
1175
	unsigned int			kasan_depth;
1176
#endif
1177

1178
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1179 1180
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1181
	int				curr_ret_depth;
1182 1183 1184 1185 1186 1187 1188

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1189 1190
	/*
	 * Number of functions that haven't been traced
1191
	 * because of depth overrun:
1192
	 */
1193 1194 1195 1196
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1197
#endif
1198

1199
#ifdef CONFIG_TRACING
1200 1201 1202 1203 1204
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1205
#endif /* CONFIG_TRACING */
1206

D
Dmitry Vyukov 已提交
1207
#ifdef CONFIG_KCOV
1208
	/* Coverage collection mode enabled for this task (0 if disabled): */
1209
	unsigned int			kcov_mode;
1210 1211 1212 1213 1214 1215 1216 1217 1218

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
D
Dmitry Vyukov 已提交
1219
#endif
1220

1221
#ifdef CONFIG_MEMCG
1222 1223 1224
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1225

1226 1227
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1228 1229 1230

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1231
#endif
1232

1233 1234 1235 1236
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1237
#ifdef CONFIG_UPROBES
1238
	struct uprobe_task		*utask;
1239
#endif
K
Kent Overstreet 已提交
1240
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1241 1242
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1243
#endif
P
Peter Zijlstra 已提交
1244
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1245
	unsigned long			task_state_change;
P
Peter Zijlstra 已提交
1246
#endif
1247
	int				pagefault_disabled;
1248
#ifdef CONFIG_MMU
1249
	struct task_struct		*oom_reaper_list;
1250
#endif
1251
#ifdef CONFIG_VMAP_STACK
1252
	struct vm_struct		*stack_vm_area;
1253
#endif
1254
#ifdef CONFIG_THREAD_INFO_IN_TASK
1255
	/* A live task holds one reference: */
1256
	refcount_t			stack_refcount;
1257 1258 1259
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1260
#endif
1261 1262 1263
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1264
#endif
K
Kees Cook 已提交
1265

1266 1267
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1268
	unsigned long			prev_lowest_stack;
1269 1270
#endif

K
Kees Cook 已提交
1271 1272 1273 1274 1275 1276
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1277 1278 1279 1280 1281 1282 1283 1284 1285
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1286 1287
};

A
Alexey Dobriyan 已提交
1288
static inline struct pid *task_pid(struct task_struct *task)
1289
{
1290
	return task->thread_pid;
1291 1292
}

1293 1294 1295 1296 1297
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1298 1299
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1300 1301 1302 1303
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1304
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1305

A
Alexey Dobriyan 已提交
1306
static inline pid_t task_pid_nr(struct task_struct *tsk)
1307 1308 1309 1310
{
	return tsk->pid;
}

1311
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1312 1313 1314
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1315 1316 1317

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1318
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1319 1320 1321
}


A
Alexey Dobriyan 已提交
1322
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1323 1324 1325 1326
{
	return tsk->tgid;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1339
	return p->thread_pid != NULL;
1340
}
1341

1342
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1343
{
1344
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1345 1346 1347 1348
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1349
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1350 1351 1352
}


1353
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1354
{
1355
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1356 1357 1358 1359
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1360
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1361 1362
}

1363 1364
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1365
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1366 1367 1368 1369
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1370
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1390
/* Obsolete, do not use: */
1391 1392 1393 1394
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1395

1396 1397 1398
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1399
static inline unsigned int task_state_index(struct task_struct *tsk)
1400
{
1401 1402
	unsigned int tsk_state = READ_ONCE(tsk->state);
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1403

1404 1405 1406 1407 1408
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1409 1410 1411
	return fls(state);
}

1412
static inline char task_index_to_char(unsigned int state)
1413
{
1414
	static const char state_char[] = "RSDTtXZPI";
1415

1416
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1417

1418 1419 1420 1421 1422
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1423
	return task_index_to_char(task_state_index(tsk));
1424 1425
}

1426
/**
1427 1428
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1429 1430 1431
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1432 1433
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1434
 */
A
Alexey Dobriyan 已提交
1435
static inline int is_global_init(struct task_struct *tsk)
1436
{
1437
	return task_tgid_nr(tsk) == 1;
1438
}
1439

1440 1441
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1442 1443 1444
/*
 * Per process flags
 */
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
#define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
#define PF_VCPU			0x00000010	/* I'm a virtual CPU */
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1461 1462 1463
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1464 1465 1466 1467
#define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1468
#define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
1469
#define PF_UMH			0x02000000	/* I'm an Usermodehelper process */
1470
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1471
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1472
#define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1473 1474
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1487 1488 1489 1490 1491
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1492 1493
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1494 1495 1496

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1497 1498
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1499

L
Linus Torvalds 已提交
1500
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1501 1502
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1514
/* Per-process atomic flags. */
1515 1516 1517
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1518 1519
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1520 1521
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1522
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1523

1524 1525 1526
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1527

1528 1529 1530
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1531

1532 1533 1534 1535 1536 1537
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1538

1539 1540 1541 1542 1543 1544 1545
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1546

1547 1548 1549 1550
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1551 1552 1553 1554
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1555 1556 1557
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1558 1559 1560 1561 1562 1563 1564
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1565
static inline void
1566
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1567
{
1568 1569
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1570 1571
}

1572 1573
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1574
#ifdef CONFIG_SMP
1575 1576
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
L
Linus Torvalds 已提交
1577
#else
1578
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1579 1580
{
}
1581
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1582
{
1583
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1584 1585 1586 1587
		return -EINVAL;
	return 0;
}
#endif
1588

1589
extern int yield_to(struct task_struct *p, bool preempt);
1590 1591
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1603

1604 1605
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1606
extern int idle_cpu(int cpu);
1607
extern int available_idle_cpu(int cpu);
1608 1609 1610
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1611
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1612
extern struct task_struct *idle_task(int cpu);
1613

1614 1615
/**
 * is_idle_task - is the specified task an idle task?
1616
 * @p: the task in question.
1617 1618
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1619
 */
1620
static inline bool is_idle_task(const struct task_struct *p)
1621
{
1622
	return !!(p->flags & PF_IDLE);
1623
}
1624

1625
extern struct task_struct *curr_task(int cpu);
1626
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1627 1628 1629 1630

void yield(void);

union thread_union {
1631 1632 1633
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1634
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1635
	struct thread_info thread_info;
1636
#endif
L
Linus Torvalds 已提交
1637 1638 1639
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1640 1641 1642 1643 1644 1645
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1646 1647 1648 1649 1650 1651 1652 1653 1654
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1655 1656 1657 1658 1659
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1660 1661
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1662
 *
1663
 * see also find_vpid() etc in include/linux/pid.h
1664 1665
 */

1666
extern struct task_struct *find_task_by_vpid(pid_t nr);
1667
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1668

1669 1670 1671 1672 1673
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1674 1675
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1676
extern void wake_up_new_task(struct task_struct *tsk);
1677

L
Linus Torvalds 已提交
1678
#ifdef CONFIG_SMP
1679
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1680
#else
1681
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1682 1683
#endif

1684
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1685

1686 1687 1688 1689
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1690

1691 1692 1693 1694 1695
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1696 1697

#ifdef CONFIG_SMP
1698
void scheduler_ipi(void);
R
Roland McGrath 已提交
1699
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
L
Linus Torvalds 已提交
1700
#else
1701
static inline void scheduler_ipi(void) { }
1702
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
R
Roland McGrath 已提交
1703 1704 1705
{
	return 1;
}
L
Linus Torvalds 已提交
1706 1707
#endif

1708 1709 1710
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1711 1712 1713
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1714
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1715 1716 1717 1718
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1719
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1720 1721
}

1722 1723 1724 1725 1726 1727
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1728 1729
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1730
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1731 1732 1733 1734
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1735
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1736 1737 1738 1739
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1740
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1753 1754 1755 1756 1757
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
1758 1759 1760 1761 1762 1763
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
1764
#ifndef CONFIG_PREEMPT
1765
extern int _cond_resched(void);
1766 1767 1768
#else
static inline int _cond_resched(void) { return 0; }
#endif
1769

1770
#define cond_resched() ({			\
1771
	___might_sleep(__FILE__, __LINE__, 0);	\
1772 1773
	_cond_resched();			\
})
1774

1775 1776 1777
extern int __cond_resched_lock(spinlock_t *lock);

#define cond_resched_lock(lock) ({				\
1778
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1779 1780 1781
	__cond_resched_lock(lock);				\
})

1782 1783 1784 1785 1786 1787 1788 1789 1790
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
1791 1792
/*
 * Does a critical section need to be broken due to another
N
Nick Piggin 已提交
1793 1794
 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
 * but a general need for low latency)
L
Linus Torvalds 已提交
1795
 */
N
Nick Piggin 已提交
1796
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
1797
{
N
Nick Piggin 已提交
1798 1799 1800
#ifdef CONFIG_PREEMPT
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
1801
	return 0;
N
Nick Piggin 已提交
1802
#endif
L
Linus Torvalds 已提交
1803 1804
}

1805 1806 1807 1808 1809
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
1810 1811 1812 1813 1814 1815 1816
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
1817
#ifdef CONFIG_THREAD_INFO_IN_TASK
1818
	return READ_ONCE(p->cpu);
1819
#else
1820
	return READ_ONCE(task_thread_info(p)->cpu);
1821
#endif
L
Linus Torvalds 已提交
1822 1823
}

I
Ingo Molnar 已提交
1824
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
# define vcpu_is_preempted(cpu)	false
#endif

1851 1852
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1853

D
Dave Hansen 已提交
1854 1855 1856 1857
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

1882
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1883

1884 1885
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1886 1887
{
	if (current->rseq)
1888
		__rseq_handle_notify_resume(ksig, regs);
1889 1890
}

1891 1892
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1893 1894 1895 1896
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
1897
	rseq_handle_notify_resume(ksig, regs);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
1916
 * child inherits. Only applies when forking a process, not a thread.
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
	if (clone_flags & CLONE_THREAD) {
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
1943 1944
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1945 1946
{
}
1947 1948
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

1966 1967 1968 1969 1970 1971 1972 1973
void __exit_umh(struct task_struct *tsk);

static inline void exit_umh(struct task_struct *tsk)
{
	if (unlikely(tsk->flags & PF_UMH))
		__exit_umh(tsk);
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

L
Linus Torvalds 已提交
1998
#endif