sched.h 55.9 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

5 6 7 8
/*
 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)
 */
9

10
#include <uapi/linux/sched.h>
11

12
#include <asm/current.h>
L
Linus Torvalds 已提交
13

14
#include <linux/pid.h>
L
Linus Torvalds 已提交
15
#include <linux/sem.h>
16
#include <linux/shm.h>
17 18 19 20
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
21
#include <linux/seccomp.h>
22
#include <linux/nodemask.h>
23
#include <linux/rcupdate.h>
24
#include <linux/refcount.h>
25
#include <linux/resource.h>
A
Arjan van de Ven 已提交
26
#include <linux/latencytop.h>
27
#include <linux/sched/prio.h>
28
#include <linux/sched/types.h>
29 30 31
#include <linux/signal_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
32
#include <linux/posix-timers.h>
33
#include <linux/rseq.h>
34

35
/* task_struct member predeclarations (sorted alphabetically): */
36 37
struct audit_context;
struct backing_dev_info;
38
struct bio_list;
39
struct blk_plug;
40
struct capture_control;
41 42 43 44 45
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct mempolicy;
46
struct nameidata;
47 48 49 50 51 52 53
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
54 55
struct root_domain;
struct rq;
56 57
struct sched_attr;
struct sched_param;
I
Ingo Molnar 已提交
58
struct seq_file;
59 60 61
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
62
struct task_group;
L
Linus Torvalds 已提交
63

64 65 66 67 68 69 70 71 72 73
/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
74 75

/* Used in tsk->state: */
76 77 78 79 80
#define TASK_RUNNING			0x0000
#define TASK_INTERRUPTIBLE		0x0001
#define TASK_UNINTERRUPTIBLE		0x0002
#define __TASK_STOPPED			0x0004
#define __TASK_TRACED			0x0008
81
/* Used in tsk->exit_state: */
82 83
#define EXIT_DEAD			0x0010
#define EXIT_ZOMBIE			0x0020
84 85
#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
86 87 88 89
#define TASK_PARKED			0x0040
#define TASK_DEAD			0x0080
#define TASK_WAKEKILL			0x0100
#define TASK_WAKING			0x0200
90 91 92
#define TASK_NOLOAD			0x0400
#define TASK_NEW			0x0800
#define TASK_STATE_MAX			0x1000
93 94 95 96 97 98 99 100 101 102 103 104 105 106

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

/* get_task_state(): */
#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
107 108
					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
					 TASK_PARKED)
109 110 111 112 113 114 115 116 117 118

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

#define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
					 (task->flags & PF_FROZEN) == 0 && \
					 (task->state & TASK_NOLOAD) == 0)
L
Linus Torvalds 已提交
119

P
Peter Zijlstra 已提交
120 121
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

122 123 124 125 126
/*
 * Special states are those that do not use the normal wait-loop pattern. See
 * the comment with set_special_state().
 */
#define is_special_task_state(state)				\
127
	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
128

P
Peter Zijlstra 已提交
129 130
#define __set_current_state(state_value)			\
	do {							\
131
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
132 133 134
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
135

P
Peter Zijlstra 已提交
136 137
#define set_current_state(state_value)				\
	do {							\
138
		WARN_ON_ONCE(is_special_task_state(state_value));\
P
Peter Zijlstra 已提交
139
		current->task_state_change = _THIS_IP_;		\
140
		smp_store_mb(current->state, (state_value));	\
P
Peter Zijlstra 已提交
141 142
	} while (0)

143 144 145 146 147 148 149 150 151
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		WARN_ON_ONCE(!is_special_task_state(state_value));	\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->task_state_change = _THIS_IP_;			\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)
P
Peter Zijlstra 已提交
152
#else
153 154 155 156 157
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
158
 *   for (;;) {
159
 *	set_current_state(TASK_UNINTERRUPTIBLE);
160 161 162 163 164 165 166 167 168 169 170 171 172
 *	if (!need_sleep)
 *		break;
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
 * condition test and condition change and wakeup are under the same lock) then
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
173 174
 *   need_sleep = false;
 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
175
 *
176 177
 * where wake_up_state() executes a full memory barrier before accessing the
 * task state.
178 179 180 181
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
182
 *
183
 * However, with slightly different timing the wakeup TASK_RUNNING store can
I
Ingo Molnar 已提交
184
 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
185 186
 * a problem either because that will result in one extra go around the loop
 * and our @cond test will save the day.
187
 *
188
 * Also see the comments of try_to_wake_up().
189
 */
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#define __set_current_state(state_value)				\
	current->state = (state_value)

#define set_current_state(state_value)					\
	smp_store_mb(current->state, (state_value))

/*
 * set_special_state() should be used for those states when the blocking task
 * can not use the regular condition based wait-loop. In that case we must
 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 * will not collide with our state change.
 */
#define set_special_state(state_value)					\
	do {								\
		unsigned long flags; /* may shadow */			\
		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
		current->state = (state_value);				\
		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
	} while (0)

P
Peter Zijlstra 已提交
210 211
#endif

212 213
/* Task command name length: */
#define TASK_COMM_LEN			16
L
Linus Torvalds 已提交
214 215 216

extern void scheduler_tick(void);

217 218 219 220 221 222 223
#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
L
Linus Torvalds 已提交
224
asmlinkage void schedule(void);
225
extern void schedule_preempt_disabled(void);
226
asmlinkage void preempt_schedule_irq(void);
L
Linus Torvalds 已提交
227

228 229
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
230
extern long io_schedule_timeout(long timeout);
231
extern void io_schedule(void);
232

233
/**
234
 * struct prev_cputime - snapshot of system and user cputime
235 236
 * @utime: time spent in user mode
 * @stime: time spent in system mode
237
 * @lock: protects the above two fields
238
 *
239 240
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
241
 */
242 243
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
244 245 246
	u64				utime;
	u64				stime;
	raw_spinlock_t			lock;
247
#endif
248 249
};

250 251 252
enum vtime_state {
	/* Task is sleeping or running in a CPU with VTIME inactive: */
	VTIME_INACTIVE = 0,
253 254
	/* Task is idle */
	VTIME_IDLE,
255 256
	/* Task runs in kernelspace in a CPU with VTIME active: */
	VTIME_SYS,
257 258
	/* Task runs in userspace in a CPU with VTIME active: */
	VTIME_USER,
259 260
	/* Task runs as guests in a CPU with VTIME active: */
	VTIME_GUEST,
261 262 263 264 265 266
};

struct vtime {
	seqcount_t		seqcount;
	unsigned long long	starttime;
	enum vtime_state	state;
267
	unsigned int		cpu;
268 269 270
	u64			utime;
	u64			stime;
	u64			gtime;
271 272
};

273 274 275 276 277 278 279 280 281 282 283 284
/*
 * Utilization clamp constraints.
 * @UCLAMP_MIN:	Minimum utilization
 * @UCLAMP_MAX:	Maximum utilization
 * @UCLAMP_CNT:	Utilization clamp constraints count
 */
enum uclamp_id {
	UCLAMP_MIN = 0,
	UCLAMP_MAX,
	UCLAMP_CNT
};

285 286 287 288 289
#ifdef CONFIG_SMP
extern struct root_domain def_root_domain;
extern struct mutex sched_domains_mutex;
#endif

L
Linus Torvalds 已提交
290
struct sched_info {
291
#ifdef CONFIG_SCHED_INFO
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
	unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
	unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
	unsigned long long		last_arrival;

	/* When were we last queued to run? */
	unsigned long long		last_queued;
L
Linus Torvalds 已提交
307

308
#endif /* CONFIG_SCHED_INFO */
309
};
L
Linus Torvalds 已提交
310

311 312 313 314 315 316 317
/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
318 319
# define SCHED_FIXEDPOINT_SHIFT		10
# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
320

321 322 323 324
/* Increase resolution of cpu_capacity calculations */
# define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
# define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)

I
Ingo Molnar 已提交
325
struct load_weight {
326 327
	unsigned long			weight;
	u32				inv_weight;
I
Ingo Molnar 已提交
328 329
};

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/**
 * struct util_est - Estimation utilization of FAIR tasks
 * @enqueued: instantaneous estimated utilization of a task/cpu
 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 *            utilization of a task
 *
 * Support data structure to track an Exponential Weighted Moving Average
 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 * average each time a task completes an activation. Sample's weight is chosen
 * so that the EWMA will be relatively insensitive to transient changes to the
 * task's workload.
 *
 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 * - task:   the task's util_avg at last task dequeue time
 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 * Thus, the util_est.enqueued of a task represents the contribution on the
 * estimated utilization of the CPU where that task is currently enqueued.
 *
 * Only for tasks we track a moving average of the past instantaneous
 * estimated utilization. This allows to absorb sporadic drops in utilization
 * of an otherwise almost periodic task.
 */
struct util_est {
	unsigned int			enqueued;
	unsigned int			ewma;
#define UTIL_EST_WEIGHT_SHIFT		2
356
} __attribute__((__aligned__(sizeof(u64))));
357

358
/*
359
 * The load/runnable/util_avg accumulates an infinite geometric series
360
 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
361 362 363 364 365
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
366 367 368
 * [runnable_avg definition]
 *
 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
369 370 371 372 373
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
374 375 376 377 378
 * where runnable% is the time ratio that a sched_entity is runnable and
 * running% the time ratio that a sched_entity is running.
 *
 * For cfs_rq, they are the aggregated values of all runnable and blocked
 * sched_entities.
379
 *
380 381 382
 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 * for computing those signals (see update_rq_clock_pelt())
383
 *
384 385 386 387
 * N.B., the above ratios (runnable% and running%) themselves are in the
 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 * to as large a range as necessary. This is for example reflected by
 * util_avg's SCHED_CAPACITY_SCALE.
388 389 390 391 392 393 394 395 396 397 398 399 400 401
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
402
 */
403
struct sched_avg {
404 405
	u64				last_update_time;
	u64				load_sum;
406
	u64				runnable_sum;
407 408 409
	u32				util_sum;
	u32				period_contrib;
	unsigned long			load_avg;
410
	unsigned long			runnable_avg;
411
	unsigned long			util_avg;
412
	struct util_est			util_est;
413
} ____cacheline_aligned;
414

415
struct sched_statistics {
416
#ifdef CONFIG_SCHEDSTATS
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	u64				wait_start;
	u64				wait_max;
	u64				wait_count;
	u64				wait_sum;
	u64				iowait_count;
	u64				iowait_sum;

	u64				sleep_start;
	u64				sleep_max;
	s64				sum_sleep_runtime;

	u64				block_start;
	u64				block_max;
	u64				exec_max;
	u64				slice_max;

	u64				nr_migrations_cold;
	u64				nr_failed_migrations_affine;
	u64				nr_failed_migrations_running;
	u64				nr_failed_migrations_hot;
	u64				nr_forced_migrations;

	u64				nr_wakeups;
	u64				nr_wakeups_sync;
	u64				nr_wakeups_migrate;
	u64				nr_wakeups_local;
	u64				nr_wakeups_remote;
	u64				nr_wakeups_affine;
	u64				nr_wakeups_affine_attempts;
	u64				nr_wakeups_passive;
	u64				nr_wakeups_idle;
448
#endif
449
};
450 451

struct sched_entity {
452 453 454 455 456
	/* For load-balancing: */
	struct load_weight		load;
	struct rb_node			run_node;
	struct list_head		group_node;
	unsigned int			on_rq;
457

458 459 460 461
	u64				exec_start;
	u64				sum_exec_runtime;
	u64				vruntime;
	u64				prev_sum_exec_runtime;
462

463
	u64				nr_migrations;
464

465
	struct sched_statistics		statistics;
466

I
Ingo Molnar 已提交
467
#ifdef CONFIG_FAIR_GROUP_SCHED
468 469
	int				depth;
	struct sched_entity		*parent;
I
Ingo Molnar 已提交
470
	/* rq on which this entity is (to be) queued: */
471
	struct cfs_rq			*cfs_rq;
I
Ingo Molnar 已提交
472
	/* rq "owned" by this entity/group: */
473
	struct cfs_rq			*my_q;
474 475
	/* cached value of my_q->h_nr_running */
	unsigned long			runnable_weight;
I
Ingo Molnar 已提交
476
#endif
477

478
#ifdef CONFIG_SMP
479 480 481 482 483 484
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
485
	struct sched_avg		avg;
486
#endif
I
Ingo Molnar 已提交
487
};
488

P
Peter Zijlstra 已提交
489
struct sched_rt_entity {
490 491 492 493 494 495 496 497
	struct list_head		run_list;
	unsigned long			timeout;
	unsigned long			watchdog_stamp;
	unsigned int			time_slice;
	unsigned short			on_rq;
	unsigned short			on_list;

	struct sched_rt_entity		*back;
498
#ifdef CONFIG_RT_GROUP_SCHED
499
	struct sched_rt_entity		*parent;
P
Peter Zijlstra 已提交
500
	/* rq on which this entity is (to be) queued: */
501
	struct rt_rq			*rt_rq;
P
Peter Zijlstra 已提交
502
	/* rq "owned" by this entity/group: */
503
	struct rt_rq			*my_q;
P
Peter Zijlstra 已提交
504
#endif
505
} __randomize_layout;
P
Peter Zijlstra 已提交
506

507
struct sched_dl_entity {
508
	struct rb_node			rb_node;
509 510 511

	/*
	 * Original scheduling parameters. Copied here from sched_attr
512 513
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
514
	 */
515 516 517
	u64				dl_runtime;	/* Maximum runtime for each instance	*/
	u64				dl_deadline;	/* Relative deadline of each instance	*/
	u64				dl_period;	/* Separation of two instances (period) */
518
	u64				dl_bw;		/* dl_runtime / dl_period		*/
519
	u64				dl_density;	/* dl_runtime / dl_deadline		*/
520 521 522

	/*
	 * Actual scheduling parameters. Initialized with the values above,
I
Ingo Molnar 已提交
523
	 * they are continuously updated during task execution. Note that
524 525
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
526 527 528
	s64				runtime;	/* Remaining runtime for this instance	*/
	u64				deadline;	/* Absolute deadline for this instance	*/
	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
529 530 531 532 533 534 535 536

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
537 538
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
539 540
	 * exit the critical section);
	 *
541
	 * @dl_yielded tells if task gave up the CPU before consuming
542
	 * all its available runtime during the last job.
543 544 545 546 547 548 549
	 *
	 * @dl_non_contending tells if the task is inactive while still
	 * contributing to the active utilization. In other words, it
	 * indicates if the inactive timer has been armed and its handler
	 * has not been executed yet. This flag is useful to avoid race
	 * conditions between the inactive timer handler and the wakeup
	 * code.
550 551 552
	 *
	 * @dl_overrun tells if the task asked to be informed about runtime
	 * overruns.
553
	 */
554 555 556 557
	unsigned int			dl_throttled      : 1;
	unsigned int			dl_boosted        : 1;
	unsigned int			dl_yielded        : 1;
	unsigned int			dl_non_contending : 1;
558
	unsigned int			dl_overrun	  : 1;
559 560 561 562 563

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
564
	struct hrtimer			dl_timer;
565 566 567 568 569 570 571 572 573

	/*
	 * Inactive timer, responsible for decreasing the active utilization
	 * at the "0-lag time". When a -deadline task blocks, it contributes
	 * to GRUB's active utilization until the "0-lag time", hence a
	 * timer is needed to decrease the active utilization at the correct
	 * time.
	 */
	struct hrtimer inactive_timer;
574
};
575

576 577 578 579 580 581 582 583
#ifdef CONFIG_UCLAMP_TASK
/* Number of utilization clamp buckets (shorter alias) */
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT

/*
 * Utilization clamp for a scheduling entity
 * @value:		clamp value "assigned" to a se
 * @bucket_id:		bucket index corresponding to the "assigned" value
584
 * @active:		the se is currently refcounted in a rq's bucket
585
 * @user_defined:	the requested clamp value comes from user-space
586 587 588 589
 *
 * The bucket_id is the index of the clamp bucket matching the clamp value
 * which is pre-computed and stored to avoid expensive integer divisions from
 * the fast path.
590 591 592 593 594
 *
 * The active bit is set whenever a task has got an "effective" value assigned,
 * which can be different from the clamp value "requested" from user-space.
 * This allows to know a task is refcounted in the rq's bucket corresponding
 * to the "effective" bucket_id.
595 596 597 598 599 600 601
 *
 * The user_defined bit is set whenever a task has got a task-specific clamp
 * value requested from userspace, i.e. the system defaults apply to this task
 * just as a restriction. This allows to relax default clamps when a less
 * restrictive task-specific value has been requested, thus allowing to
 * implement a "nice" semantic. For example, a task running with a 20%
 * default boost can still drop its own boosting to 0%.
602 603 604 605
 */
struct uclamp_se {
	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
606
	unsigned int active		: 1;
607
	unsigned int user_defined	: 1;
608 609 610
};
#endif /* CONFIG_UCLAMP_TASK */

611 612
union rcu_special {
	struct {
613 614
		u8			blocked;
		u8			need_qs;
615
		u8			exp_hint; /* Hint for performance. */
616
		u8			deferred_qs;
617
	} b; /* Bits. */
618
	u32 s; /* Set of bits. */
619
};
620

P
Peter Zijlstra 已提交
621 622 623
enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
624
	perf_sw_context,
P
Peter Zijlstra 已提交
625 626 627
	perf_nr_task_contexts,
};

628 629 630 631
struct wake_q_node {
	struct wake_q_node *next;
};

L
Linus Torvalds 已提交
632
struct task_struct {
633 634 635 636 637
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
638
	struct thread_info		thread_info;
639
#endif
640 641
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state;
K
Kees Cook 已提交
642 643 644 645 646 647 648

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

649
	void				*stack;
650
	refcount_t			usage;
651 652 653
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;
L
Linus Torvalds 已提交
654

655
#ifdef CONFIG_SMP
656 657
	struct llist_node		wake_entry;
	int				on_cpu;
658
#ifdef CONFIG_THREAD_INFO_IN_TASK
659 660
	/* Current CPU: */
	unsigned int			cpu;
661
#endif
662 663 664
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;
665

666 667 668 669 670 671 672 673
	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
674
	int				wake_cpu;
675
#endif
676 677 678 679 680 681
	int				on_rq;

	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;
682

683 684 685
	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
P
Peter Zijlstra 已提交
686
#ifdef CONFIG_CGROUP_SCHED
687
	struct task_group		*sched_task_group;
P
Peter Zijlstra 已提交
688
#endif
689
	struct sched_dl_entity		dl;
L
Linus Torvalds 已提交
690

691
#ifdef CONFIG_UCLAMP_TASK
692 693 694
	/* Clamp values requested for a scheduling entity */
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
	/* Effective clamp values used for a scheduling entity */
695 696 697
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

698
#ifdef CONFIG_PREEMPT_NOTIFIERS
699 700
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
701 702
#endif

703
#ifdef CONFIG_BLK_DEV_IO_TRACE
704
	unsigned int			btrace_seq;
705
#endif
L
Linus Torvalds 已提交
706

707 708
	unsigned int			policy;
	int				nr_cpus_allowed;
709 710
	const cpumask_t			*cpus_ptr;
	cpumask_t			cpus_mask;
L
Linus Torvalds 已提交
711

P
Paul E. McKenney 已提交
712
#ifdef CONFIG_PREEMPT_RCU
713 714 715 716
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
717
#endif /* #ifdef CONFIG_PREEMPT_RCU */
718

P
Paul E. McKenney 已提交
719
#ifdef CONFIG_TASKS_RCU
720
	unsigned long			rcu_tasks_nvcsw;
721 722
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
723
	int				rcu_tasks_idle_cpu;
724
	struct list_head		rcu_tasks_holdout_list;
P
Paul E. McKenney 已提交
725
#endif /* #ifdef CONFIG_TASKS_RCU */
P
Paul E. McKenney 已提交
726

727
	struct sched_info		sched_info;
L
Linus Torvalds 已提交
728

729
	struct list_head		tasks;
730
#ifdef CONFIG_SMP
731 732
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
733
#endif
L
Linus Torvalds 已提交
734

735 736
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;
737 738

	/* Per-thread vma caching: */
739
	struct vmacache			vmacache;
740

741 742
#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
743
#endif
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
	unsigned			sched_remote_wakeup:1;
760 761 762 763
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

764 765 766 767 768 769 770 771 772 773
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
774
#endif
T
Tejun Heo 已提交
775
#ifdef CONFIG_MEMCG
776
	unsigned			in_user_fault:1;
777
#endif
778
#ifdef CONFIG_COMPAT_BRK
779
	unsigned			brk_randomized:1;
780
#endif
781 782 783
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
R
Roman Gushchin 已提交
784 785
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
786
#endif
787 788 789
#ifdef CONFIG_BLK_CGROUP
	unsigned			use_memdelay:1;
#endif
790 791 792 793
#ifdef CONFIG_PSI
	/* Stalled due to lack of memory */
	unsigned			in_memstall:1;
#endif
794

795
	unsigned long			atomic_flags; /* Flags requiring atomic access. */
796

797
	struct restart_block		restart_block;
798

799 800
	pid_t				pid;
	pid_t				tgid;
801

802
#ifdef CONFIG_STACKPROTECTOR
803 804
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
805
#endif
806
	/*
807
	 * Pointers to the (original) parent process, youngest child, younger sibling,
808
	 * older sibling, respectively.  (p->father can be replaced with
R
Roland McGrath 已提交
809
	 * p->real_parent->pid)
L
Linus Torvalds 已提交
810
	 */
811 812 813 814 815 816 817

	/* Real parent process: */
	struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;

L
Linus Torvalds 已提交
818
	/*
819
	 * Children/sibling form the list of natural children:
L
Linus Torvalds 已提交
820
	 */
821 822 823
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader;
L
Linus Torvalds 已提交
824

R
Roland McGrath 已提交
825
	/*
826 827
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
R
Roland McGrath 已提交
828
	 * This includes both natural children and PTRACE_ATTACH targets.
829
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
R
Roland McGrath 已提交
830
	 */
831 832
	struct list_head		ptraced;
	struct list_head		ptrace_entry;
R
Roland McGrath 已提交
833

L
Linus Torvalds 已提交
834
	/* PID/PID hash table linkage. */
835 836
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
837 838 839 840
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;
L
Linus Torvalds 已提交
841

842 843
	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;
L
Linus Torvalds 已提交
844

845 846 847 848 849
	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

	u64				utime;
	u64				stime;
850
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
851 852
	u64				utimescaled;
	u64				stimescaled;
853
#endif
854 855
	u64				gtime;
	struct prev_cputime		prev_cputime;
856
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
857
	struct vtime			vtime;
858
#endif
859 860

#ifdef CONFIG_NO_HZ_FULL
861
	atomic_t			tick_dep_mask;
862
#endif
863 864 865 866 867 868 869 870
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
871
	u64				start_boottime;
872 873 874 875

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;
L
Linus Torvalds 已提交
876

877 878
	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;
L
Linus Torvalds 已提交
879

880 881 882 883 884 885 886 887 888 889 890
	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

891 892 893 894 895
#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

896 897 898 899 900 901 902 903 904 905 906
	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

907
#ifdef CONFIG_SYSVIPC
908 909
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
910
#endif
911
#ifdef CONFIG_DETECT_HUNG_TASK
912
	unsigned long			last_switch_count;
913
	unsigned long			last_switch_time;
914
#endif
915 916 917 918 919 920 921 922 923 924 925
	/* Filesystem information: */
	struct fs_struct		*fs;

	/* Open file information: */
	struct files_struct		*files;

	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
926
	struct sighand_struct __rcu		*sighand;
927 928 929 930 931 932 933 934 935 936 937
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

938
#ifdef CONFIG_AUDIT
A
Al Viro 已提交
939
#ifdef CONFIG_AUDITSYSCALL
940 941
	struct audit_context		*audit_context;
#endif
942 943
	kuid_t				loginuid;
	unsigned int			sessionid;
A
Al Viro 已提交
944
#endif
945 946 947
	struct seccomp			seccomp;

	/* Thread group tracking: */
948 949
	u64				parent_exec_id;
	u64				self_exec_id;
L
Linus Torvalds 已提交
950

951 952
	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;
L
Linus Torvalds 已提交
953

954
	/* Protection of the PI data structures: */
955
	raw_spinlock_t			pi_lock;
956

957
	struct wake_q_node		wake_q;
958

I
Ingo Molnar 已提交
959
#ifdef CONFIG_RT_MUTEXES
960
	/* PI waiters blocked on a rt_mutex held by this task: */
961
	struct rb_root_cached		pi_waiters;
962 963
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
964 965
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
I
Ingo Molnar 已提交
966 967
#endif

968
#ifdef CONFIG_DEBUG_MUTEXES
969 970
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
971
#endif
972

973 974 975 976
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	int				non_block_count;
#endif

977
#ifdef CONFIG_TRACE_IRQFLAGS
978
	unsigned int			irq_events;
979
	unsigned int			hardirq_threaded;
980 981 982 983 984 985 986 987 988 989 990 991
	unsigned long			hardirq_enable_ip;
	unsigned long			hardirq_disable_ip;
	unsigned int			hardirq_enable_event;
	unsigned int			hardirq_disable_event;
	int				hardirqs_enabled;
	int				hardirq_context;
	unsigned long			softirq_disable_ip;
	unsigned long			softirq_enable_ip;
	unsigned int			softirq_disable_event;
	unsigned int			softirq_enable_event;
	int				softirqs_enabled;
	int				softirq_context;
992
	int				irq_config;
993
#endif
994

I
Ingo Molnar 已提交
995
#ifdef CONFIG_LOCKDEP
996 997 998 999 1000
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
I
Ingo Molnar 已提交
1001
#endif
1002

1003
#ifdef CONFIG_UBSAN
1004
	unsigned int			in_ubsan;
1005
#endif
1006

1007 1008
	/* Journalling filesystem info: */
	void				*journal_info;
L
Linus Torvalds 已提交
1009

1010 1011
	/* Stacked block device info: */
	struct bio_list			*bio_list;
1012

1013
#ifdef CONFIG_BLOCK
1014 1015
	/* Stack plugging: */
	struct blk_plug			*plug;
1016 1017
#endif

1018 1019 1020 1021
	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;
L
Linus Torvalds 已提交
1022

1023
	struct io_context		*io_context;
L
Linus Torvalds 已提交
1024

1025 1026 1027
#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
1028 1029
	/* Ptrace state: */
	unsigned long			ptrace_message;
1030
	kernel_siginfo_t		*last_siginfo;
L
Linus Torvalds 已提交
1031

1032
	struct task_io_accounting	ioac;
1033 1034 1035 1036
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
1037 1038 1039 1040 1041 1042 1043
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
L
Linus Torvalds 已提交
1044 1045
#endif
#ifdef CONFIG_CPUSETS
1046 1047 1048 1049 1050 1051
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
	seqcount_t			mems_allowed_seq;
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
L
Linus Torvalds 已提交
1052
#endif
1053
#ifdef CONFIG_CGROUPS
1054 1055 1056 1057
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
1058
#endif
1059
#ifdef CONFIG_X86_CPU_RESCTRL
1060
	u32				closid;
1061
	u32				rmid;
F
Fenghua Yu 已提交
1062
#endif
1063
#ifdef CONFIG_FUTEX
1064
	struct robust_list_head __user	*robust_list;
1065 1066 1067
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
1068 1069
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
1070
	struct mutex			futex_exit_mutex;
1071
	unsigned int			futex_state;
1072
#endif
1073
#ifdef CONFIG_PERF_EVENTS
1074 1075 1076
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
1077
#endif
1078
#ifdef CONFIG_DEBUG_PREEMPT
1079
	unsigned long			preempt_disable_ip;
1080
#endif
1081
#ifdef CONFIG_NUMA
1082 1083
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
1084
	short				il_prev;
1085
	short				pref_node_fork;
1086
#endif
1087
#ifdef CONFIG_NUMA_BALANCING
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * This pointer is only modified for current in syscall and
	 * pagefault context (and for tasks being destroyed), so it can be read
	 * from any of the following contexts:
	 *  - RCU read-side critical section
	 *  - current->numa_group from everywhere
	 *  - task's runqueue locked, task not running
	 */
	struct numa_group __rcu		*numa_group;
1108

1109
	/*
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
1122
	 */
1123 1124
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;
1125

1126 1127
	/*
	 * numa_faults_locality tracks if faults recorded during the last
1128 1129 1130
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
1131
	 */
1132
	unsigned long			numa_faults_locality[3];
1133

1134
	unsigned long			numa_pages_migrated;
1135 1136
#endif /* CONFIG_NUMA_BALANCING */

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

1147
	struct tlbflush_unmap_batch	tlb_ubc;
1148

1149 1150 1151 1152
	union {
		refcount_t		rcu_users;
		struct rcu_head		rcu;
	};
1153

1154 1155
	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;
1156

1157
	struct page_frag		task_frag;
1158

1159 1160
#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
1161
#endif
1162

1163
#ifdef CONFIG_FAULT_INJECTION
1164
	int				make_it_fail;
1165
	unsigned int			fail_nth;
1166
#endif
1167
	/*
1168 1169
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
1170
	 */
1171 1172 1173 1174
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;
1175

A
Arjan van de Ven 已提交
1176
#ifdef CONFIG_LATENCYTOP
1177 1178
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
A
Arjan van de Ven 已提交
1179
#endif
1180
	/*
1181
	 * Time slack values; these are used to round up poll() and
1182 1183
	 * select() etc timeout values. These are in nanoseconds.
	 */
1184 1185
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;
1186

1187
#ifdef CONFIG_KASAN
1188
	unsigned int			kasan_depth;
1189
#endif
1190

1191
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1192 1193
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
1194
	int				curr_ret_depth;
1195 1196 1197 1198 1199 1200 1201

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

1202 1203
	/*
	 * Number of functions that haven't been traced
1204
	 * because of depth overrun:
1205
	 */
1206 1207 1208 1209
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
1210
#endif
1211

1212
#ifdef CONFIG_TRACING
1213 1214 1215 1216 1217
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
1218
#endif /* CONFIG_TRACING */
1219

D
Dmitry Vyukov 已提交
1220
#ifdef CONFIG_KCOV
A
Andrey Konovalov 已提交
1221 1222
	/* See kernel/kcov.c for more details. */

1223
	/* Coverage collection mode enabled for this task (0 if disabled): */
1224
	unsigned int			kcov_mode;
1225 1226 1227 1228 1229 1230 1231 1232 1233

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
A
Andrey Konovalov 已提交
1234 1235 1236 1237 1238 1239

	/* KCOV common handle for remote coverage collection: */
	u64				kcov_handle;

	/* KCOV sequence number: */
	int				kcov_sequence;
D
Dmitry Vyukov 已提交
1240
#endif
1241

1242
#ifdef CONFIG_MEMCG
1243 1244 1245
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;
1246

1247 1248
	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;
1249 1250 1251

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
1252
#endif
1253

1254 1255 1256 1257
#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

1258
#ifdef CONFIG_UPROBES
1259
	struct uprobe_task		*utask;
1260
#endif
K
Kent Overstreet 已提交
1261
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1262 1263
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
K
Kent Overstreet 已提交
1264
#endif
P
Peter Zijlstra 已提交
1265
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1266
	unsigned long			task_state_change;
P
Peter Zijlstra 已提交
1267
#endif
1268
	int				pagefault_disabled;
1269
#ifdef CONFIG_MMU
1270
	struct task_struct		*oom_reaper_list;
1271
#endif
1272
#ifdef CONFIG_VMAP_STACK
1273
	struct vm_struct		*stack_vm_area;
1274
#endif
1275
#ifdef CONFIG_THREAD_INFO_IN_TASK
1276
	/* A live task holds one reference: */
1277
	refcount_t			stack_refcount;
1278 1279 1280
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
1281
#endif
1282 1283 1284
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
1285
#endif
K
Kees Cook 已提交
1286

1287 1288
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
1289
	unsigned long			prev_lowest_stack;
1290 1291
#endif

K
Kees Cook 已提交
1292 1293 1294 1295 1296 1297
	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

1298 1299 1300 1301 1302 1303 1304 1305 1306
	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
L
Linus Torvalds 已提交
1307 1308
};

A
Alexey Dobriyan 已提交
1309
static inline struct pid *task_pid(struct task_struct *task)
1310
{
1311
	return task->thread_pid;
1312 1313
}

1314 1315 1316 1317 1318
/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
E
Eric W. Biederman 已提交
1319 1320
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
1321 1322 1323 1324
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
1325
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1326

A
Alexey Dobriyan 已提交
1327
static inline pid_t task_pid_nr(struct task_struct *tsk)
1328 1329 1330 1331
{
	return tsk->pid;
}

1332
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1333 1334 1335
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
1336 1337 1338

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
1339
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1340 1341 1342
}


A
Alexey Dobriyan 已提交
1343
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1344 1345 1346 1347
{
	return tsk->tgid;
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
1360
	return p->thread_pid != NULL;
1361
}
1362

1363
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1364
{
1365
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1366 1367 1368 1369
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
1370
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1371 1372 1373
}


1374
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1375
{
1376
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1377 1378 1379 1380
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
1381
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1382 1383
}

1384 1385
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
E
Eric W. Biederman 已提交
1386
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1387 1388 1389 1390
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
E
Eric W. Biederman 已提交
1391
	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

1411
/* Obsolete, do not use: */
1412 1413 1414 1415
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
1416

1417 1418 1419
#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)

1420
static inline unsigned int task_state_index(struct task_struct *tsk)
1421
{
1422 1423
	unsigned int tsk_state = READ_ONCE(tsk->state);
	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1424

1425 1426 1427 1428 1429
	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

	if (tsk_state == TASK_IDLE)
		state = TASK_REPORT_IDLE;

1430 1431 1432
	return fls(state);
}

1433
static inline char task_index_to_char(unsigned int state)
1434
{
1435
	static const char state_char[] = "RSDTtXZPI";
1436

1437
	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1438

1439 1440 1441 1442 1443
	return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
1444
	return task_index_to_char(task_state_index(tsk));
1445 1446
}

1447
/**
1448 1449
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
1450 1451 1452
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
1453 1454
 *
 * Return: 1 if the task structure is init. 0 otherwise.
1455
 */
A
Alexey Dobriyan 已提交
1456
static inline int is_global_init(struct task_struct *tsk)
1457
{
1458
	return task_tgid_nr(tsk) == 1;
1459
}
1460

1461 1462
extern struct pid *cad_pid;

L
Linus Torvalds 已提交
1463 1464 1465
/*
 * Per process flags
 */
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
#define PF_IDLE			0x00000002	/* I am an IDLE thread */
#define PF_EXITING		0x00000004	/* Getting shut down */
#define PF_VCPU			0x00000010	/* I'm a virtual CPU */
#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
#define PF_DUMPCORE		0x00000200	/* Dumped core */
#define PF_SIGNALED		0x00000400	/* Killed by a signal */
#define PF_MEMALLOC		0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1481 1482 1483
#define PF_KSWAPD		0x00020000	/* I am kswapd */
#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1484 1485 1486 1487
#define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1488
#define PF_UMH			0x02000000	/* I'm an Usermodehelper process */
1489
#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1490
#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1491
#define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1492
#define PF_IO_WORKER		0x20000000	/* Task is an IO worker */
1493 1494
#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
1507 1508 1509 1510 1511
#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math()			clear_stopped_child_used_math(current)
#define set_used_math()				set_stopped_child_used_math(current)

L
Linus Torvalds 已提交
1512 1513
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1514 1515 1516

#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)

L
Linus Torvalds 已提交
1517 1518
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1519

L
Linus Torvalds 已提交
1520
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1521 1522
#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
#define used_math()				tsk_used_math(current)
L
Linus Torvalds 已提交
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
	return (current->flags & PF_NO_SETAFFINITY) &&
		(current->nr_cpus_allowed  == 1);
#else
	return true;
#endif
}

1534
/* Per-process atomic flags. */
1535 1536 1537
#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1538 1539
#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1540 1541
#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1542
#define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1543

1544 1545 1546
#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
1547

1548 1549 1550
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
1551

1552 1553 1554 1555 1556 1557
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1558

1559 1560 1561 1562 1563 1564 1565
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1566

1567 1568 1569 1570
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)

1571 1572 1573 1574
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)

1575 1576 1577
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)

1578 1579 1580 1581 1582 1583 1584
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)

TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)

1585
static inline void
1586
current_restore_flags(unsigned long orig_flags, unsigned long flags)
1587
{
1588 1589
	current->flags &= ~flags;
	current->flags |= orig_flags & flags;
1590 1591
}

1592 1593
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
L
Linus Torvalds 已提交
1594
#ifdef CONFIG_SMP
1595 1596
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
L
Linus Torvalds 已提交
1597
#else
1598
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1599 1600
{
}
1601
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
1602
{
1603
	if (!cpumask_test_cpu(0, new_mask))
L
Linus Torvalds 已提交
1604 1605 1606 1607
		return -EINVAL;
	return 0;
}
#endif
1608

1609
extern int yield_to(struct task_struct *p, bool preempt);
1610 1611
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
1623

1624 1625
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
L
Linus Torvalds 已提交
1626
extern int idle_cpu(int cpu);
1627
extern int available_idle_cpu(int cpu);
1628 1629 1630
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1631
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1632
extern struct task_struct *idle_task(int cpu);
1633

1634 1635
/**
 * is_idle_task - is the specified task an idle task?
1636
 * @p: the task in question.
1637 1638
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
1639
 */
1640
static inline bool is_idle_task(const struct task_struct *p)
1641
{
1642
	return !!(p->flags & PF_IDLE);
1643
}
1644

1645
extern struct task_struct *curr_task(int cpu);
1646
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
L
Linus Torvalds 已提交
1647 1648 1649 1650

void yield(void);

union thread_union {
1651 1652 1653
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
	struct task_struct task;
#endif
1654
#ifndef CONFIG_THREAD_INFO_IN_TASK
L
Linus Torvalds 已提交
1655
	struct thread_info thread_info;
1656
#endif
L
Linus Torvalds 已提交
1657 1658 1659
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

1660 1661 1662 1663 1664 1665
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

1666 1667 1668 1669 1670 1671 1672 1673 1674
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task)	((struct thread_info *)(task)->stack)
#endif

1675 1676 1677 1678 1679
/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
1680 1681
 * find_task_by_vpid():
 *      finds a task by its virtual pid
1682
 *
1683
 * see also find_vpid() etc in include/linux/pid.h
1684 1685
 */

1686
extern struct task_struct *find_task_by_vpid(pid_t nr);
1687
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1688

1689 1690 1691 1692 1693
/*
 * find a task by its virtual pid and get the task struct
 */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

1694 1695
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
1696
extern void wake_up_new_task(struct task_struct *tsk);
1697

L
Linus Torvalds 已提交
1698
#ifdef CONFIG_SMP
1699
extern void kick_process(struct task_struct *tsk);
L
Linus Torvalds 已提交
1700
#else
1701
static inline void kick_process(struct task_struct *tsk) { }
L
Linus Torvalds 已提交
1702 1703
#endif

1704
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1705

1706 1707 1708 1709
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
1710

1711 1712 1713 1714 1715
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({			\
	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
	__get_task_comm(buf, sizeof(buf), tsk);		\
})
L
Linus Torvalds 已提交
1716 1717

#ifdef CONFIG_SMP
1718
void scheduler_ipi(void);
R
Roland McGrath 已提交
1719
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
L
Linus Torvalds 已提交
1720
#else
1721
static inline void scheduler_ipi(void) { }
1722
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
R
Roland McGrath 已提交
1723 1724 1725
{
	return 1;
}
L
Linus Torvalds 已提交
1726 1727
#endif

1728 1729 1730
/*
 * Set thread flags in other task's structures.
 * See asm/thread_info.h for TIF_xxxx flags available:
L
Linus Torvalds 已提交
1731 1732 1733
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1734
	set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1735 1736 1737 1738
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1739
	clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1740 1741
}

1742 1743 1744 1745 1746 1747
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
					  bool value)
{
	update_ti_thread_flag(task_thread_info(tsk), flag, value);
}

L
Linus Torvalds 已提交
1748 1749
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1750
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1751 1752 1753 1754
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1755
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1756 1757 1758 1759
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
A
Al Viro 已提交
1760
	return test_ti_thread_flag(task_thread_info(tsk), flag);
L
Linus Torvalds 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

1773 1774 1775 1776 1777
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

L
Linus Torvalds 已提交
1778 1779 1780 1781 1782 1783
/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 */
1784
#ifndef CONFIG_PREEMPTION
1785
extern int _cond_resched(void);
1786 1787 1788
#else
static inline int _cond_resched(void) { return 0; }
#endif
1789

1790
#define cond_resched() ({			\
1791
	___might_sleep(__FILE__, __LINE__, 0);	\
1792 1793
	_cond_resched();			\
})
1794

1795 1796 1797
extern int __cond_resched_lock(spinlock_t *lock);

#define cond_resched_lock(lock) ({				\
1798
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1799 1800 1801
	__cond_resched_lock(lock);				\
})

1802 1803 1804 1805 1806 1807 1808 1809 1810
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

L
Linus Torvalds 已提交
1811 1812
/*
 * Does a critical section need to be broken due to another
1813
 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
N
Nick Piggin 已提交
1814
 * but a general need for low latency)
L
Linus Torvalds 已提交
1815
 */
N
Nick Piggin 已提交
1816
static inline int spin_needbreak(spinlock_t *lock)
L
Linus Torvalds 已提交
1817
{
1818
#ifdef CONFIG_PREEMPTION
N
Nick Piggin 已提交
1819 1820
	return spin_is_contended(lock);
#else
L
Linus Torvalds 已提交
1821
	return 0;
N
Nick Piggin 已提交
1822
#endif
L
Linus Torvalds 已提交
1823 1824
}

1825 1826 1827 1828 1829
static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835 1836
/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
1837
#ifdef CONFIG_THREAD_INFO_IN_TASK
1838
	return READ_ONCE(p->cpu);
1839
#else
1840
	return READ_ONCE(task_thread_info(p)->cpu);
1841
#endif
L
Linus Torvalds 已提交
1842 1843
}

I
Ingo Molnar 已提交
1844
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

1859 1860 1861 1862 1863 1864 1865 1866 1867
/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
1868 1869 1870 1871
static inline bool vcpu_is_preempted(int cpu)
{
	return false;
}
1872 1873
#endif

1874 1875
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1876

D
Dave Hansen 已提交
1877 1878 1879 1880
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
#ifdef CONFIG_RSEQ

/*
 * Map the event mask on the user-space ABI enum rseq_cs_flags
 * for direct mask checks.
 */
enum rseq_event_mask_bits {
	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
};

enum rseq_event_mask {
	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
};

static inline void rseq_set_notify_resume(struct task_struct *t)
{
	if (t->rseq)
		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
}

1905
void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1906

1907 1908
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1909 1910
{
	if (current->rseq)
1911
		__rseq_handle_notify_resume(ksig, regs);
1912 1913
}

1914 1915
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1916 1917 1918 1919
{
	preempt_disable();
	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
	preempt_enable();
1920
	rseq_handle_notify_resume(ksig, regs);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
}

/* rseq_preempt() requires preemption to be disabled. */
static inline void rseq_preempt(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/* rseq_migrate() requires preemption to be disabled. */
static inline void rseq_migrate(struct task_struct *t)
{
	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
	rseq_set_notify_resume(t);
}

/*
 * If parent process has a registered restartable sequences area, the
1939
 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1940 1941 1942
 */
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
1943
	if (clone_flags & CLONE_VM) {
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		t->rseq = NULL;
		t->rseq_sig = 0;
		t->rseq_event_mask = 0;
	} else {
		t->rseq = current->rseq;
		t->rseq_sig = current->rseq_sig;
		t->rseq_event_mask = current->rseq_event_mask;
	}
}

static inline void rseq_execve(struct task_struct *t)
{
	t->rseq = NULL;
	t->rseq_sig = 0;
	t->rseq_event_mask = 0;
}

#else

static inline void rseq_set_notify_resume(struct task_struct *t)
{
}
1966 1967
static inline void rseq_handle_notify_resume(struct ksignal *ksig,
					     struct pt_regs *regs)
1968 1969
{
}
1970 1971
static inline void rseq_signal_deliver(struct ksignal *ksig,
				       struct pt_regs *regs)
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
{
}
static inline void rseq_preempt(struct task_struct *t)
{
}
static inline void rseq_migrate(struct task_struct *t)
{
}
static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
{
}
static inline void rseq_execve(struct task_struct *t)
{
}

#endif

1989 1990 1991 1992 1993 1994 1995 1996
void __exit_umh(struct task_struct *tsk);

static inline void exit_umh(struct task_struct *tsk)
{
	if (unlikely(tsk->flags & PF_UMH))
		__exit_umh(tsk);
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
#ifdef CONFIG_DEBUG_RSEQ

void rseq_syscall(struct pt_regs *regs);

#else

static inline void rseq_syscall(struct pt_regs *regs)
{
}

#endif

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);

const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);

int sched_trace_rq_cpu(struct rq *rq);

const struct cpumask *sched_trace_rd_span(struct root_domain *rd);

L
Linus Torvalds 已提交
2021
#endif