book3s_hv.c 143.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48

49
#include <asm/ftrace.h>
50
#include <asm/reg.h>
51
#include <asm/ppc-opcode.h>
52
#include <asm/asm-prototypes.h>
53
#include <asm/archrandom.h>
54
#include <asm/debug.h>
55
#include <asm/disassemble.h>
56 57
#include <asm/cputable.h>
#include <asm/cacheflush.h>
58
#include <linux/uaccess.h>
59 60 61 62 63 64
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
65
#include <asm/cputhreads.h>
66
#include <asm/page.h>
67
#include <asm/hvcall.h>
68
#include <asm/switch_to.h>
69
#include <asm/smp.h>
70
#include <asm/dbell.h>
71
#include <asm/hmi.h>
72
#include <asm/pnv-pci.h>
73
#include <asm/mmu.h>
74 75
#include <asm/opal.h>
#include <asm/xics.h>
76
#include <asm/xive.h>
77
#include <asm/hw_breakpoint.h>
78

79 80
#include "book3s.h"

81 82 83
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

84 85 86 87
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

88 89
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
90 91
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
92

93 94 95
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

96 97
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

98
static int dynamic_mt_modes = 6;
99
module_param(dynamic_mt_modes, int, 0644);
100
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101
static int target_smt_mode;
102
module_param(target_smt_mode, int, 0644);
103
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104

105 106 107 108
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

109 110 111 112
static bool one_vm_per_core;
module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");

113 114 115 116 117 118
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

119
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 121
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

122
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 124 125
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

126 127 128 129 130 131 132 133 134 135
/* If set, guests are allowed to create and control nested guests */
static bool nested = true;
module_param(nested, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");

static inline bool nesting_enabled(struct kvm *kvm)
{
	return kvm->arch.nested_enable && kvm_is_radix(kvm);
}

136 137 138
/* If set, the threads on each CPU core have to be in the same MMU mode */
static bool no_mixing_hpt_and_radix;

139
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
140
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
141

142 143 144 145 146
/*
 * RWMR values for POWER8.  These control the rate at which PURR
 * and SPURR count and should be set according to the number of
 * online threads in the vcore being run.
 */
147 148 149 150 151 152 153 154
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
155 156 157 158 159 160 161 162 163 164 165 166 167

static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_2THREAD,
	RWMR_RPA_P8_3THREAD,
	RWMR_RPA_P8_4THREAD,
	RWMR_RPA_P8_5THREAD,
	RWMR_RPA_P8_6THREAD,
	RWMR_RPA_P8_7THREAD,
	RWMR_RPA_P8_8THREAD,
};

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

188 189
static bool kvmppc_ipi_thread(int cpu)
{
190 191
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

192 193 194 195
	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
	if (kvmhv_on_pseries())
		return false;

196 197 198 199 200 201 202 203
	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
219
	if (cpu >= 0 && cpu < nr_cpu_ids) {
220
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
221 222 223 224
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
225 226 227 228 229 230 231
		return true;
	}
#endif

	return false;
}

232
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
233
{
234
	int cpu;
235
	struct swait_queue_head *wqp;
236 237

	wqp = kvm_arch_vcpu_wq(vcpu);
238
	if (swq_has_sleeper(wqp)) {
239
		swake_up_one(wqp);
240 241 242
		++vcpu->stat.halt_wakeup;
	}

243 244
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245
		return;
246 247

	/* CPU points to the first thread of the core */
248
	cpu = vcpu->cpu;
249 250
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
251 252
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
280 281 282 283
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
284 285
 */

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

307
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
308
{
309
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
310
	unsigned long flags;
311

312 313 314 315 316 317
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
318 319 320
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

321
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
322 323 324 325 326
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
327
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
328 329
}

330
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
331
{
332
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
333
	unsigned long flags;
334

335 336 337
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

338
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
339 340
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
341
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
342 343
}

344
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
345
{
346 347 348 349 350 351
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
352
	vcpu->arch.shregs.msr = msr;
353
	kvmppc_end_cede(vcpu);
354 355
}

T
Thomas Huth 已提交
356
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
357 358 359 360
{
	vcpu->arch.pvr = pvr;
}

361 362 363
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
364
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
365
{
366
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
367 368
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

369 370 371 372 373 374 375 376 377 378 379 380
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
381 382 383
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
384
			guest_pcr_bit = PCR_ARCH_205;
385 386 387
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
388
			guest_pcr_bit = PCR_ARCH_206;
389 390
			break;
		case PVR_ARCH_207:
391 392 393 394
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
395 396 397 398 399 400
			break;
		default:
			return -EINVAL;
		}
	}

401 402 403 404
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

405 406
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
407 408
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
409 410 411 412 413
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
414
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
415 416 417 418 419
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
420
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
421 422 423 424 425
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
426
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
427 428 429 430 431 432
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
433 434
	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
435 436 437 438 439 440 441 442
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
443
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
444 445 446
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
447
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
448
{
449
	return kvm_get_vcpu_by_id(kvm, id);
450 451 452 453
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
454
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
455
	vpa->yield_count = cpu_to_be32(1);
456 457
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

474 475 476 477
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
478 479
		__be16 hword;
		__be32 word;
480 481 482 483 484 485 486 487 488 489
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

490 491 492 493 494
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
495
	unsigned long len, nb;
496 497
	void *va;
	struct kvm_vcpu *tvcpu;
498 499 500
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
501 502 503 504 505

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

506 507 508 509 510
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
511
			return H_PARAMETER;
512 513

		/* convert logical addr to kernel addr and read length */
514 515
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
516
			return H_PARAMETER;
517
		if (subfunc == H_VPA_REG_VPA)
518
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
519
		else
520
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
521
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
537 538 539 540 541 542
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
543 544
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
		if (len < sizeof(struct lppaca))
545
			break;
546 547 548 549 550 551
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
552
			break;
553 554 555 556 557
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
558
			break;
559 560 561 562 563 564 565 566 567

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
568
			break;
569 570 571 572 573 574 575 576 577 578

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
579
			break;
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
600
	}
601

602 603
	spin_unlock(&tvcpu->arch.vpa_update_lock);

604
	return err;
605 606
}

607
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
608
{
609
	struct kvm *kvm = vcpu->kvm;
610 611
	void *va;
	unsigned long nb;
612
	unsigned long gpa;
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
628
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
629 630 631 632 633
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
634
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
635 636 637 638 639 640 641 642 643
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
644
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
645
		va = NULL;
646 647
	}
	if (vpap->pinned_addr)
648 649 650
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
651
	vpap->pinned_addr = va;
652
	vpap->dirty = false;
653 654 655 656 657 658
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
659 660 661 662 663
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

664 665
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
666
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
667 668
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
669 670
	}
	if (vcpu->arch.dtl.update_pending) {
671
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
672 673 674 675
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
676
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
677 678 679
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

680 681 682 683 684 685 686
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
687
	unsigned long flags;
688

689 690
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
691
	if (vc->vcore_state != VCORE_INACTIVE &&
692 693 694
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
695 696 697
	return p;
}

698 699 700 701 702
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
703 704 705
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
706
	unsigned long flags;
707 708 709

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
710 711 712 713
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
714
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
715 716
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
717
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
718 719 720 721
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
722 723 724 725 726
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
727 728 729 730 731 732
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
733
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
734
	vcpu->arch.dtl.dirty = true;
735 736
}

737 738 739 740 741 742
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

743 744 745 746 747
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
748
	 * smp_wmb() in kvmppc_guest_entry_inject().
749 750
	 */
	smp_rmb();
751 752 753 754 755
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
786 787
		if (!ppc_breakpoint_available())
			return H_P2;
788 789 790 791 792 793 794 795 796 797 798 799
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/* Copy guest memory in place - must reside within a single memslot */
static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
				  unsigned long len)
{
	struct kvm_memory_slot *to_memslot = NULL;
	struct kvm_memory_slot *from_memslot = NULL;
	unsigned long to_addr, from_addr;
	int r;

	/* Get HPA for from address */
	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
	if (!from_memslot)
		return -EFAULT;
	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
			     << PAGE_SHIFT))
		return -EINVAL;
	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
	if (kvm_is_error_hva(from_addr))
		return -EFAULT;
	from_addr |= (from & (PAGE_SIZE - 1));

	/* Get HPA for to address */
	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
	if (!to_memslot)
		return -EFAULT;
	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
			   << PAGE_SHIFT))
		return -EINVAL;
	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
	if (kvm_is_error_hva(to_addr))
		return -EFAULT;
	to_addr |= (to & (PAGE_SIZE - 1));

	/* Perform copy */
	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
			     len);
	if (r)
		return -EFAULT;
	mark_page_dirty(kvm, to >> PAGE_SHIFT);
	return 0;
}

static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
			       unsigned long dest, unsigned long src)
{
	u64 pg_sz = SZ_4K;		/* 4K page size */
	u64 pg_mask = SZ_4K - 1;
	int ret;

	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
		return H_PARAMETER;

	/* dest (and src if copy_page flag set) must be page aligned */
	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
		return H_PARAMETER;

	/* zero and/or copy the page as determined by the flags */
	if (flags & H_COPY_PAGE) {
		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
		if (ret < 0)
			return H_PARAMETER;
	} else if (flags & H_ZERO_PAGE) {
		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
		if (ret < 0)
			return H_PARAMETER;
	}

	/* We can ignore the remaining flags */

	return H_SUCCESS;
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
888 889
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
890 891 892 893 894 895 896 897 898 899 900 901 902 903
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
904
		yield_count = be32_to_cpu(lppaca->yield_count);
905 906 907 908
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

909 910 911 912
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
913
	int yield_count;
914
	struct kvm_vcpu *tvcpu;
915
	int idx, rc;
916

917 918 919 920
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

921 922 923 924 925 926 927 928 929 930 931 932
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
933 934
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
935 936
		break;
	case H_CONFER:
937 938 939 940 941 942 943 944
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
945 946 947 948
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
949 950 951 952 953 954
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
955 956 957 958
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

959
		idx = srcu_read_lock(&vcpu->kvm->srcu);
960
		rc = kvmppc_rtas_hcall(vcpu);
961
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
962 963 964 965 966 967 968 969

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
970 971 972 973 974 975 976 977 978 979
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
980 981 982 983 984 985 986 987
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
988 989 990 991
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
992 993
	case H_IPOLL:
	case H_XIRR_X:
994
		if (kvmppc_xics_enabled(vcpu)) {
995
			if (xics_on_xive()) {
996 997 998
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
999 1000
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
1001 1002
		}
		return RESUME_HOST;
1003 1004 1005 1006 1007 1008 1009
	case H_SET_DABR:
		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
		break;
	case H_SET_XDABR:
		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		break;
1010
#ifdef CONFIG_SPAPR_TCE_IOMMU
1011 1012 1013 1014 1015 1016
	case H_GET_TCE:
		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
1040
#endif
1041 1042 1043 1044
	case H_RANDOM:
		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
			ret = H_HARDWARE;
		break;
1045 1046 1047

	case H_SET_PARTITION_TABLE:
		ret = H_FUNCTION;
1048
		if (nesting_enabled(vcpu->kvm))
1049 1050 1051 1052
			ret = kvmhv_set_partition_table(vcpu);
		break;
	case H_ENTER_NESTED:
		ret = H_FUNCTION;
1053
		if (!nesting_enabled(vcpu->kvm))
1054 1055 1056 1057
			break;
		ret = kvmhv_enter_nested_guest(vcpu);
		if (ret == H_INTERRUPT) {
			kvmppc_set_gpr(vcpu, 3, 0);
1058
			vcpu->arch.hcall_needed = 0;
1059
			return -EINTR;
1060 1061 1062 1063
		} else if (ret == H_TOO_HARD) {
			kvmppc_set_gpr(vcpu, 3, 0);
			vcpu->arch.hcall_needed = 0;
			return RESUME_HOST;
1064
		}
1065 1066 1067
		break;
	case H_TLB_INVALIDATE:
		ret = H_FUNCTION;
1068 1069
		if (nesting_enabled(vcpu->kvm))
			ret = kvmhv_do_nested_tlbie(vcpu);
1070
		break;
1071 1072 1073 1074 1075
	case H_COPY_TOFROM_GUEST:
		ret = H_FUNCTION;
		if (nesting_enabled(vcpu->kvm))
			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
		break;
1076 1077 1078 1079 1080
	case H_PAGE_INIT:
		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
					 kvmppc_get_gpr(vcpu, 5),
					 kvmppc_get_gpr(vcpu, 6));
		break;
1081 1082 1083 1084 1085 1086 1087 1088
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
/*
 * Handle H_CEDE in the nested virtualization case where we haven't
 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
 * that the cede logic in kvmppc_run_single_vcpu() works properly.
 */
static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
{
	vcpu->arch.shregs.msr |= MSR_EE;
	vcpu->arch.ceded = 1;
	smp_mb();
	if (vcpu->arch.prodded) {
		vcpu->arch.prodded = 0;
		smp_mb();
		vcpu->arch.ceded = 0;
	}
}

1107 1108 1109 1110 1111 1112 1113
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
1114
	case H_SET_MODE:
1115 1116
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
1117 1118 1119 1120 1121 1122 1123 1124
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
1125
	case H_PAGE_INIT:
1126 1127 1128 1129 1130 1131 1132
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1250 1251
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1252 1253 1254 1255 1256
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1275 1276 1277 1278 1279 1280 1281 1282 1283
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1284
	case BOOK3S_INTERRUPT_H_DOORBELL:
1285
	case BOOK3S_INTERRUPT_H_VIRT:
1286 1287 1288
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1289
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1290
	case BOOK3S_INTERRUPT_HMI:
1291
	case BOOK3S_INTERRUPT_PERFMON:
1292
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1293 1294
		r = RESUME_GUEST;
		break;
1295
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1296
		/* Print the MCE event to host console. */
1297
		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

		/*
		 * If the guest can do FWNMI, exit to userspace so it can
		 * deliver a FWNMI to the guest.
		 * Otherwise we synthesize a machine check for the guest
		 * so that it knows that the machine check occurred.
		 */
		if (!vcpu->kvm->arch.fwnmi_enabled) {
			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
			kvmppc_core_queue_machine_check(vcpu, flags);
			r = RESUME_GUEST;
			break;
		}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
1324
		break;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1344 1345 1346 1347
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1348 1349 1350 1351 1352 1353 1354 1355 1356
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1357 1358 1359 1360 1361
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1362 1363
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1364
		r = RESUME_PAGE_FAULT;
1365 1366
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1367
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1368 1369 1370 1371
		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
			DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1372
		r = RESUME_PAGE_FAULT;
1373 1374 1375
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1376 1377 1378 1379
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1380 1381
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1382 1383 1384 1385
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1386 1387 1388 1389 1390 1391
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1392 1393 1394
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1395 1396 1397 1398
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1399 1400
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1401
		r = EMULATE_FAIL;
1402
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1403
		    cpu_has_feature(CPU_FTR_ARCH_300))
1404 1405 1406 1407 1408
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1409
		break;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

1423 1424 1425
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1426 1427 1428 1429 1430
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1431
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1432 1433 1434 1435 1436 1437 1438
		r = RESUME_HOST;
		break;
	}

	return r;
}

1439
static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
{
	int r;
	int srcu_idx;

	vcpu->stat.sum_exits++;

	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		pr_emerg("KVM trap in HV mode while nested!\n");
		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
			 vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		return RESUME_HOST;
	}
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_HOST;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
	case BOOK3S_INTERRUPT_H_VIRT:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
	case BOOK3S_INTERRUPT_PERFMON:
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/* Pass the machine check to the L1 guest */
		r = RESUME_HOST;
		/* Print the MCE event to host console. */
1487
		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1488 1489 1490 1491 1492 1493 1494 1495 1496
		break;
	/*
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1497
		r = kvmhv_nested_page_fault(run, vcpu);
1498 1499 1500 1501 1502 1503 1504 1505 1506
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
					 DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1507
		r = kvmhv_nested_page_fault(run, vcpu);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

	case BOOK3S_INTERRUPT_HV_RM_HARD:
		vcpu->arch.trap = 0;
		r = RESUME_GUEST;
1526
		if (!xics_on_xive())
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
			kvmppc_xics_rm_complete(vcpu, 0);
		break;
	default:
		r = RESUME_HOST;
		break;
	}

	return r;
}

1537 1538
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1539 1540 1541 1542
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1543
	sregs->pvr = vcpu->arch.pvr;
1544 1545 1546 1547 1548 1549 1550 1551
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1552 1553
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1554 1555 1556
{
	int i, j;

1557 1558 1559
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1574 1575
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1576
{
1577
	struct kvm *kvm = vcpu->kvm;
1578 1579 1580 1581
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

	spin_lock(&vc->lock);
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1600 1601 1602
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1603
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1604 1605
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1606 1607
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1608 1609 1610 1611 1612 1613
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1614 1615 1616 1617

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1618 1619 1620 1621
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
}

1622 1623
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1624
{
1625 1626
	int r = 0;
	long int i;
1627

1628
	switch (id) {
1629 1630 1631
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1632
	case KVM_REG_PPC_HIOR:
1633 1634 1635 1636 1637
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1638 1639 1640
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1656
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1657 1658 1659 1660 1661 1662
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1663
		break;
1664 1665 1666 1667
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1668 1669 1670 1671 1672 1673
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1674 1675
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1676
		break;
1677 1678 1679 1680 1681 1682 1683 1684 1685
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1686 1687 1688
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1715
		break;
1716 1717 1718 1719 1720 1721
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1739 1740 1741
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1742
	case KVM_REG_PPC_LPCR:
1743
	case KVM_REG_PPC_LPCR_64:
1744 1745
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1746 1747 1748
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1781 1782 1783
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1815 1816 1817
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1818 1819 1820 1821
	case KVM_REG_PPC_DEC_EXPIRY:
		*val = get_reg_val(id, vcpu->arch.dec_expires +
				   vcpu->arch.vcore->tb_offset);
		break;
1822 1823 1824
	case KVM_REG_PPC_ONLINE:
		*val = get_reg_val(id, vcpu->arch.online);
		break;
1825 1826 1827
	case KVM_REG_PPC_PTCR:
		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
		break;
1828
	default:
1829
		r = -EINVAL;
1830 1831 1832 1833 1834 1835
		break;
	}

	return r;
}

1836 1837
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1838
{
1839 1840
	int r = 0;
	long int i;
1841
	unsigned long addr, len;
1842

1843
	switch (id) {
1844 1845
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1846
		if (set_reg_val(id, *val))
1847 1848
			r = -EINVAL;
		break;
1849 1850 1851
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1852 1853 1854
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1870
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1871 1872 1873 1874 1875 1876 1877
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1878 1879 1880 1881
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1882 1883 1884 1885 1886 1887
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1888 1889
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1890
		break;
1891 1892 1893 1894 1895 1896 1897 1898 1899
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1900 1901 1902
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1932
		break;
1933 1934 1935 1936 1937 1938
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1959 1960
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1961 1962 1963 1964
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1965 1966 1967 1968 1969
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1970
	case KVM_REG_PPC_LPCR:
1971 1972 1973 1974
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1975
		break;
1976 1977 1978
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
2010 2011 2012
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
2044 2045 2046
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
2047 2048 2049 2050
	case KVM_REG_PPC_DEC_EXPIRY:
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
			vcpu->arch.vcore->tb_offset;
		break;
2051
	case KVM_REG_PPC_ONLINE:
2052 2053 2054 2055 2056 2057
		i = set_reg_val(id, *val);
		if (i && !vcpu->arch.online)
			atomic_inc(&vcpu->arch.vcore->online_count);
		else if (!i && vcpu->arch.online)
			atomic_dec(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = i;
2058
		break;
2059 2060 2061
	case KVM_REG_PPC_PTCR:
		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
		break;
2062
	default:
2063
		r = -EINVAL;
2064 2065 2066 2067 2068 2069
		break;
	}

	return r;
}

2070 2071 2072 2073 2074 2075 2076
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
2077
static int threads_per_vcore(struct kvm *kvm)
2078
{
2079
	if (kvm->arch.threads_indep)
2080 2081 2082 2083
		return 1;
	return threads_per_subcore;
}

2084
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2085 2086 2087 2088 2089 2090 2091 2092 2093
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
2094
	spin_lock_init(&vcore->stoltb_lock);
2095
	init_swait_queue_head(&vcore->wq);
2096 2097
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
2098
	vcore->first_vcpuid = id;
2099
	vcore->kvm = kvm;
2100
	INIT_LIST_HEAD(&vcore->preempt_list);
2101 2102 2103 2104

	return vcore;
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

2117
#define N_TIMINGS	(ARRAY_SIZE(timings))
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

2253 2254
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
2255 2256
{
	struct kvm_vcpu *vcpu;
2257
	int err;
2258 2259
	int core;
	struct kvmppc_vcore *vcore;
2260

2261
	err = -ENOMEM;
2262
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2263 2264 2265 2266 2267 2268 2269 2270
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
2282 2283 2284
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
2285
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2286
	spin_lock_init(&vcpu->arch.vpa_update_lock);
2287 2288
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
2289
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2290

2291 2292 2293
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
2294
	 * On POWER9, we want to virtualize the doorbell facility, so we
2295 2296
	 * don't set the HFSCR_MSGP bit, and that causes those instructions
	 * to trap and then we emulate them.
2297
	 */
2298 2299 2300 2301 2302 2303 2304 2305
	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
			vcpu->arch.hfscr |= HFSCR_TM;
	}
	if (cpu_has_feature(CPU_FTR_TM_COMP))
2306
		vcpu->arch.hfscr |= HFSCR_TM;
2307

2308 2309
	kvmppc_mmu_book3s_hv_init(vcpu);

2310
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2311 2312 2313 2314

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
2315 2316
	vcore = NULL;
	err = -EINVAL;
2317
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2318 2319 2320 2321 2322 2323 2324
		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
			pr_devel("KVM: VCPU ID too high\n");
			core = KVM_MAX_VCORES;
		} else {
			BUG_ON(kvm->arch.smt_mode != 1);
			core = kvmppc_pack_vcpu_id(kvm, id);
		}
2325 2326 2327
	} else {
		core = id / kvm->arch.smt_mode;
	}
2328 2329
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
2330 2331 2332 2333
		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
			pr_devel("KVM: collision on id %u", id);
			vcore = NULL;
		} else if (!vcore) {
2334 2335 2336 2337
			/*
			 * Take mmu_setup_lock for mutual exclusion
			 * with kvmppc_update_lpcr().
			 */
2338
			err = -ENOMEM;
2339 2340
			vcore = kvmppc_vcore_create(kvm,
					id & ~(kvm->arch.smt_mode - 1));
2341
			mutex_lock(&kvm->arch.mmu_setup_lock);
2342 2343
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
2344
			mutex_unlock(&kvm->arch.mmu_setup_lock);
2345
		}
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
2356
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2357
	vcpu->arch.thread_cpu = -1;
2358
	vcpu->arch.prev_cpu = -1;
2359

2360 2361 2362
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2363 2364
	debugfs_vcpu_init(vcpu, id);

2365 2366 2367
	return vcpu;

free_vcpu:
2368
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2369 2370 2371 2372
out:
	return ERR_PTR(err);
}

2373 2374 2375 2376
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2377
	int esmt = 0;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2395
		esmt = smt_mode;
2396 2397 2398 2399 2400 2401
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2402
		kvm->arch.emul_smt_mode = esmt;
2403 2404 2405 2406 2407 2408 2409
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2410 2411 2412 2413 2414 2415 2416
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2417
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2418
{
2419
	spin_lock(&vcpu->arch.vpa_update_lock);
2420 2421 2422
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2423
	spin_unlock(&vcpu->arch.vpa_update_lock);
2424
	kvm_vcpu_uninit(vcpu);
2425
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2426 2427
}

2428 2429 2430 2431 2432 2433
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2434
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2435
{
2436
	unsigned long dec_nsec, now;
2437

2438 2439 2440 2441
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2442
		kvmppc_core_prepare_to_enter(vcpu);
2443
		return;
2444
	}
2445
	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
T
Thomas Gleixner 已提交
2446
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2447
	vcpu->arch.timer_running = 1;
2448 2449
}

2450
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2451
{
2452 2453 2454 2455 2456
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2457 2458
}

2459
extern int __kvmppc_vcore_entry(void);
2460

2461 2462
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2463
{
2464 2465
	u64 now;

2466 2467
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2468
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2469 2470 2471 2472 2473
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2474
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2475
	--vc->n_runnable;
2476
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2477 2478
}

2479 2480 2481
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2482
	long timeout = 10000;
2483

2484
	tpaca = paca_ptrs[cpu];
2485 2486

	/* Ensure the thread won't go into the kernel if it wakes */
2487
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2488
	tpaca->kvm_hstate.kvm_vcore = NULL;
2489 2490 2491
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

2517
	tpaca = paca_ptrs[cpu];
2518
	tpaca->kvm_hstate.hwthread_req = 0;
2519
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2520 2521
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2522 2523
}

2524 2525
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
2526 2527
	struct kvm_nested_guest *nested = vcpu->arch.nested;
	cpumask_t *cpu_in_guest;
2528 2529 2530
	int i;

	cpu = cpu_first_thread_sibling(cpu);
2531 2532 2533 2534 2535 2536 2537
	if (nested) {
		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
		cpu_in_guest = &nested->cpu_in_guest;
	} else {
		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
		cpu_in_guest = &kvm->arch.cpu_in_guest;
	}
2538 2539 2540 2541 2542 2543 2544
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
2545
		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2546 2547 2548
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2549 2550
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
2551
	struct kvm_nested_guest *nested = vcpu->arch.nested;
2552
	struct kvm *kvm = vcpu->kvm;
2553 2554 2555 2556 2557 2558 2559 2560 2561
	int prev_cpu;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return;

	if (nested)
		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
	else
		prev_cpu = vcpu->arch.prev_cpu;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
2575 2576 2577
	if (prev_cpu != pcpu) {
		if (prev_cpu >= 0 &&
		    cpu_first_thread_sibling(prev_cpu) !=
2578
		    cpu_first_thread_sibling(pcpu))
2579 2580 2581 2582 2583 2584 2585 2586
			radix_flush_cpu(kvm, prev_cpu, vcpu);
		if (nested)
			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
		else
			vcpu->arch.prev_cpu = pcpu;
	}
}

2587
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2588 2589 2590
{
	int cpu;
	struct paca_struct *tpaca;
2591
	struct kvm *kvm = vc->kvm;
2592

2593 2594 2595 2596 2597 2598 2599
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2600
		vcpu->cpu = vc->pcpu;
2601
		vcpu->arch.thread_cpu = cpu;
2602
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2603
	}
2604
	tpaca = paca_ptrs[cpu];
2605
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2606
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2607
	tpaca->kvm_hstate.fake_suspend = 0;
2608
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2609
	smp_wmb();
2610
	tpaca->kvm_hstate.kvm_vcore = vc;
2611
	if (cpu != smp_processor_id())
2612
		kvmppc_ipi_thread(cpu);
2613
}
2614

2615
static void kvmppc_wait_for_nap(int n_threads)
2616
{
2617 2618
	int cpu = smp_processor_id();
	int i, loops;
2619

2620 2621
	if (n_threads <= 1)
		return;
2622 2623 2624
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2625
		 * We set the vcore pointer when starting a thread
2626
		 * and the thread clears it when finished, so we look
2627
		 * for any threads that still have a non-NULL vcore ptr.
2628
		 */
2629
		for (i = 1; i < n_threads; ++i)
2630
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2631
				break;
2632
		if (i == n_threads) {
2633 2634
			HMT_medium();
			return;
2635
		}
2636
		HMT_low();
2637 2638
	}
	HMT_medium();
2639
	for (i = 1; i < n_threads; ++i)
2640
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2641
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2642 2643 2644 2645
}

/*
 * Check that we are on thread 0 and that any other threads in
2646 2647
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2648 2649 2650 2651
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2652
	int thr;
2653

2654 2655
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2656
		return 0;
2657 2658 2659

	thr = 0;
	while (++thr < threads_per_subcore)
2660 2661
		if (cpu_online(cpu + thr))
			return 0;
2662 2663

	/* Grab all hw threads so they can't go into the kernel */
2664
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2665 2666 2667 2668 2669 2670 2671 2672
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2673 2674 2675
	return 1;
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2705
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2717
	struct preempted_vcore_list *lp;
2718 2719 2720

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2721
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2722 2723 2724 2725 2726 2727 2728
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2729 2730 2731 2732
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2733
struct core_info {
2734 2735
	int		n_subcores;
	int		max_subcore_threads;
2736
	int		total_threads;
2737
	int		subcore_threads[MAX_SUBCORES];
2738
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2739 2740
};

2741 2742
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2743
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2744 2745 2746
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2747 2748 2749
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2750 2751
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2752
	cip->total_threads = vc->num_threads;
2753
	cip->subcore_threads[0] = vc->num_threads;
2754
	cip->vc[0] = vc;
2755 2756 2757 2758
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2759
	/*
2760 2761
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
	 * split-core mode, with one thread per subcore.
2762 2763 2764 2765 2766
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2779 2780
}

2781
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2782 2783 2784 2785 2786
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
2787
	vc->tb_offset_applied = 0;
2788 2789
}

2790 2791 2792 2793 2794 2795 2796 2797
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2798 2799 2800 2801
	/* In one_vm_per_core mode, require all vcores to be from the same vm */
	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
		return false;

2802 2803
	/* Some POWER9 chips require all threads to be in the same MMU mode */
	if (no_mixing_hpt_and_radix &&
2804 2805 2806
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2807 2808
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2809
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2810
		return false;
2811
	cip->max_subcore_threads = n_threads;
2812 2813 2814 2815 2816

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2817 2818 2819
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2834
	return can_dynamic_split(pvc, cip);
2835 2836
}

2837 2838
static void prepare_threads(struct kvmppc_vcore *vc)
{
2839 2840
	int i;
	struct kvm_vcpu *vcpu;
2841

2842
	for_each_runnable_thread(i, vcpu, vc) {
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2899
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2900
{
2901
	int still_running = 0, i;
2902 2903
	u64 now;
	long ret;
2904
	struct kvm_vcpu *vcpu;
2905

2906
	spin_lock(&vc->lock);
2907
	now = get_tb();
2908
	for_each_runnable_thread(i, vcpu, vc) {
2909 2910 2911 2912 2913 2914 2915 2916
		/*
		 * It's safe to unlock the vcore in the loop here, because
		 * for_each_runnable_thread() is safe against removal of
		 * the vcpu, and the vcore state is VCORE_EXITING here,
		 * so any vcpus becoming runnable will have their arch.trap
		 * set to zero and can't actually run in the guest.
		 */
		spin_unlock(&vc->lock);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2932
		spin_lock(&vc->lock);
2933 2934 2935 2936
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2937
				kvmppc_set_timer(vcpu);
2938 2939 2940
			else
				++still_running;
		} else {
2941 2942 2943 2944
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2945
	if (!is_master) {
2946
		if (still_running > 0) {
2947
			kvmppc_vcore_preempt(vc);
2948 2949 2950 2951 2952 2953
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2954 2955
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2956 2957
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2958 2959 2960 2961
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2962 2963
}

2964 2965 2966 2967 2968
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2969
static inline int kvmppc_clear_host_core(unsigned int cpu)
2970 2971 2972 2973
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2974
		return 0;
2975 2976 2977 2978 2979 2980 2981
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2982
	return 0;
2983 2984 2985 2986 2987 2988 2989
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2990
static inline int kvmppc_set_host_core(unsigned int cpu)
2991 2992 2993 2994
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2995
		return 0;
2996 2997 2998 2999 3000 3001 3002

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3003
	return 0;
3004 3005
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
3018 3019 3020
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
3021 3022 3023
	}
}

3024 3025 3026 3027
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
3028
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3029
{
3030
	struct kvm_vcpu *vcpu;
3031
	int i;
3032
	int srcu_idx;
3033
	struct core_info core_info;
3034
	struct kvmppc_vcore *pvc;
3035 3036 3037 3038 3039
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
3040 3041
	int pcpu, thr;
	int target_threads;
3042
	int controlled_threads;
3043
	int trap;
3044
	bool is_power8;
3045
	bool hpt_on_radix;
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
3056 3057

	/*
3058
	 * Initialize *vc.
3059
	 */
3060
	init_vcore_to_run(vc);
3061
	vc->preempt_tb = TB_NIL;
3062

3063 3064 3065 3066 3067
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
3068
	controlled_threads = threads_per_vcore(vc->kvm);
3069

3070
	/*
3071 3072 3073
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
3074
	 * On POWER9, we need to be not in independent-threads mode if
3075 3076
	 * this is a HPT guest on a radix host machine where the
	 * CPU threads may not be in different MMU modes.
3077
	 */
3078 3079
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
		!kvm_is_radix(vc->kvm);
3080 3081 3082
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3083
		for_each_runnable_thread(i, vcpu, vc) {
3084
			vcpu->arch.ret = -EBUSY;
3085 3086 3087
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
3088 3089 3090
		goto out;
	}

3091 3092 3093 3094 3095 3096
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
3097
	target_threads = controlled_threads;
3098 3099 3100 3101
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
3102

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
3119
	 * If the mmu_ready flag has been cleared, don't go into the
3120
	 * guest because that means a HPT resize operation is in progress.
3121 3122 3123 3124
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
3125
	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

3142 3143 3144 3145 3146
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
3147 3148 3149
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

3150
	if (split > 1 || hpt_on_radix) {
3151 3152 3153
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
3154
			split_info.vc[sub] = core_info.vc[sub];
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
3172 3173 3174 3175 3176 3177 3178
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
3179 3180
		}

3181 3182 3183
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
3184 3185

	for (thr = 0; thr < controlled_threads; ++thr) {
3186 3187 3188 3189 3190
		struct paca_struct *paca = paca_ptrs[pcpu + thr];

		paca->kvm_hstate.tid = thr;
		paca->kvm_hstate.napping = 0;
		paca->kvm_hstate.kvm_split_mode = sip;
3191
	}
3192

3193
	/* Initiate micro-threading (split-core) on POWER8 if required */
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
3206
		}
3207
	}
3208

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	/*
	 * On POWER8, set RWMR register.
	 * Since it only affects PURR and SPURR, it doesn't affect
	 * the host, so we don't save/restore the host value.
	 */
	if (is_power8) {
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
		int n_online = atomic_read(&vc->online_count);

		/*
		 * Use the 8-thread value if we're doing split-core
		 * or if the vcore's online count looks bogus.
		 */
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
			rwmr_val = p8_rwmr_values[n_online];
		mtspr(SPRN_RWMR, rwmr_val);
	}

3228 3229 3230
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3231
		thr = is_power8 ? subcore_thread_map[sub] : sub;
3232 3233
		thr0_done = false;
		active |= 1 << thr;
3234 3235 3236 3237 3238 3239 3240 3241 3242
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
3243
		}
3244 3245 3246 3247 3248 3249
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
3250
	}
3251

3252 3253 3254 3255 3256 3257
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

3258 3259 3260 3261
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
3262 3263
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
3264
	 */
3265
	if (cmd_bit || hpt_on_radix) {
3266
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3267 3268 3269
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
3270
	}
3271

3272
	vc->vcore_state = VCORE_RUNNING;
3273
	preempt_disable();
3274 3275 3276

	trace_kvmppc_run_core(vc, 0);

3277
	for (sub = 0; sub < core_info.n_subcores; ++sub)
3278
		spin_unlock(&core_info.vc[sub]->lock);
3279

3280
	guest_enter_irqoff();
3281

3282
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3283

3284 3285
	this_cpu_disable_ftrace();

3286 3287 3288 3289 3290 3291
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();

3292
	trap = __kvmppc_vcore_entry();
3293

3294 3295
	trace_hardirqs_off();

3296 3297
	this_cpu_enable_ftrace();

3298 3299
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

3300 3301
	set_irq_happened(trap);

3302
	spin_lock(&vc->lock);
3303
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3304
	vc->vcore_state = VCORE_EXITING;
3305

3306
	/* wait for secondary threads to finish writing their state to memory */
3307
	kvmppc_wait_for_nap(controlled_threads);
3308 3309

	/* Return to whole-core mode if we split the core earlier */
3310
	if (cmd_bit) {
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
3326 3327 3328
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
3329 3330 3331
			struct paca_struct *paca = paca_ptrs[pcpu + thr];

			while (paca->kvm_hstate.kvm_split_mode) {
3332 3333 3334 3335 3336
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
3337
	}
3338
	split_info.do_nap = 0;
3339

3340 3341 3342
	kvmppc_set_host_core(pcpu);

	local_irq_enable();
3343
	guest_exit();
3344

3345
	/* Let secondaries go back to the offline loop */
3346
	for (i = 0; i < controlled_threads; ++i) {
3347 3348 3349
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
3350
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3351 3352
	}

3353
	spin_unlock(&vc->lock);
3354

3355 3356
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
3357

3358 3359
	preempt_enable();

3360 3361 3362 3363
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
3364

3365
	spin_lock(&vc->lock);
3366 3367

 out:
3368
	vc->vcore_state = VCORE_INACTIVE;
3369
	trace_kvmppc_run_core(vc, 1);
3370 3371
}

3372 3373 3374
/*
 * Load up hypervisor-mode registers on P9.
 */
3375 3376
static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
				     unsigned long lpcr)
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	s64 hdec;
	u64 tb, purr, spurr;
	int trap;
	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
	unsigned long host_ciabr = mfspr(SPRN_CIABR);
	unsigned long host_dawr = mfspr(SPRN_DAWR);
	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
	unsigned long host_psscr = mfspr(SPRN_PSSCR);
	unsigned long host_pidr = mfspr(SPRN_PID);

	hdec = time_limit - mftb();
	if (hdec < 0)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	mtspr(SPRN_HDEC, hdec);

	if (vc->tb_offset) {
		u64 new_tb = mftb() + vc->tb_offset;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = vc->tb_offset;
	}

	if (vc->pcr)
		mtspr(SPRN_PCR, vc->pcr);
	mtspr(SPRN_DPDES, vc->dpdes);
	mtspr(SPRN_VTB, vc->vtb);

	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, vcpu->arch.purr);
	mtspr(SPRN_SPURR, vcpu->arch.spurr);

3413
	if (dawr_enabled()) {
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
		mtspr(SPRN_DAWR, vcpu->arch.dawr);
		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
	}
	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
	mtspr(SPRN_IC, vcpu->arch.ic);
	mtspr(SPRN_PID, vcpu->arch.pid);

	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));

	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);

	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);

	mtspr(SPRN_AMOR, ~0UL);

3433
	mtspr(SPRN_LPCR, lpcr);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	isync();

	kvmppc_xive_push_vcpu(vcpu);

	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);

	trap = __kvmhv_vcpu_entry_p9(vcpu);

	/* Advance host PURR/SPURR by the amount used by guest */
	purr = mfspr(SPRN_PURR);
	spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
	      purr - vcpu->arch.purr);
	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
	      spurr - vcpu->arch.spurr);
	vcpu->arch.purr = purr;
	vcpu->arch.spurr = spurr;

	vcpu->arch.ic = mfspr(SPRN_IC);
	vcpu->arch.pid = mfspr(SPRN_PID);
	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;

	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);

3462 3463 3464
	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
	mtspr(SPRN_PSSCR, host_psscr |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	mtspr(SPRN_HFSCR, host_hfscr);
	mtspr(SPRN_CIABR, host_ciabr);
	mtspr(SPRN_DAWR, host_dawr);
	mtspr(SPRN_DAWRX, host_dawrx);
	mtspr(SPRN_PID, host_pidr);

	/*
	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
	 * case we interrupted the guest between a tlbie and a ptesync.
	 */
	asm volatile("eieio; tlbsync; ptesync");

	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
	isync();

	vc->dpdes = mfspr(SPRN_DPDES);
	vc->vtb = mfspr(SPRN_VTB);
	mtspr(SPRN_DPDES, 0);
	if (vc->pcr)
		mtspr(SPRN_PCR, 0);

	if (vc->tb_offset_applied) {
		u64 new_tb = mftb() - vc->tb_offset_applied;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = 0;
	}

	mtspr(SPRN_HDEC, 0x7fffffff);
	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);

	return trap;
}

/*
 * Virtual-mode guest entry for POWER9 and later when the host and
 * guest are both using the radix MMU.  The LPIDR has already been set.
 */
3505 3506
int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
			 unsigned long lpcr)
3507 3508 3509 3510 3511
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	unsigned long host_dscr = mfspr(SPRN_DSCR);
	unsigned long host_tidr = mfspr(SPRN_TIDR);
	unsigned long host_iamr = mfspr(SPRN_IAMR);
3512
	unsigned long host_amr = mfspr(SPRN_AMR);
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
	s64 dec;
	u64 tb;
	int trap, save_pmu;

	dec = mfspr(SPRN_DEC);
	tb = mftb();
	if (dec < 512)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	local_paca->kvm_hstate.dec_expires = dec + tb;
	if (local_paca->kvm_hstate.dec_expires < time_limit)
		time_limit = local_paca->kvm_hstate.dec_expires;

	vcpu->arch.ceded = 0;

	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */

	kvmppc_subcore_enter_guest();

	vc->entry_exit_map = 1;
	vc->in_guest = 1;

	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
	}

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	kvmhv_load_guest_pmu(vcpu);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	load_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	load_vr_state(&vcpu->arch.vr);
#endif
3552
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

	mtspr(SPRN_DSCR, vcpu->arch.dscr);
	mtspr(SPRN_IAMR, vcpu->arch.iamr);
	mtspr(SPRN_PSPB, vcpu->arch.pspb);
	mtspr(SPRN_FSCR, vcpu->arch.fscr);
	mtspr(SPRN_TAR, vcpu->arch.tar);
	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
	mtspr(SPRN_BESCR, vcpu->arch.bescr);
	mtspr(SPRN_WORT, vcpu->arch.wort);
	mtspr(SPRN_TIDR, vcpu->arch.tid);
	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
	mtspr(SPRN_AMR, vcpu->arch.amr);
	mtspr(SPRN_UAMOR, vcpu->arch.uamor);

	if (!(vcpu->arch.ctrl & 1))
		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);

	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	if (kvmhv_on_pseries()) {
		/* call our hypervisor to load up HV regs and go */
		struct hv_guest_state hvregs;

		kvmhv_save_hv_regs(vcpu, &hvregs);
		hvregs.lpcr = lpcr;
		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
		hvregs.version = HV_GUEST_STATE_VERSION;
		if (vcpu->arch.nested) {
			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
		} else {
			hvregs.lpid = vcpu->kvm->arch.lpid;
			hvregs.vcpu_token = vcpu->vcpu_id;
		}
		hvregs.hdec_expiry = time_limit;
		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
					  __pa(&vcpu->arch.regs));
		kvmhv_restore_hv_return_state(vcpu, &hvregs);
		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3596 3597 3598 3599 3600 3601 3602

		/* H_CEDE has to be handled now, not later */
		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
			kvmppc_nested_cede(vcpu);
			trap = 0;
		}
3603 3604
	} else {
		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
	}

	vcpu->arch.slb_max = 0;
	dec = mfspr(SPRN_DEC);
	tb = mftb();
	vcpu->arch.dec_expires = dec + tb;
	vcpu->cpu = -1;
	vcpu->arch.thread_cpu = -1;
	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);

	vcpu->arch.iamr = mfspr(SPRN_IAMR);
	vcpu->arch.pspb = mfspr(SPRN_PSPB);
	vcpu->arch.fscr = mfspr(SPRN_FSCR);
	vcpu->arch.tar = mfspr(SPRN_TAR);
	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
	vcpu->arch.bescr = mfspr(SPRN_BESCR);
	vcpu->arch.wort = mfspr(SPRN_WORT);
	vcpu->arch.tid = mfspr(SPRN_TIDR);
	vcpu->arch.amr = mfspr(SPRN_AMR);
	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
	vcpu->arch.dscr = mfspr(SPRN_DSCR);

	mtspr(SPRN_PSPB, 0);
	mtspr(SPRN_WORT, 0);
	mtspr(SPRN_UAMOR, 0);
	mtspr(SPRN_DSCR, host_dscr);
	mtspr(SPRN_TIDR, host_tidr);
	mtspr(SPRN_IAMR, host_iamr);
	mtspr(SPRN_PSPB, 0);

3636 3637 3638
	if (host_amr != vcpu->arch.amr)
		mtspr(SPRN_AMR, host_amr);

3639 3640 3641 3642 3643
	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	store_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	store_vr_state(&vcpu->arch.vr);
#endif
3644
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	save_pmu = 1;
	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
		save_pmu = lp->pmcregs_in_use;
	}

	kvmhv_save_guest_pmu(vcpu, save_pmu);

	vc->entry_exit_map = 0x101;
	vc->in_guest = 0;

	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3665
	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3666 3667 3668 3669 3670 3671 3672 3673

	kvmhv_load_host_pmu();

	kvmppc_subcore_exit_guest();

	return trap;
}

3674 3675 3676 3677
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
3678 3679
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
3680 3681 3682
{
	DEFINE_WAIT(wait);

3683
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3684 3685
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
3686
		schedule();
3687 3688
		spin_lock(&vc->lock);
	}
3689 3690 3691
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

3692 3693
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
3694 3695 3696
	if (!halt_poll_ns_grow)
		return;

3697 3698
	vc->halt_poll_ns *= halt_poll_ns_grow;
	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3699
		vc->halt_poll_ns = halt_poll_ns_grow_start;
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

3710 3711 3712
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
3713
	if (!xics_on_xive())
3714
		return false;
3715
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3716 3717 3718 3719 3720 3721 3722 3723 3724
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

3725 3726 3727
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3728
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3729 3730 3731 3732 3733
		return true;

	return false;
}

3734 3735
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3736 3737 3738 3739 3740 3741 3742 3743
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3744
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3745 3746 3747 3748 3749 3750
			return 1;
	}

	return 0;
}

3751 3752 3753 3754 3755 3756
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3757
	ktime_t cur, start_poll, start_wait;
3758 3759
	int do_sleep = 1;
	u64 block_ns;
3760
	DECLARE_SWAITQUEUE(wait);
3761

3762
	/* Poll for pending exceptions and ceded state */
3763
	cur = start_poll = ktime_get();
3764
	if (vc->halt_poll_ns) {
3765 3766
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3767

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3782 3783
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3784
			goto out;
3785
		}
3786 3787
	}

3788
	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3789 3790

	if (kvmppc_vcore_check_block(vc)) {
3791
		finish_swait(&vc->wq, &wait);
3792
		do_sleep = 0;
3793 3794 3795
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3796
		goto out;
3797 3798
	}

3799 3800
	start_wait = ktime_get();

3801
	vc->vcore_state = VCORE_SLEEPING;
3802
	trace_kvmppc_vcore_blocked(vc, 0);
3803
	spin_unlock(&vc->lock);
3804
	schedule();
3805
	finish_swait(&vc->wq, &wait);
3806 3807
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3808
	trace_kvmppc_vcore_blocked(vc, 1);
3809
	++vc->runner->stat.halt_successful_wait;
3810 3811 3812 3813

	cur = ktime_get();

out:
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3832 3833

	/* Adjust poll time */
3834
	if (halt_poll_ns) {
3835 3836 3837
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3838
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3839 3840
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3841 3842
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3843
			grow_halt_poll_ns(vc);
3844 3845
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3846 3847 3848 3849
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3850
}
3851

3852 3853 3854 3855 3856
/*
 * This never fails for a radix guest, as none of the operations it does
 * for a radix guest can fail or have a way to report failure.
 * kvmhv_run_single_vcpu() relies on this fact.
 */
3857 3858 3859 3860 3861
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

3862
	mutex_lock(&kvm->arch.mmu_setup_lock);
3863 3864 3865 3866 3867 3868 3869 3870 3871
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
3872
	mutex_unlock(&kvm->arch.mmu_setup_lock);
3873 3874 3875
	return r;
}

3876 3877
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3878
	int n_ceded, i, r;
3879
	struct kvmppc_vcore *vc;
3880
	struct kvm_vcpu *v;
3881

3882 3883
	trace_kvmppc_run_vcpu_enter(vcpu);

3884 3885 3886
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3887
	kvmppc_update_vpas(vcpu);
3888 3889 3890 3891 3892 3893

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3894
	vcpu->arch.ceded = 0;
3895 3896
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3897
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3898
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3899
	vcpu->arch.busy_preempt = TB_NIL;
3900
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3901 3902
	++vc->n_runnable;

3903 3904 3905 3906 3907
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3908
	if (!signal_pending(current)) {
3909 3910
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
		     vc->vcore_state == VCORE_RUNNING) &&
3911
			   !VCORE_IS_EXITING(vc)) {
3912
			kvmppc_create_dtl_entry(vcpu, vc);
3913
			kvmppc_start_thread(vcpu, vc);
3914
			trace_kvm_guest_enter(vcpu);
3915
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3916
			swake_up_one(&vc->wq);
3917 3918
		}

3919
	}
3920

3921 3922
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3923 3924
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3925
			spin_unlock(&vc->lock);
3926
			r = kvmhv_setup_mmu(vcpu);
3927 3928 3929
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3930 3931
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3932 3933 3934 3935 3936
				vcpu->arch.ret = r;
				break;
			}
		}

3937 3938 3939
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3940
		if (vc->vcore_state != VCORE_INACTIVE) {
3941
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3942 3943
			continue;
		}
3944
		for_each_runnable_thread(i, v, vc) {
3945
			kvmppc_core_prepare_to_enter(v);
3946 3947 3948 3949 3950 3951 3952 3953
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3954 3955 3956
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3957
		for_each_runnable_thread(i, v, vc) {
3958
			if (!kvmppc_vcpu_woken(v))
3959
				n_ceded += v->arch.ceded;
3960 3961 3962
			else
				v->arch.ceded = 0;
		}
3963 3964
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3965
			kvmppc_vcore_blocked(vc);
3966
		} else if (need_resched()) {
3967
			kvmppc_vcore_preempt(vc);
3968 3969
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3970 3971
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3972
		} else {
3973
			kvmppc_run_core(vc);
3974
		}
3975
		vc->runner = NULL;
3976
	}
3977

3978 3979
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3980 3981
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3982
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3983

3984 3985 3986
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3987 3988 3989 3990 3991 3992 3993 3994 3995
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3996 3997
		i = -1;
		v = next_runnable_thread(vc, &i);
3998
		wake_up(&v->arch.cpu_run);
3999 4000
	}

4001
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4002 4003
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
4004 4005
}

4006 4007 4008
int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
			  struct kvm_vcpu *vcpu, u64 time_limit,
			  unsigned long lpcr)
4009
{
4010
	int trap, r, pcpu;
4011
	int srcu_idx, lpid;
4012 4013
	struct kvmppc_vcore *vc;
	struct kvm *kvm = vcpu->kvm;
4014
	struct kvm_nested_guest *nested = vcpu->arch.nested;
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034

	trace_kvmppc_run_vcpu_enter(vcpu);

	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	vc = vcpu->arch.vcore;
	vcpu->arch.ceded = 0;
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
	vcpu->arch.busy_preempt = TB_NIL;
	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
	vc->runnable_threads[0] = vcpu;
	vc->n_runnable = 1;
	vc->runner = vcpu;

	/* See if the MMU is ready to go */
4035 4036
	if (!kvm->arch.mmu_ready)
		kvmhv_setup_mmu(vcpu);
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057

	if (need_resched())
		cond_resched();

	kvmppc_update_vpas(vcpu);

	init_vcore_to_run(vc);
	vc->preempt_tb = TB_NIL;

	preempt_disable();
	pcpu = smp_processor_id();
	vc->pcpu = pcpu;
	kvmppc_prepare_radix_vcpu(vcpu, pcpu);

	local_irq_disable();
	hard_irq_disable();
	if (signal_pending(current))
		goto sigpend;
	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
		goto out;

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	if (!nested) {
		kvmppc_core_prepare_to_enter(vcpu);
		if (vcpu->arch.doorbell_request) {
			vc->dpdes = 1;
			smp_wmb();
			vcpu->arch.doorbell_request = 0;
		}
		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
			     &vcpu->arch.pending_exceptions))
			lpcr |= LPCR_MER;
	} else if (vcpu->arch.pending_exceptions ||
		   vcpu->arch.doorbell_request ||
		   xive_interrupt_pending(vcpu)) {
		vcpu->arch.ret = RESUME_HOST;
		goto out;
	}
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

	kvmppc_clear_host_core(pcpu);

	local_paca->kvm_hstate.tid = 0;
	local_paca->kvm_hstate.napping = 0;
	local_paca->kvm_hstate.kvm_split_mode = NULL;
	kvmppc_start_thread(vcpu, vc);
	kvmppc_create_dtl_entry(vcpu, vc);
	trace_kvm_guest_enter(vcpu);

	vc->vcore_state = VCORE_RUNNING;
	trace_kvmppc_run_core(vc, 0);

4087 4088 4089 4090 4091 4092
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
		mtspr(SPRN_LPID, lpid);
		isync();
		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
	}
4093 4094 4095 4096 4097 4098 4099

	guest_enter_irqoff();

	srcu_idx = srcu_read_lock(&kvm->srcu);

	this_cpu_disable_ftrace();

4100 4101 4102
	/* Tell lockdep that we're about to enable interrupts */
	trace_hardirqs_on();

4103
	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4104 4105
	vcpu->arch.trap = trap;

4106 4107
	trace_hardirqs_off();

4108 4109 4110 4111
	this_cpu_enable_ftrace();

	srcu_read_unlock(&kvm->srcu, srcu_idx);

4112 4113 4114 4115
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		mtspr(SPRN_LPID, kvm->arch.host_lpid);
		isync();
	}
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133

	set_irq_happened(trap);

	kvmppc_set_host_core(pcpu);

	local_irq_enable();
	guest_exit();

	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);

	preempt_enable();

	/* cancel pending decrementer exception if DEC is now positive */
	if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
		kvmppc_core_dequeue_dec(vcpu);

	trace_kvm_guest_exit(vcpu);
	r = RESUME_GUEST;
4134 4135 4136 4137
	if (trap) {
		if (!nested)
			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
		else
4138
			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4139
	}
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	vcpu->arch.ret = r;

	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
	    !kvmppc_vcpu_woken(vcpu)) {
		kvmppc_set_timer(vcpu);
		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
			if (signal_pending(current)) {
				vcpu->stat.signal_exits++;
				kvm_run->exit_reason = KVM_EXIT_INTR;
				vcpu->arch.ret = -EINTR;
				break;
			}
			spin_lock(&vc->lock);
			kvmppc_vcore_blocked(vc);
			spin_unlock(&vc->lock);
		}
	}
	vcpu->arch.ceded = 0;

	vc->vcore_state = VCORE_INACTIVE;
	trace_kvmppc_run_core(vc, 1);

 done:
	kvmppc_remove_runnable(vc, vcpu);
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);

	return vcpu->arch.ret;

 sigpend:
	vcpu->stat.signal_exits++;
	kvm_run->exit_reason = KVM_EXIT_INTR;
	vcpu->arch.ret = -EINTR;
 out:
	local_irq_enable();
	preempt_enable();
	goto done;
}

4178
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4179 4180
{
	int r;
4181
	int srcu_idx;
4182
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4183 4184
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
4185
	struct kvm *kvm;
4186

4187 4188 4189 4190 4191
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
4206 4207
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
4208 4209 4210 4211 4212 4213 4214
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

4215 4216 4217 4218 4219 4220 4221 4222 4223
	/*
	 * Force online to 1 for the sake of old userspace which doesn't
	 * set it.
	 */
	if (!vcpu->arch.online) {
		atomic_inc(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = 1;
	}

4224 4225
	kvmppc_core_prepare_to_enter(vcpu);

4226 4227 4228 4229 4230 4231
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

4232 4233 4234
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4235 4236
	smp_mb();

4237 4238
	flush_all_to_thread(current);

4239
	/* Save userspace EBB and other register values */
4240 4241 4242 4243
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
4244
		user_tar = mfspr(SPRN_TAR);
4245
	}
4246
	user_vrsave = mfspr(SPRN_VRSAVE);
4247

4248
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4249
	vcpu->arch.pgdir = current->mm->pgd;
4250
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4251

4252
	do {
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
		/*
		 * The early POWER9 chips that can't mix radix and HPT threads
		 * on the same core also need the workaround for the problem
		 * where the TLB would prefetch entries in the guest exit path
		 * for radix guests using the guest PIDR value and LPID 0.
		 * The workaround is in the old path (kvmppc_run_vcpu())
		 * but not the new path (kvmhv_run_single_vcpu()).
		 */
		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
		    !no_mixing_hpt_and_radix)
4263 4264
			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
						  vcpu->arch.vcore->lpcr);
4265 4266
		else
			r = kvmppc_run_vcpu(run, vcpu);
4267 4268 4269

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4270
			trace_kvm_hcall_enter(vcpu);
4271
			r = kvmppc_pseries_do_hcall(vcpu);
4272
			trace_kvm_hcall_exit(vcpu, r);
4273
			kvmppc_core_prepare_to_enter(vcpu);
4274
		} else if (r == RESUME_PAGE_FAULT) {
4275
			srcu_idx = srcu_read_lock(&kvm->srcu);
4276 4277
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4278
			srcu_read_unlock(&kvm->srcu, srcu_idx);
4279
		} else if (r == RESUME_PASSTHROUGH) {
4280
			if (WARN_ON(xics_on_xive()))
4281 4282 4283 4284
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
4285
	} while (is_kvmppc_resume_guest(r));
4286

4287
	/* Restore userspace EBB and other register values */
4288 4289 4290 4291
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
4292 4293
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
4294
	}
4295
	mtspr(SPRN_VRSAVE, user_vrsave);
4296

4297
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4298
	atomic_dec(&kvm->arch.vcpus_running);
4299 4300 4301
	return r;
}

4302
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4303
				     int shift, int sllp)
4304
{
4305 4306 4307 4308
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4309
	/*
4310
	 * Add 16MB MPSS support (may get filtered out by userspace)
4311
	 */
4312 4313 4314 4315 4316 4317
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
4318
	}
4319 4320 4321
	(*sps)++;
}

4322 4323
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
4324 4325 4326
{
	struct kvm_ppc_one_seg_page_size *sps;

4327 4328 4329 4330 4331 4332 4333 4334
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

4335 4336 4337
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
4338 4339 4340

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
4341 4342 4343
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4344

4345 4346 4347 4348
	/* If running as a nested hypervisor, we don't support HPT guests */
	if (kvmhv_on_pseries())
		info->flags |= KVM_PPC_NO_HASH;

4349 4350 4351
	return 0;
}

4352 4353 4354
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
4355 4356
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
4357
{
4358
	struct kvm_memslots *slots;
4359
	struct kvm_memory_slot *memslot;
4360
	int i, r;
4361
	unsigned long n;
4362
	unsigned long *buf, *p;
4363
	struct kvm_vcpu *vcpu;
4364 4365 4366 4367

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
4368
	if (log->slot >= KVM_USER_MEM_SLOTS)
4369 4370
		goto out;

4371 4372
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
4373 4374 4375 4376
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

4377
	/*
4378 4379
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
4380
	 */
4381
	n = kvm_dirty_bitmap_bytes(memslot);
4382 4383
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
4384

4385 4386 4387 4388
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4389 4390 4391
	if (r)
		goto out;

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

4402 4403 4404 4405 4406 4407 4408 4409 4410
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

4411
	r = -EFAULT;
4412
	if (copy_to_user(log->dirty_bitmap, buf, n))
4413 4414 4415 4416 4417 4418 4419 4420
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

4421 4422
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
4423 4424 4425 4426
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
4427
	}
4428 4429
}

4430 4431
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
4432
{
4433
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4434 4435
	if (!slot->arch.rmap)
		return -ENOMEM;
4436

4437 4438
	return 0;
}
4439

4440 4441
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
4442
					const struct kvm_userspace_memory_region *mem)
4443
{
4444
	return 0;
4445 4446
}

4447
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4448
				const struct kvm_userspace_memory_region *mem,
4449
				const struct kvm_memory_slot *old,
4450 4451
				const struct kvm_memory_slot *new,
				enum kvm_mr_change change)
4452
{
4453 4454
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

4455 4456 4457 4458 4459 4460 4461 4462
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479

	/*
	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
	 * have already called kvm_arch_flush_shadow_memslot() to
	 * flush shadow mappings.  For KVM_MR_CREATE we have no
	 * previous mappings.  So the only case to handle is
	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
	 * has been changed.
	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
	 * to get rid of any THP PTEs in the partition-scoped page tables
	 * so we can track dirtiness at the page level; we flush when
	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
	 * using THP PTEs.
	 */
	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
		kvmppc_radix_flush_memslot(kvm, old);
4480 4481
}

4482 4483
/*
 * Update LPCR values in kvm->arch and in vcores.
4484 4485
 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
 * of kvm->arch.lpcr update).
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

4509 4510 4511 4512 4513
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

4514
void kvmppc_setup_partition_table(struct kvm *kvm)
4515 4516 4517
{
	unsigned long dw0, dw1;

4518 4519 4520 4521 4522 4523
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
4524

4525 4526 4527 4528 4529 4530 4531
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
4532
	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4533 4534
}

4535 4536
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
4537
 * Must be called with kvm->arch.mmu_setup_lock held.
4538
 */
4539
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4540 4541 4542 4543 4544 4545
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
4546
	unsigned long lpcr = 0, senc;
4547
	unsigned long psize, porder;
4548
	int srcu_idx;
4549

4550
	/* Allocate hashed page table (if not done already) and reset it */
4551
	if (!kvm->arch.hpt.virt) {
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
4563 4564 4565
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
4566 4567

		kvmppc_set_hpt(kvm, &info);
4568 4569
	}

4570
	/* Look up the memslot for guest physical address 0 */
4571
	srcu_idx = srcu_read_lock(&kvm->srcu);
4572
	memslot = gfn_to_memslot(kvm, 0);
4573

4574 4575 4576
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4577
		goto out_srcu;
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);

	up_read(&current->mm->mmap_sem);

4590
	/* We can handle 4k, 64k or 16M pages in the VRMA */
4591 4592 4593 4594 4595 4596 4597
	if (psize >= 0x1000000)
		psize = 0x1000000;
	else if (psize >= 0x10000)
		psize = 0x10000;
	else
		psize = 0x1000;
	porder = __ilog2(psize);
4598

4599 4600 4601 4602 4603
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
4604

4605 4606 4607 4608 4609 4610
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
4611

4612
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4613 4614
	smp_wmb();
	err = 0;
4615 4616
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
4617 4618
 out:
	return err;
4619

4620 4621
 up_out:
	up_read(&current->mm->mmap_sem);
4622
	goto out_srcu;
4623 4624
}

4625 4626 4627 4628
/*
 * Must be called with kvm->arch.mmu_setup_lock held and
 * mmu_ready = 0 and no vcpus running.
 */
4629 4630
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
4631
	if (nesting_enabled(kvm))
4632
		kvmhv_release_all_nested(kvm);
4633 4634 4635 4636 4637 4638
	kvmppc_rmap_reset(kvm);
	kvm->arch.process_table = 0;
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 0;
	spin_unlock(&kvm->mmu_lock);
4639 4640 4641 4642 4643 4644
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

4645 4646 4647 4648
/*
 * Must be called with kvm->arch.mmu_setup_lock held and
 * mmu_ready = 0 and no vcpus running.
 */
4649 4650 4651 4652 4653 4654 4655
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;
4656 4657 4658 4659 4660
	kvmppc_rmap_reset(kvm);
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 1;
	spin_unlock(&kvm->mmu_lock);
4661 4662 4663 4664 4665 4666
	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

4701
	cpus_read_lock();
4702

4703 4704 4705 4706 4707 4708 4709 4710
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

4711 4712
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4723
		cpus_read_unlock();
4724 4725
		kfree(ops->rm_core);
		kfree(ops);
4726
		return;
4727
	}
4728

4729 4730 4731 4732 4733
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
4734 4735 4736 4737 4738
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
4739
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4740 4741 4742 4743 4744 4745 4746
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

4747
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4748
{
4749
	unsigned long lpcr, lpid;
4750
	char buf[32];
4751
	int ret;
4752

4753 4754
	mutex_init(&kvm->arch.mmu_setup_lock);

4755 4756 4757
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
4758
	if ((long)lpid < 0)
4759 4760
		return -ENOMEM;
	kvm->arch.lpid = lpid;
4761

4762 4763
	kvmppc_alloc_host_rm_ops();

4764 4765
	kvmhv_vm_nested_init(kvm);

4766 4767 4768 4769
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
4770 4771
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
4772
	 */
4773 4774
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
4775

4776 4777 4778 4779
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

4780 4781
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4782

4783
	/* Init LPCR for virtual RMA mode */
4784 4785 4786 4787 4788 4789 4790
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
	} else {
		lpcr = 0;
	}
4791 4792 4793 4794 4795 4796 4797
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
4798 4799 4800
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4801 4802 4803
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
4804 4805
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4806
		lpcr &= ~LPCR_VPM0;
4807 4808 4809 4810 4811 4812
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
4813
		if (xics_on_xive())
4814
			lpcr |= LPCR_LPES;
4815 4816
	}

4817
	/*
4818
	 * If the host uses radix, the guest starts out as radix.
4819 4820 4821
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
4822
		kvm->arch.mmu_ready = 1;
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

4833
	kvm->arch.lpcr = lpcr;
4834

4835 4836 4837
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

4838 4839 4840 4841
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
4842
	if (radix_enabled())
4843 4844
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4845 4846 4847 4848 4849 4850
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

4851
	/*
4852 4853
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
4854 4855
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
4856
	 */
4857 4858 4859 4860 4861 4862 4863 4864
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
			kvm->arch.threads_indep = true;
		} else {
			kvm->arch.threads_indep = indep_threads_mode;
		}
	}
4865
	if (!kvm->arch.threads_indep)
4866
		kvm_hv_vm_activated();
4867

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
4879
	kvm->arch.emul_smt_mode = 1;
4880

4881 4882 4883 4884 4885
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4886
	kvmppc_mmu_debugfs_init(kvm);
4887 4888
	if (radix_enabled())
		kvmhv_radix_debugfs_init(kvm);
4889

4890
	return 0;
4891 4892
}

4893 4894 4895 4896
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

4897
	for (i = 0; i < KVM_MAX_VCORES; ++i)
4898 4899 4900 4901
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

4902
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4903
{
4904 4905
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

4906
	if (!kvm->arch.threads_indep)
4907
		kvm_hv_vm_deactivated();
4908

4909
	kvmppc_free_vcores(kvm);
4910

4911

4912 4913 4914
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
4915
		kvmppc_free_hpt(&kvm->arch.hpt);
4916

4917 4918
	/* Perform global invalidation and return lpid to the pool */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4919
		if (nesting_enabled(kvm))
4920
			kvmhv_release_all_nested(kvm);
4921
		kvm->arch.process_table = 0;
4922
		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4923 4924 4925
	}
	kvmppc_free_lpid(kvm->arch.lpid);

4926
	kvmppc_free_pimap(kvm);
4927 4928
}

4929 4930 4931
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
4932
{
4933
	return EMULATE_FAIL;
4934 4935
}

4936 4937
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
4938 4939 4940 4941
{
	return EMULATE_FAIL;
}

4942 4943
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
4944 4945 4946 4947
{
	return EMULATE_FAIL;
}

4948
static int kvmppc_core_check_processor_compat_hv(void)
4949
{
4950 4951 4952
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_206))
		return 0;
4953

4954 4955 4956 4957 4958
	/* POWER9 in radix mode is capable of being a nested hypervisor. */
	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
		return 0;

	return -EIO;
4959 4960
}

4961 4962 4963 4964 4965 4966 4967
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

4968
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4969 4970 4971
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
4972 4973 4974 4975 4976 4977 4978

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
4979
	int i, rc = 0;
4980

4981 4982 4983
	if (!kvm_irq_bypass)
		return 1;

4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
5004
	 * what our real-mode EOI code does, or a XIVE interrupt
5005 5006
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
5007
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

5039 5040 5041 5042 5043 5044 5045
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

5046 5047 5048
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

5049
	if (xics_on_xive())
5050 5051 5052 5053 5054
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
5055

5056 5057 5058 5059 5060 5061 5062 5063 5064
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
5065
	int i, rc = 0;
5066

5067 5068 5069
	if (!kvm_irq_bypass)
		return 0;

5070 5071 5072 5073 5074
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
5075 5076
	if (!kvm->arch.pimap)
		goto unlock;
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

5090
	if (xics_on_xive())
5091 5092 5093
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5094

5095
	/* invalidate the entry (what do do on error from the above ?) */
5096 5097 5098 5099 5100 5101
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
5102
 unlock:
5103
	mutex_unlock(&kvm->lock);
5104
	return rc;
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
5143 5144
#endif

5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
5160
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

5199 5200 5201 5202 5203 5204 5205
	default:
		r = -ENOTTY;
	}

	return r;
}

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
5240
	unsigned int hcall;
5241

5242 5243 5244 5245 5246
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
5247 5248
}

5249 5250
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
5251
	unsigned long lpcr;
5252
	int radix;
5253
	int err;
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
5264
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5265
	if (!!(cfg->process_table & PATB_GR) != radix)
5266 5267 5268 5269 5270 5271
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

5272 5273 5274 5275
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

5276 5277 5278 5279
	/* If we're a nested hypervisor, we currently only support radix */
	if (kvmhv_on_pseries() && !radix)
		return -EINVAL;

5280
	mutex_lock(&kvm->arch.mmu_setup_lock);
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

5300 5301 5302 5303 5304
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5305
	err = 0;
5306

5307
 out_unlock:
5308
	mutex_unlock(&kvm->arch.mmu_setup_lock);
5309
	return err;
5310 5311
}

5312 5313 5314 5315
static int kvmhv_enable_nested(struct kvm *kvm)
{
	if (!nested)
		return -EPERM;
5316
	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5317 5318 5319 5320 5321 5322 5323 5324
		return -ENODEV;

	/* kvm == NULL means the caller is testing if the capability exists */
	if (kvm)
		kvm->arch.nested_enable = true;
	return 0;
}

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
				 int size)
{
	int rc = -EINVAL;

	if (kvmhv_vcpu_is_radix(vcpu)) {
		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);

		if (rc > 0)
			rc = -EINVAL;
	}

	/* For now quadrants are the only way to access nested guest memory */
	if (rc && vcpu->arch.nested)
		rc = -EAGAIN;

	return rc;
}

static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
				int size)
{
	int rc = -EINVAL;

	if (kvmhv_vcpu_is_radix(vcpu)) {
		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);

		if (rc > 0)
			rc = -EINVAL;
	}

	/* For now quadrants are the only way to access nested guest memory */
	if (rc && vcpu->arch.nested)
		rc = -EAGAIN;

	return rc;
}

5363
static struct kvmppc_ops kvm_ops_hv = {
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5394
	.hcall_implemented = kvmppc_hcall_impl_hv,
5395 5396 5397 5398
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
5399 5400
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
5401
	.set_smt_mode = kvmhv_set_smt_mode,
5402
	.enable_nested = kvmhv_enable_nested,
5403 5404
	.load_from_eaddr = kvmhv_load_from_eaddr,
	.store_to_eaddr = kvmhv_store_to_eaddr,
5405 5406
};

5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
5418
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5419 5420 5421
			continue;

		sibling_subcore_state =
5422
			kzalloc_node(sizeof(struct sibling_subcore_state),
5423 5424 5425 5426 5427 5428 5429 5430
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;


		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

5431 5432
			paca_ptrs[cpu]->sibling_subcore_state =
						sibling_subcore_state;
5433 5434 5435 5436 5437
		}
	}
	return 0;
}

5438 5439 5440 5441 5442
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

5443
static int kvmppc_book3s_init_hv(void)
5444 5445
{
	int r;
5446 5447 5448 5449 5450
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
5451
		return -ENODEV;
5452

5453 5454 5455 5456
	r = kvmhv_nested_init();
	if (r)
		return r;

5457 5458 5459 5460
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

5461 5462
	/*
	 * We need a way of accessing the XICS interrupt controller,
5463
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5464 5465 5466
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
5467
	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5468
	    !local_paca->kvm_hstate.xics_phys) {
5469 5470 5471 5472 5473 5474 5475
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
5476 5477
		/* presence of intc confirmed - node can be dropped again */
		of_node_put(np);
5478 5479 5480
	}
#endif

5481 5482
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
5483

5484 5485
	init_default_hcalls();

5486 5487
	init_vcore_lists();

5488
	r = kvmppc_mmu_hv_init();
5489 5490 5491 5492 5493
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506

	/*
	 * POWER9 chips before version 2.02 can't have some threads in
	 * HPT mode and some in radix mode on the same core.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		unsigned int pvr = mfspr(SPRN_PVR);
		if ((pvr >> 16) == PVR_POWER9 &&
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
			no_mixing_hpt_and_radix = true;
	}

5507 5508 5509
	return r;
}

5510
static void kvmppc_book3s_exit_hv(void)
5511
{
5512
	kvmppc_free_host_rm_ops();
5513 5514
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
5515
	kvmppc_hv_ops = NULL;
5516
	kvmhv_nested_exit();
5517 5518
}

5519 5520
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
5521
MODULE_LICENSE("GPL");
5522 5523
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");