book3s_hv.c 87.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34
#include <linux/miscdevice.h>
35
#include <linux/debugfs.h>
36 37 38 39 40 41 42 43 44 45 46 47

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
48
#include <asm/cputhreads.h>
49
#include <asm/page.h>
50
#include <asm/hvcall.h>
51
#include <asm/switch_to.h>
52
#include <asm/smp.h>
53
#include <asm/dbell.h>
54 55 56
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
57
#include <linux/hugetlb.h>
58
#include <linux/module.h>
59

60 61
#include "book3s.h"

62 63 64
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

65 66 67 68
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

69 70 71
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

72 73 74
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

75 76
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

77 78 79
static int dynamic_mt_modes = 6;
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
80 81 82
static int target_smt_mode;
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
83

84 85 86 87 88 89 90 91 92 93 94
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

95
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
96
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static bool kvmppc_ipi_thread(int cpu)
{
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
	if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
		xics_wake_cpu(cpu);
		return true;
	}
#endif

	return false;
}

125
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
126
{
127
	int cpu;
128
	struct swait_queue_head *wqp;
129 130

	wqp = kvm_arch_vcpu_wq(vcpu);
131 132
	if (swait_active(wqp)) {
		swake_up(wqp);
133 134 135
		++vcpu->stat.halt_wakeup;
	}

136
	if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
137
		return;
138 139

	/* CPU points to the first thread of the core */
140
	cpu = vcpu->cpu;
141 142
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
143 144
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
172 173 174 175
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
176 177
 */

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

199
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
200
{
201
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
202
	unsigned long flags;
203

204 205 206 207 208 209
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
210 211 212
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

213
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
214 215 216 217 218
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
219
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
220 221
}

222
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
223
{
224
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
225
	unsigned long flags;
226

227 228 229
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

230
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
231 232
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
233
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
234 235
}

236
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
237
{
238 239 240 241 242 243
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
244
	vcpu->arch.shregs.msr = msr;
245
	kvmppc_end_cede(vcpu);
246 247
}

T
Thomas Huth 已提交
248
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
249 250 251 252
{
	vcpu->arch.pvr = pvr;
}

T
Thomas Huth 已提交
253
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
254 255 256 257 258 259 260
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
261 262 263 264 265
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
266 267 268
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
269 270 271
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
272 273 274 275
			break;
		default:
			return -EINVAL;
		}
276 277 278 279 280 281 282

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
283 284 285 286 287 288 289 290 291 292
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
293
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
322
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
323 324 325
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
326
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
327
{
328
	struct kvm_vcpu *ret;
329 330

	mutex_lock(&kvm->lock);
331
	ret = kvm_get_vcpu_by_id(kvm, id);
332 333 334 335 336 337
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
338
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
339
	vpa->yield_count = cpu_to_be32(1);
340 341
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

358 359 360 361
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
362 363
		__be16 hword;
		__be32 word;
364 365 366 367 368 369 370 371 372 373
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

374 375 376 377 378
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
379
	unsigned long len, nb;
380 381
	void *va;
	struct kvm_vcpu *tvcpu;
382 383 384
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
385 386 387 388 389

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

390 391 392 393 394
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
395
			return H_PARAMETER;
396 397

		/* convert logical addr to kernel addr and read length */
398 399
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
400
			return H_PARAMETER;
401
		if (subfunc == H_VPA_REG_VPA)
402
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
403
		else
404
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
405
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
422
			break;
423 424 425 426 427 428
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
429
			break;
430 431 432 433 434
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
435
			break;
436 437 438 439 440 441 442 443 444

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
445
			break;
446 447 448 449 450 451 452 453 454 455

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
456
			break;
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
477
	}
478

479 480
	spin_unlock(&tvcpu->arch.vpa_update_lock);

481
	return err;
482 483
}

484
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
485
{
486
	struct kvm *kvm = vcpu->kvm;
487 488
	void *va;
	unsigned long nb;
489
	unsigned long gpa;
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
505
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
506 507 508 509 510
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
511
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
512 513 514 515 516 517 518 519 520
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
521
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
522
		va = NULL;
523 524
	}
	if (vpap->pinned_addr)
525 526 527
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
528
	vpap->pinned_addr = va;
529
	vpap->dirty = false;
530 531 532 533 534 535
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
536 537 538 539 540
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

541 542
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
543
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
544 545
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
546 547
	}
	if (vcpu->arch.dtl.update_pending) {
548
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
549 550 551 552
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
553
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
554 555 556
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

557 558 559 560 561 562 563
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
564
	unsigned long flags;
565

566 567
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
568
	if (vc->vcore_state != VCORE_INACTIVE &&
569 570 571
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
572 573 574
	return p;
}

575 576 577 578 579
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
580 581 582
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
583 584 585

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
586 587 588 589
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
590
	spin_lock_irq(&vcpu->arch.tbacct_lock);
591 592
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
593
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
594 595 596 597
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
598 599 600 601 602
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
603 604 605 606 607 608
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
609
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
610
	vcpu->arch.dtl.dirty = true;
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
669 670
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
671 672 673 674 675 676 677 678 679 680 681 682 683 684
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
685
		yield_count = be32_to_cpu(lppaca->yield_count);
686 687 688 689
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

690 691 692 693
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
694
	int yield_count;
695
	struct kvm_vcpu *tvcpu;
696
	int idx, rc;
697

698 699 700 701
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

702 703 704 705 706 707 708 709 710 711 712 713 714
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
715 716
			if (swait_active(&vcpu->wq)) {
				swake_up(&vcpu->wq);
717 718 719 720 721
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
722 723 724 725 726 727 728 729
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
730 731 732 733
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
734 735 736 737 738 739
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
740 741 742 743
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

744
		idx = srcu_read_lock(&vcpu->kvm->srcu);
745
		rc = kvmppc_rtas_hcall(vcpu);
746
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
747 748 749 750 751 752 753 754

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
755 756 757 758 759 760 761 762 763 764
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
765 766 767 768 769 770 771 772
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
773 774 775 776
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
777 778
	case H_IPOLL:
	case H_XIRR_X:
779 780 781
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
807 808 809 810 811 812 813 814
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

815 816 817 818 819 820 821
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
822
	case H_SET_MODE:
823 824
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

864 865
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
866 867 868 869 870
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
889 890 891 892 893 894 895 896 897
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
898
	case BOOK3S_INTERRUPT_H_DOORBELL:
899 900 901
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
902 903
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
904 905 906
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
907 908 909 910 911 912 913 914 915 916 917
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

937 938 939 940
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

941 942 943 944 945 946 947 948 949
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
950 951 952 953 954
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
955 956
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
957
		r = RESUME_PAGE_FAULT;
958 959
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
960 961 962
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
963 964 965
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
966 967 968 969
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
970 971
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
972 973 974 975
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
976 977 978 979 980 981
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
982 983 984 985 986 987 988 989
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
990 991 992 993 994 995 996
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
997
		run->hw.hardware_exit_reason = vcpu->arch.trap;
998 999 1000 1001 1002 1003 1004
		r = RESUME_HOST;
		break;
	}

	return r;
}

1005 1006
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1007 1008 1009 1010
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1011
	sregs->pvr = vcpu->arch.pvr;
1012 1013 1014 1015 1016 1017 1018 1019
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1020 1021
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1022 1023 1024
{
	int i, j;

1025 1026 1027
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1042 1043
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1044
{
1045
	struct kvm *kvm = vcpu->kvm;
1046 1047 1048
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1049
	mutex_lock(&kvm->lock);
1050
	spin_lock(&vc->lock);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1069 1070 1071
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1072
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1073 1074
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1075 1076
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1077 1078 1079 1080

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1081 1082
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1083
	mutex_unlock(&kvm->lock);
1084 1085
}

1086 1087
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1088
{
1089 1090
	int r = 0;
	long int i;
1091

1092
	switch (id) {
1093 1094 1095
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1096
	case KVM_REG_PPC_HIOR:
1097 1098 1099 1100 1101
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1102 1103 1104
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1120
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1121 1122 1123 1124 1125 1126
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1127
		break;
1128 1129 1130 1131
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1132 1133 1134 1135 1136 1137
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1138 1139
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1140
		break;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1176
		break;
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1194 1195 1196
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1197
	case KVM_REG_PPC_LPCR:
1198
	case KVM_REG_PPC_LPCR_64:
1199 1200
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1201 1202 1203
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1267 1268 1269
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1270
	default:
1271
		r = -EINVAL;
1272 1273 1274 1275 1276 1277
		break;
	}

	return r;
}

1278 1279
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1280
{
1281 1282
	int r = 0;
	long int i;
1283
	unsigned long addr, len;
1284

1285
	switch (id) {
1286 1287
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1288
		if (set_reg_val(id, *val))
1289 1290
			r = -EINVAL;
		break;
1291 1292 1293
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1294 1295 1296
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1312
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1313 1314 1315 1316 1317 1318 1319
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1320 1321 1322 1323
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1324 1325 1326 1327 1328 1329
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1330 1331
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1332
		break;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1371
		break;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1392 1393
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1394 1395 1396 1397
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1398 1399 1400 1401 1402
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1403
	case KVM_REG_PPC_LPCR:
1404 1405 1406 1407
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1408
		break;
1409 1410 1411
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1474 1475 1476
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1477
	default:
1478
		r = -EINVAL;
1479 1480 1481 1482 1483 1484
		break;
	}

	return r;
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	INIT_LIST_HEAD(&vcore->runnable_threads);
	spin_lock_init(&vcore->lock);
1496
	spin_lock_init(&vcore->stoltb_lock);
1497
	init_swait_queue_head(&vcore->wq);
1498 1499 1500 1501
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
	vcore->first_vcpuid = core * threads_per_subcore;
	vcore->kvm = kvm;
1502
	INIT_LIST_HEAD(&vcore->preempt_list);
1503 1504 1505 1506

	return vcore;
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

#define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1655 1656
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1657 1658
{
	struct kvm_vcpu *vcpu;
1659 1660 1661
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1662

1663
	core = id / threads_per_subcore;
1664 1665 1666 1667
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1668
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1669 1670 1671 1672 1673 1674 1675 1676
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1688 1689 1690
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1691
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1692
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1693 1694
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1695
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1696 1697 1698

	kvmppc_mmu_book3s_hv_init(vcpu);

1699
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1700 1701 1702 1703 1704 1705

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
1706
		vcore = kvmppc_vcore_create(kvm, core);
1707
		kvm->arch.vcores[core] = vcore;
1708
		kvm->arch.online_vcores++;
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1719
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1720
	vcpu->arch.thread_cpu = -1;
1721

1722 1723 1724
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1725 1726
	debugfs_vcpu_init(vcpu, id);

1727 1728 1729
	return vcpu;

free_vcpu:
1730
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1731 1732 1733 1734
out:
	return ERR_PTR(err);
}

1735 1736 1737 1738 1739 1740 1741
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1742
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1743
{
1744
	spin_lock(&vcpu->arch.vpa_update_lock);
1745 1746 1747
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1748
	spin_unlock(&vcpu->arch.vpa_update_lock);
1749
	kvm_vcpu_uninit(vcpu);
1750
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1751 1752
}

1753 1754 1755 1756 1757 1758
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1759
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1760
{
1761
	unsigned long dec_nsec, now;
1762

1763 1764 1765 1766
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1767
		kvmppc_core_prepare_to_enter(vcpu);
1768
		return;
1769
	}
1770 1771 1772 1773 1774
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1775 1776
}

1777
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1778
{
1779 1780 1781 1782 1783
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1784 1785
}

1786
extern void __kvmppc_vcore_entry(void);
1787

1788 1789
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1790
{
1791 1792
	u64 now;

1793 1794
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1795
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1796 1797 1798 1799 1800
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1801
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1802 1803 1804 1805
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

1806 1807 1808
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
1809
	long timeout = 10000;
1810 1811 1812 1813

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
1814
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1815
	tpaca->kvm_hstate.kvm_vcore = NULL;
1816 1817 1818
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1847 1848
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
1849 1850
}

1851
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1852 1853 1854
{
	int cpu;
	struct paca_struct *tpaca;
1855
	struct kvmppc_vcore *mvc = vc->master_vcore;
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
		vcpu->cpu = mvc->pcpu;
		vcpu->arch.thread_cpu = cpu;
1866
	}
1867
	tpaca = &paca[cpu];
1868
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1869 1870
	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1871
	smp_wmb();
1872
	tpaca->kvm_hstate.kvm_vcore = mvc;
1873
	if (cpu != smp_processor_id())
1874
		kvmppc_ipi_thread(cpu);
1875
}
1876

1877
static void kvmppc_wait_for_nap(void)
1878
{
1879 1880
	int cpu = smp_processor_id();
	int i, loops;
1881

1882 1883 1884
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
1885
		 * We set the vcore pointer when starting a thread
1886
		 * and the thread clears it when finished, so we look
1887
		 * for any threads that still have a non-NULL vcore ptr.
1888 1889
		 */
		for (i = 1; i < threads_per_subcore; ++i)
1890
			if (paca[cpu + i].kvm_hstate.kvm_vcore)
1891 1892 1893 1894
				break;
		if (i == threads_per_subcore) {
			HMT_medium();
			return;
1895
		}
1896
		HMT_low();
1897 1898
	}
	HMT_medium();
1899
	for (i = 1; i < threads_per_subcore; ++i)
1900
		if (paca[cpu + i].kvm_hstate.kvm_vcore)
1901
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1902 1903 1904 1905
}

/*
 * Check that we are on thread 0 and that any other threads in
1906 1907
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1908 1909 1910 1911
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
1912
	int thr;
1913

1914 1915
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
1916
		return 0;
1917 1918 1919

	thr = 0;
	while (++thr < threads_per_subcore)
1920 1921
		if (cpu_online(cpu + thr))
			return 0;
1922 1923

	/* Grab all hw threads so they can't go into the kernel */
1924
	for (thr = 1; thr < threads_per_subcore; ++thr) {
1925 1926 1927 1928 1929 1930 1931 1932
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1933 1934 1935
	return 1;
}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
	if (vc->num_threads < threads_per_subcore) {
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
1977
	struct preempted_vcore_list *lp;
1978 1979 1980

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
1981
		lp = &per_cpu(preempted_vcores, vc->pcpu);
1982 1983 1984 1985 1986 1987 1988
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

1989 1990 1991 1992
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
1993
struct core_info {
1994 1995
	int		n_subcores;
	int		max_subcore_threads;
1996
	int		total_threads;
1997 1998 1999
	int		subcore_threads[MAX_SUBCORES];
	struct kvm	*subcore_vm[MAX_SUBCORES];
	struct list_head vcs[MAX_SUBCORES];
2000 2001
};

2002 2003 2004 2005 2006 2007
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
 * respectively in 2-way micro-threading (split-core) mode.
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2008 2009
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
2010 2011
	int sub;

2012
	memset(cip, 0, sizeof(*cip));
2013 2014
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2015
	cip->total_threads = vc->num_threads;
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	cip->subcore_threads[0] = vc->num_threads;
	cip->subcore_vm[0] = vc->kvm;
	for (sub = 0; sub < MAX_SUBCORES; ++sub)
		INIT_LIST_HEAD(&cip->vcs[sub]);
	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
	/* Can only dynamically split if unsplit to begin with */
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
}

static void init_master_vcore(struct kvmppc_vcore *vc)
{
	vc->master_vcore = vc;
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
}

/*
2050 2051 2052
 * See if the existing subcores can be split into 3 (or fewer) subcores
 * of at most two threads each, so we can fit in another vcore.  This
 * assumes there are at most two subcores and at most 6 threads in total.
2053
 */
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static bool can_split_piggybacked_subcores(struct core_info *cip)
{
	int sub, new_sub;
	int large_sub = -1;
	int thr;
	int n_subcores = cip->n_subcores;
	struct kvmppc_vcore *vc, *vcnext;
	struct kvmppc_vcore *master_vc = NULL;

	for (sub = 0; sub < cip->n_subcores; ++sub) {
		if (cip->subcore_threads[sub] <= 2)
			continue;
		if (large_sub >= 0)
			return false;
		large_sub = sub;
		vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
				      preempt_list);
		if (vc->num_threads > 2)
			return false;
		n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
	}
2075
	if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
		return false;

	/*
	 * Seems feasible, so go through and move vcores to new subcores.
	 * Note that when we have two or more vcores in one subcore,
	 * all those vcores must have only one thread each.
	 */
	new_sub = cip->n_subcores;
	thr = 0;
	sub = large_sub;
	list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
		if (thr >= 2) {
			list_del(&vc->preempt_list);
			list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
			/* vc->num_threads must be 1 */
			if (++cip->subcore_threads[new_sub] == 1) {
				cip->subcore_vm[new_sub] = vc->kvm;
				init_master_vcore(vc);
				master_vc = vc;
				++cip->n_subcores;
			} else {
				vc->master_vcore = master_vc;
				++new_sub;
			}
		}
		thr += vc->num_threads;
	}
	cip->subcore_threads[large_sub] = 2;
	cip->max_subcore_threads = 2;

	return true;
}

static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
	if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
		cip->max_subcore_threads = n_threads;
	} else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
		   vc->num_threads <= 2) {
		/*
		 * We may be able to fit another subcore in by
		 * splitting an existing subcore with 3 or 4
		 * threads into two 2-thread subcores, or one
		 * with 5 or 6 threads into three subcores.
		 * We can only do this if those subcores have
		 * piggybacked virtual cores.
		 */
		if (!can_split_piggybacked_subcores(cip))
			return false;
	} else {
		return false;
	}

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
	cip->subcore_vm[sub] = vc->kvm;
	init_master_vcore(vc);
	list_del(&vc->preempt_list);
	list_add_tail(&vc->preempt_list, &cip->vcs[sub]);

	return true;
}

static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
				  struct core_info *cip, int sub)
2151 2152
{
	struct kvmppc_vcore *vc;
2153
	int n_thr;
2154

2155 2156
	vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
			      preempt_list);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

	/* require same VM and same per-core reg values */
	if (pvc->kvm != vc->kvm ||
	    pvc->tb_offset != vc->tb_offset ||
	    pvc->pcr != vc->pcr ||
	    pvc->lpcr != vc->lpcr)
		return false;

	/* P8 guest with > 1 thread per core would see wrong TIR value */
	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
	    (vc->num_threads > 1 || pvc->num_threads > 1))
		return false;

2170 2171 2172 2173 2174 2175
	n_thr = cip->subcore_threads[sub] + pvc->num_threads;
	if (n_thr > cip->max_subcore_threads) {
		if (!subcore_config_ok(cip->n_subcores, n_thr))
			return false;
		cip->max_subcore_threads = n_thr;
	}
2176 2177

	cip->total_threads += pvc->num_threads;
2178
	cip->subcore_threads[sub] = n_thr;
2179 2180
	pvc->master_vcore = vc;
	list_del(&pvc->preempt_list);
2181
	list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2182 2183 2184 2185

	return true;
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	int sub;

	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;
	for (sub = 0; sub < cip->n_subcores; ++sub)
		if (cip->subcore_threads[sub] &&
		    can_piggyback_subcore(pvc, cip, sub))
			return true;

	if (can_dynamic_split(pvc, cip))
		return true;

	return false;
}

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
static void prepare_threads(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu, *vnext;

	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2259
{
2260
	int still_running = 0;
2261 2262 2263 2264
	u64 now;
	long ret;
	struct kvm_vcpu *vcpu, *vnext;

2265
	spin_lock(&vc->lock);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	now = get_tb();
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2284 2285 2286 2287
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2288
				kvmppc_set_timer(vcpu);
2289 2290 2291
			else
				++still_running;
		} else {
2292 2293 2294 2295
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2296 2297
	list_del_init(&vc->preempt_list);
	if (!is_master) {
2298
		if (still_running > 0) {
2299
			kvmppc_vcore_preempt(vc);
2300 2301 2302 2303 2304 2305
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2306 2307 2308 2309 2310 2311 2312 2313
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
			vcpu = list_first_entry(&vc->runnable_threads,
						struct kvm_vcpu, arch.run_list);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2314 2315
}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
static inline void kvmppc_clear_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
static inline void kvmppc_set_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
}

2356 2357 2358 2359
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2360
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2361
{
2362
	struct kvm_vcpu *vcpu, *vnext;
2363
	int i;
2364
	int srcu_idx;
2365 2366
	struct core_info core_info;
	struct kvmppc_vcore *pvc, *vcnext;
2367 2368 2369 2370 2371
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2372 2373
	int pcpu, thr;
	int target_threads;
2374

2375 2376 2377 2378 2379 2380 2381 2382 2383
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2384 2385

	/*
2386
	 * Initialize *vc.
2387
	 */
2388
	init_master_vcore(vc);
2389
	vc->preempt_tb = TB_NIL;
2390

2391
	/*
2392 2393 2394
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2395
	 */
2396 2397
	if ((threads_per_core > 1) &&
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2398 2399
		list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
					 arch.run_list) {
2400
			vcpu->arch.ret = -EBUSY;
2401 2402 2403
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2404 2405 2406
		goto out;
	}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
	target_threads = threads_per_subcore;
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
	if (split > 1) {
		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
		if (split == 2 && (dynamic_mt_modes & 2)) {
			cmd_bit = HID0_POWER8_1TO2LPAR;
			stat_bit = HID0_POWER8_2LPARMODE;
		} else {
			split = 4;
			cmd_bit = HID0_POWER8_1TO4LPAR;
			stat_bit = HID0_POWER8_4LPARMODE;
		}
		subcore_size = MAX_SMT_THREADS / split;
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		split_info.rpr = mfspr(SPRN_RPR);
		split_info.pmmar = mfspr(SPRN_PMMAR);
		split_info.ldbar = mfspr(SPRN_LDBAR);
		split_info.subcore_size = subcore_size;
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			split_info.master_vcs[sub] =
				list_first_entry(&core_info.vcs[sub],
					struct kvmppc_vcore, preempt_list);
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
	pcpu = smp_processor_id();
	for (thr = 0; thr < threads_per_subcore; ++thr)
		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;

	/* Initiate micro-threading (split-core) if required */
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2465
		}
2466
	}
2467

2468 2469
	kvmppc_clear_host_core(pcpu);

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		thr = subcore_thread_map[sub];
		thr0_done = false;
		active |= 1 << thr;
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
			pvc->pcpu = pcpu + thr;
			list_for_each_entry(vcpu, &pvc->runnable_threads,
					    arch.run_list) {
				kvmppc_start_thread(vcpu, pvc);
				kvmppc_create_dtl_entry(vcpu, pvc);
				trace_kvm_guest_enter(vcpu);
				if (!vcpu->arch.ptid)
					thr0_done = true;
				active |= 1 << (thr + vcpu->arch.ptid);
			}
			/*
			 * We need to start the first thread of each subcore
			 * even if it doesn't have a vcpu.
			 */
			if (pvc->master_vcore == pvc && !thr0_done)
				kvmppc_start_thread(NULL, pvc);
			thr += pvc->num_threads;
		}
2495
	}
2496

2497 2498 2499 2500 2501 2502 2503 2504
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();
	if (cmd_bit)
		split_info.do_nap = 1;	/* ask secondaries to nap when done */

2505 2506 2507 2508 2509 2510 2511 2512 2513
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
	 */
	if (split > 1)
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2514

2515
	vc->vcore_state = VCORE_RUNNING;
2516
	preempt_disable();
2517 2518 2519

	trace_kvmppc_run_core(vc, 0);

2520 2521 2522
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
			spin_unlock(&pvc->lock);
2523

2524
	kvm_guest_enter();
2525

2526
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2527

2528
	__kvmppc_vcore_entry();
2529

2530 2531 2532
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

	spin_lock(&vc->lock);
2533
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2534
	vc->vcore_state = VCORE_EXITING;
2535

2536
	/* wait for secondary threads to finish writing their state to memory */
2537
	kvmppc_wait_for_nap();
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

	/* Return to whole-core mode if we split the core earlier */
	if (split > 1) {
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
		split_info.do_nap = 0;
	}

	/* Let secondaries go back to the offline loop */
	for (i = 0; i < threads_per_subcore; ++i) {
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
	}

2566 2567
	kvmppc_set_host_core(pcpu);

2568
	spin_unlock(&vc->lock);
2569

2570 2571
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2572 2573
	kvm_guest_exit();

2574 2575 2576 2577
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
					 preempt_list)
			post_guest_process(pvc, pvc == vc);
2578

2579
	spin_lock(&vc->lock);
2580
	preempt_enable();
2581 2582

 out:
2583
	vc->vcore_state = VCORE_INACTIVE;
2584
	trace_kvmppc_run_core(vc, 1);
2585 2586
}

2587 2588 2589 2590
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
2591 2592
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
2593 2594 2595
{
	DEFINE_WAIT(wait);

2596
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2597 2598
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
2599
		schedule();
2600 2601
		spin_lock(&vc->lock);
	}
2602 2603 2604 2605 2606 2607 2608 2609 2610
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2611 2612
	struct kvm_vcpu *vcpu;
	int do_sleep = 1;
2613
	DECLARE_SWAITQUEUE(wait);
2614

2615
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

	/*
	 * Check one last time for pending exceptions and ceded state after
	 * we put ourselves on the wait queue
	 */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
			do_sleep = 0;
			break;
		}
	}

	if (!do_sleep) {
2629
		finish_swait(&vc->wq, &wait);
2630 2631 2632
		return;
	}

2633
	vc->vcore_state = VCORE_SLEEPING;
2634
	trace_kvmppc_vcore_blocked(vc, 0);
2635
	spin_unlock(&vc->lock);
2636
	schedule();
2637
	finish_swait(&vc->wq, &wait);
2638 2639
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
2640
	trace_kvmppc_vcore_blocked(vc, 1);
2641
}
2642

2643 2644 2645 2646 2647
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
2648

2649 2650
	trace_kvmppc_run_vcpu_enter(vcpu);

2651 2652 2653
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
2654
	kvmppc_update_vpas(vcpu);
2655 2656 2657 2658 2659 2660

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
2661
	vcpu->arch.ceded = 0;
2662 2663
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
2664
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2665
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2666
	vcpu->arch.busy_preempt = TB_NIL;
2667 2668 2669
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

2670 2671 2672 2673 2674
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
2675
	if (!signal_pending(current)) {
2676 2677 2678 2679 2680 2681
		if (vc->vcore_state == VCORE_PIGGYBACK) {
			struct kvmppc_vcore *mvc = vc->master_vcore;
			if (spin_trylock(&mvc->lock)) {
				if (mvc->vcore_state == VCORE_RUNNING &&
				    !VCORE_IS_EXITING(mvc)) {
					kvmppc_create_dtl_entry(vcpu, vc);
2682
					kvmppc_start_thread(vcpu, vc);
2683 2684 2685 2686 2687 2688
					trace_kvm_guest_enter(vcpu);
				}
				spin_unlock(&mvc->lock);
			}
		} else if (vc->vcore_state == VCORE_RUNNING &&
			   !VCORE_IS_EXITING(vc)) {
2689
			kvmppc_create_dtl_entry(vcpu, vc);
2690
			kvmppc_start_thread(vcpu, vc);
2691
			trace_kvm_guest_enter(vcpu);
2692
		} else if (vc->vcore_state == VCORE_SLEEPING) {
2693
			swake_up(&vc->wq);
2694 2695
		}

2696
	}
2697

2698 2699
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
2700 2701 2702
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

2703
		if (vc->vcore_state != VCORE_INACTIVE) {
2704
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2705 2706 2707 2708
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
2709
			kvmppc_core_prepare_to_enter(v);
2710 2711 2712 2713 2714 2715 2716 2717
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
2718 2719 2720
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
2721
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2722 2723
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
2724 2725 2726
			else
				v->arch.ceded = 0;
		}
2727 2728
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
2729
			kvmppc_vcore_blocked(vc);
2730
		} else if (need_resched()) {
2731
			kvmppc_vcore_preempt(vc);
2732 2733
			/* Let something else run */
			cond_resched_lock(&vc->lock);
2734 2735
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
2736
		} else {
2737
			kvmppc_run_core(vc);
2738
		}
2739
		vc->runner = NULL;
2740
	}
2741

2742 2743
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
2744 2745
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
2746
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2747

2748 2749 2750
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
2763 2764
	}

2765
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2766 2767
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
2768 2769
}

2770
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2771 2772
{
	int r;
2773
	int srcu_idx;
2774

2775 2776 2777 2778 2779
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

2780 2781
	kvmppc_core_prepare_to_enter(vcpu);

2782 2783 2784 2785 2786 2787
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

2788
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2789
	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2790 2791
	smp_mb();

2792
	/* On the first time here, set up HTAB and VRMA */
2793
	if (!vcpu->kvm->arch.hpte_setup_done) {
2794
		r = kvmppc_hv_setup_htab_rma(vcpu);
2795
		if (r)
2796
			goto out;
2797
	}
2798

2799 2800
	flush_all_to_thread(current);

2801
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2802
	vcpu->arch.pgdir = current->mm->pgd;
2803
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2804

2805 2806 2807 2808 2809
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2810
			trace_kvm_hcall_enter(vcpu);
2811
			r = kvmppc_pseries_do_hcall(vcpu);
2812
			trace_kvm_hcall_exit(vcpu, r);
2813
			kvmppc_core_prepare_to_enter(vcpu);
2814 2815 2816 2817 2818
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2819
		}
2820
	} while (is_kvmppc_resume_guest(r));
2821 2822

 out:
2823
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2824
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2825 2826 2827
	return r;
}

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
2838
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2839 2840 2841 2842 2843 2844 2845
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
2846 2847 2848
	(*sps)++;
}

2849 2850
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

2868 2869 2870
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
2871 2872
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
2873
{
2874
	struct kvm_memslots *slots;
2875 2876 2877 2878 2879 2880 2881
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
2882
	if (log->slot >= KVM_USER_MEM_SLOTS)
2883 2884
		goto out;

2885 2886
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
2887 2888 2889 2890 2891 2892 2893
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

2894
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

2908 2909
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
2910 2911 2912 2913
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
2914
	}
2915 2916
}

2917 2918
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
2919 2920 2921 2922
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
2923

2924 2925
	return 0;
}
2926

2927 2928
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
2929
					const struct kvm_userspace_memory_region *mem)
2930
{
2931
	return 0;
2932 2933
}

2934
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2935
				const struct kvm_userspace_memory_region *mem,
2936 2937
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
2938
{
2939
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2940
	struct kvm_memslots *slots;
2941 2942
	struct kvm_memory_slot *memslot;

2943
	if (npages && old->npages) {
2944 2945 2946 2947 2948 2949
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
2950 2951
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, mem->slot);
2952 2953
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
2954 2955
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

2982 2983 2984 2985 2986
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

2987
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2988 2989 2990 2991 2992 2993
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
2994
	unsigned long lpcr = 0, senc;
2995
	unsigned long psize, porder;
2996
	int srcu_idx;
2997 2998

	mutex_lock(&kvm->lock);
2999
	if (kvm->arch.hpte_setup_done)
3000
		goto out;	/* another vcpu beat us to it */
3001

3002 3003 3004 3005 3006 3007 3008 3009 3010
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

3011
	/* Look up the memslot for guest physical address 0 */
3012
	srcu_idx = srcu_read_lock(&kvm->srcu);
3013
	memslot = gfn_to_memslot(kvm, 0);
3014

3015 3016 3017
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3018
		goto out_srcu;
3019 3020 3021 3022 3023 3024 3025 3026 3027

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
3028
	porder = __ilog2(psize);
3029 3030 3031

	up_read(&current->mm->mmap_sem);

3032 3033 3034 3035 3036
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
3037

3038 3039 3040 3041 3042 3043
	/* Update VRMASD field in the LPCR */
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* the -4 is to account for senc values starting at 0x10 */
	lpcr = senc << (LPCR_VRMASD_SH - 4);
3044

3045 3046
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3047

3048
	kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3049

3050
	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3051
	smp_wmb();
3052
	kvm->arch.hpte_setup_done = 1;
3053
	err = 0;
3054 3055
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3056 3057 3058
 out:
	mutex_unlock(&kvm->lock);
	return err;
3059

3060 3061
 up_out:
	up_read(&current->mm->mmap_sem);
3062
	goto out_srcu;
3063 3064
}

3065
#ifdef CONFIG_KVM_XICS
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
			void *hcpu)
{
	unsigned long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		kvmppc_set_host_core(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		kvmppc_clear_host_core(cpu);
		break;
#endif
	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block kvmppc_cpu_notifier = {
	    .notifier_call = kvmppc_cpu_notify,
};

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3129 3130
	get_online_cpus();

3131 3132 3133 3134 3135 3136 3137 3138
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3139 3140
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3151
		put_online_cpus();
3152 3153
		kfree(ops->rm_core);
		kfree(ops);
3154
		return;
3155
	}
3156 3157 3158 3159

	register_cpu_notifier(&kvmppc_cpu_notifier);

	put_online_cpus();
3160 3161 3162 3163 3164
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3165
		unregister_cpu_notifier(&kvmppc_cpu_notifier);
3166 3167 3168 3169 3170 3171 3172
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3173
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3174
{
3175
	unsigned long lpcr, lpid;
3176
	char buf[32];
3177

3178 3179 3180
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3181
	if ((long)lpid < 0)
3182 3183
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3184

3185 3186
	kvmppc_alloc_host_rm_ops();

3187 3188 3189 3190 3191 3192 3193
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

3194 3195 3196 3197
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3198
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3211
	kvm->arch.lpcr = lpcr;
3212

3213
	/*
3214 3215
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
3216
	 */
3217
	kvm_hv_vm_activated();
3218

3219 3220 3221 3222 3223 3224 3225 3226
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

3227
	return 0;
3228 3229
}

3230 3231 3232 3233
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

3234
	for (i = 0; i < KVM_MAX_VCORES; ++i)
3235 3236 3237 3238
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

3239
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3240
{
3241 3242
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

3243
	kvm_hv_vm_deactivated();
3244

3245
	kvmppc_free_vcores(kvm);
3246

3247 3248 3249
	kvmppc_free_hpt(kvm);
}

3250 3251 3252
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
3253
{
3254
	return EMULATE_FAIL;
3255 3256
}

3257 3258
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
3259 3260 3261 3262
{
	return EMULATE_FAIL;
}

3263 3264
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
3265 3266 3267 3268
{
	return EMULATE_FAIL;
}

3269
static int kvmppc_core_check_processor_compat_hv(void)
3270
{
3271 3272
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
3273 3274
		return -EIO;
	return 0;
3275 3276
}

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
3353
	unsigned int hcall;
3354

3355 3356 3357 3358 3359
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
3360 3361
}

3362
static struct kvmppc_ops kvm_ops_hv = {
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3394
	.hcall_implemented = kvmppc_hcall_impl_hv,
3395 3396 3397
};

static int kvmppc_book3s_init_hv(void)
3398 3399
{
	int r;
3400 3401 3402 3403 3404
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
3405
		return -ENODEV;
3406

3407 3408
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
3409

3410 3411
	init_default_hcalls();

3412 3413
	init_vcore_lists();

3414
	r = kvmppc_mmu_hv_init();
3415 3416 3417
	return r;
}

3418
static void kvmppc_book3s_exit_hv(void)
3419
{
3420
	kvmppc_free_host_rm_ops();
3421
	kvmppc_hv_ops = NULL;
3422 3423
}

3424 3425
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
3426
MODULE_LICENSE("GPL");
3427 3428
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");