book3s_hv.c 42.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34 35 36 37 38 39 40 41 42 43 44 45

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
46
#include <asm/cputhreads.h>
47
#include <asm/page.h>
48
#include <asm/hvcall.h>
49
#include <asm/switch_to.h>
50 51 52
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
53
#include <linux/hugetlb.h>
54 55 56 57 58

/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

59
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
60
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
61

62 63
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
64 65
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

66
	local_paca->kvm_hstate.kvm_vcpu = vcpu;
67 68 69
	local_paca->kvm_hstate.kvm_vcore = vc;
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->stolen_tb += mftb() - vc->preempt_tb;
70 71 72 73
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
74 75 76 77
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
78 79 80 81 82
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
83
	kvmppc_end_cede(vcpu);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
120
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
121 122 123
	       vcpu->arch.last_inst);
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
	vpa->shared_proc = 1;
	vpa->yield_count = 1;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

162 163 164 165 166
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
167
	unsigned long len, nb;
168 169
	void *va;
	struct kvm_vcpu *tvcpu;
170 171 172
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
173 174 175 176 177

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

178 179 180 181 182
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
183
			return H_PARAMETER;
184 185

		/* convert logical addr to kernel addr and read length */
186 187
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
188
			return H_PARAMETER;
189 190
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
191
		else
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
			len = ((struct reg_vpa *)va)->length.word;
		kvmppc_unpin_guest_page(kvm, va);

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
210
			break;
211 212 213 214 215 216
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
217
			break;
218 219 220 221 222
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
223
			break;
224 225 226 227 228 229 230 231 232

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
233
			break;
234 235 236 237 238 239 240 241 242 243

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
244
			break;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
265
	}
266

267 268
	spin_unlock(&tvcpu->arch.vpa_update_lock);

269
	return err;
270 271
}

272
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
273
{
274
	struct kvm *kvm = vcpu->kvm;
275 276
	void *va;
	unsigned long nb;
277
	unsigned long gpa;
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
			va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
299
			kvmppc_unpin_guest_page(kvm, va);
300 301 302 303 304 305 306 307 308 309 310
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
		kvmppc_unpin_guest_page(kvm, va);
		va = NULL;
311 312 313 314 315 316 317 318 319 320 321 322
	}
	if (vpap->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
	vpap->pinned_addr = va;
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
323
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
324 325 326
		init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
	}
	if (vcpu->arch.dtl.update_pending) {
327
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
328 329 330 331
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
332
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
333 334 335
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
	unsigned long old_stolen;

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
	old_stolen = vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = vc->stolen_tb;
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
	dt->timebase = mftb();
	dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
}

365 366 367 368 369
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
370
	int idx;
371 372

	switch (req) {
373
	case H_ENTER:
374
		idx = srcu_read_lock(&vcpu->kvm->srcu);
375 376 377 378
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
379
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
380
		break;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

414 415 416 417
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;
418
	int srcu_idx;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
471 472 473 474 475
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
476 477
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
478
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
479 480
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
481
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
482 483
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
484
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
485 486
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				kvmppc_get_pc(vcpu), 0);
487
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i;

	sregs->pvr = vcpu->arch.pvr;

	memset(sregs, 0, sizeof(struct kvm_sregs));
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

547
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
548
{
549 550
	int r = 0;
	long int i;
551

552
	switch (id) {
553
	case KVM_REG_PPC_HIOR:
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
581
		break;
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			val->vsxval[0] = vcpu->arch.vsr[2 * i];
			val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
603
	default:
604
		r = -EINVAL;
605 606 607 608 609 610
		break;
	}

	return r;
}

611
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
612
{
613 614
	int r = 0;
	long int i;
615

616
	switch (id) {
617 618
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
619
		if (set_reg_val(id, *val))
620 621
			r = -EINVAL;
		break;
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			vcpu->arch.vsr[2 * i] = val->vsxval[0];
			vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
669
	default:
670
		r = -EINVAL;
671 672 673 674 675 676
		break;
	}

	return r;
}

677 678
int kvmppc_core_check_processor_compat(void)
{
679
	if (cpu_has_feature(CPU_FTR_HVMODE))
680 681 682 683 684 685 686
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
687 688 689
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
690

691 692 693 694 695
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
696
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
697 698 699 700 701 702 703 704 705 706 707 708 709 710
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.last_cpu = -1;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
711
	spin_lock_init(&vcpu->arch.vpa_update_lock);
712 713 714

	kvmppc_mmu_book3s_hv_init(vcpu);

715
	/*
716
	 * We consider the vcpu stopped until we see the first run ioctl for it.
717
	 */
718
	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
719 720 721 722 723 724 725 726 727 728

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
729
			init_waitqueue_head(&vcore->wq);
730
			vcore->preempt_tb = mftb();
731 732 733 734 735 736 737 738 739 740 741 742
		}
		kvm->arch.vcores[core] = vcore;
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
743
	vcpu->arch.stolen_logged = vcore->stolen_tb;
744

745 746 747
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

748 749 750
	return vcpu;

free_vcpu:
751
	kmem_cache_free(kvm_vcpu_cache, vcpu);
752 753 754 755 756 757
out:
	return ERR_PTR(err);
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
758 759 760 761 762 763 764 765
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.dtl.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
	if (vcpu->arch.slb_shadow.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
	if (vcpu->arch.vpa.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
	spin_unlock(&vcpu->arch.vpa_update_lock);
766
	kvm_vcpu_uninit(vcpu);
767
	kmem_cache_free(kvm_vcpu_cache, vcpu);
768 769
}

770
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
771
{
772
	unsigned long dec_nsec, now;
773

774 775 776 777
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
778
		kvmppc_core_prepare_to_enter(vcpu);
779
		return;
780
	}
781 782 783 784 785
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
786 787
}

788
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
789
{
790 791 792 793 794
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
795 796
}

797
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
798
extern void xics_wake_cpu(int cpu);
799

800 801
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
802
{
803 804 805 806
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	--vc->n_runnable;
807
	++vc->n_busy;
808 809 810
	list_del(&vcpu->arch.run_list);
}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

850 851 852 853 854 855
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

856 857 858 859
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
860 861 862 863
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
864 865
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
866
	smp_wmb();
867
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
868
	if (vcpu->arch.ptid) {
869
		kvmppc_grab_hwthread(cpu);
870 871
		xics_wake_cpu(cpu);
		++vc->n_woken;
872
	}
873 874
#endif
}
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
 * this core are off-line.
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
static int kvmppc_run_core(struct kvmppc_vcore *vc)
{
916
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
917 918
	long ret;
	u64 now;
919
	int ptid, i, need_vpa_update;
920
	int srcu_idx;
921 922

	/* don't start if any threads have a signal pending */
923 924
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
925 926
		if (signal_pending(vcpu->arch.run_task))
			return 0;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
		need_vpa_update |= vcpu->arch.vpa.update_pending |
			vcpu->arch.slb_shadow.update_pending |
			vcpu->arch.dtl.update_pending;
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
	vc->vcore_state = VCORE_RUNNING;
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			kvmppc_update_vpas(vcpu);
		spin_lock(&vc->lock);
	}
953 954 955 956 957 958 959

	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 * XXX we should also block attempts to bring any
	 * secondary threads online.
	 */
960 961 962 963
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
964 965
	}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
	if (!vcpu0)
		return 0;		/* nothing to run */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

985
	vc->stolen_tb += mftb() - vc->preempt_tb;
986
	vc->pcpu = smp_processor_id();
987
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
988
		kvmppc_start_thread(vcpu);
989
		kvmppc_create_dtl_entry(vcpu, vc);
990
	}
991 992 993
	/* Grab any remaining hw threads so they can't go into the kernel */
	for (i = ptid; i < threads_per_core; ++i)
		kvmppc_grab_hwthread(vc->pcpu + i);
994

995
	preempt_disable();
996
	spin_unlock(&vc->lock);
997

998
	kvm_guest_enter();
999 1000 1001

	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);

1002
	__kvmppc_vcore_entry(NULL, vcpu0);
1003 1004
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
1005

1006
	spin_lock(&vc->lock);
1007 1008 1009 1010
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1011 1012 1013
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1014
	vc->vcore_state = VCORE_EXITING;
1015 1016
	spin_unlock(&vc->lock);

1017 1018
	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);

1019 1020
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1021 1022 1023 1024 1025 1026
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

	now = get_tb();
1027 1028 1029 1030 1031
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1032 1033 1034 1035 1036 1037

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

1038 1039
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1040 1041 1042 1043 1044 1045 1046

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1047
	}
1048

1049
	spin_lock(&vc->lock);
1050
 out:
1051
	vc->vcore_state = VCORE_INACTIVE;
1052
	vc->preempt_tb = mftb();
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}

	return 1;
}

1064 1065 1066 1067 1068
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1069 1070 1071
{
	DEFINE_WAIT(wait);

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);
	struct kvm_vcpu *v;
	int all_idle = 1;

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
		if (!v->arch.ceded || v->arch.pending_exceptions) {
			all_idle = 0;
			break;
		}
1096
	}
1097 1098 1099 1100 1101 1102
	if (all_idle)
		schedule();
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1103

1104 1105 1106 1107 1108 1109
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	int prev_state;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1120
	vcpu->arch.ceded = 0;
1121 1122
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1123 1124
	prev_state = vcpu->arch.state;
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1125 1126 1127
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
	if (prev_state == KVMPPC_VCPU_STOPPED) {
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
			kvmppc_start_thread(vcpu);
1138 1139
		}

1140 1141
	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
		--vc->n_busy;
1142

1143 1144 1145 1146 1147 1148 1149 1150
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
1151
		vc->runner = vcpu;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		n_ceded = 0;
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
			n_ceded += v->arch.ceded;
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);

		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1162
			kvmppc_core_prepare_to_enter(v);
1163 1164 1165 1166 1167 1168 1169 1170
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1171
		vc->runner = NULL;
1172
	}
1173

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	if (signal_pending(current)) {
		if (vc->vcore_state == VCORE_RUNNING ||
		    vc->vcore_state == VCORE_EXITING) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
			spin_lock(&vc->lock);
		}
		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
			kvmppc_remove_runnable(vc, vcpu);
			vcpu->stat.signal_exits++;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			vcpu->arch.ret = -EINTR;
		}
1187 1188 1189 1190
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1191 1192
}

1193 1194 1195 1196
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;

1197 1198 1199 1200 1201
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1202 1203
	kvmppc_core_prepare_to_enter(vcpu);

1204 1205 1206 1207 1208 1209
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1210 1211 1212 1213 1214
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1215
	if (!vcpu->kvm->arch.rma_setup_done) {
1216
		r = kvmppc_hv_setup_htab_rma(vcpu);
1217
		if (r)
1218
			goto out;
1219
	}
1220 1221 1222 1223 1224

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1225
	vcpu->arch.pgdir = current->mm->pgd;
1226

1227 1228 1229 1230 1231 1232
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1233
			kvmppc_core_prepare_to_enter(vcpu);
1234 1235
		}
	} while (r == RESUME_GUEST);
1236 1237 1238

 out:
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1239 1240 1241
	return r;
}

1242

1243
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1244
   Assumes POWER7 or PPC970. */
1245 1246 1247 1248
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1249 1250 1251
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1271
	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	struct page *page;

	if (vmf->pgoff >= ri->npages)
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1296
	struct kvmppc_linear_info *ri = filp->private_data;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

	kvm_release_rma(ri);
	return 0;
}

static struct file_operations kvm_rma_fops = {
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
1309
	struct kvmppc_linear_info *ri;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	long fd;

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
	if (fd < 0)
		kvm_release_rma(ri);

	ret->rma_size = ri->npages << PAGE_SHIFT;
	return fd;
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
	(*sps)->enc[0].pte_enc = def->penc;
	(*sps)++;
}

int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_MEMORY_SLOTS)
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

1379
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
static unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

1405
static void unpin_slot(struct kvm_memory_slot *memslot)
1406
{
1407 1408 1409
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
			      struct kvm_memory_slot *dont)
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
1431
	}
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
			       unsigned long npages)
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
1446

1447 1448
	return 0;
}
1449

1450 1451 1452
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				      struct kvm_memory_slot *memslot,
				      struct kvm_userspace_memory_region *mem)
1453
{
1454
	unsigned long *phys;
1455

1456 1457 1458 1459 1460 1461 1462
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
1463
	}
1464 1465

	return 0;
1466 1467 1468
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
1469 1470
				      struct kvm_userspace_memory_region *mem,
				      struct kvm_memory_slot old)
1471
{
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

	if (npages && old.npages) {
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
1485 1486
}

1487
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1488 1489 1490
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1491
	struct kvmppc_linear_info *ri = NULL;
1492 1493 1494
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1495
	unsigned long lpcr, senc;
1496 1497 1498 1499
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
1500
	unsigned long i, npages;
1501
	int srcu_idx;
1502 1503 1504 1505

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

1516
	/* Look up the memslot for guest physical address 0 */
1517
	srcu_idx = srcu_read_lock(&kvm->srcu);
1518
	memslot = gfn_to_memslot(kvm, 0);
1519

1520 1521 1522
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1523
		goto out_srcu;
1524 1525 1526 1527 1528 1529 1530 1531 1532

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
1533
	porder = __ilog2(psize);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
1547
			goto out_srcu;
1548 1549
		}

1550 1551 1552 1553
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
1554
			goto out_srcu;
1555

1556
		/* Update VRMASD field in the LPCR */
1557
		senc = slb_pgsize_encoding(psize);
1558 1559
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1560 1561
		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1562 1563 1564
		kvm->arch.lpcr = lpcr;

		/* Create HPTEs in the hash page table for the VRMA */
1565
		kvmppc_map_vrma(vcpu, memslot, porder);
1566 1567 1568 1569 1570 1571 1572

	} else {
		/* Set up to use an RMO region */
		rma_size = ri->npages;
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
1573
		rmls = lpcr_rmls(rma_size);
1574
		err = -EINVAL;
1575
		if (rmls < 0) {
1576
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1577
			goto out_srcu;
1578 1579 1580
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
		}
1599
		kvm->arch.lpcr = lpcr;
1600
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1601 1602
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

1603
		/* Initialize phys addrs of pages in RMO */
1604 1605
		npages = ri->npages;
		porder = __ilog2(npages);
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
1616 1617
	}

1618 1619 1620 1621
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
1622 1623
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1624 1625 1626
 out:
	mutex_unlock(&kvm->lock);
	return err;
1627

1628 1629 1630
 up_out:
	up_read(&current->mm->mmap_sem);
	goto out;
1631 1632 1633 1634
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
1635
	unsigned long lpcr, lpid;
1636

1637 1638 1639 1640 1641 1642
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
	if (lpid < 0)
		return -ENOMEM;
	kvm->arch.lpid = lpid;
1643

1644
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1645 1646 1647

	kvm->arch.rma = NULL;

1648
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1663 1664 1665
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1666 1667
	}
	kvm->arch.lpcr = lpcr;
1668

1669
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1670
	spin_lock_init(&kvm->arch.slot_phys_lock);
1671
	return 0;
1672 1673 1674 1675
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1676 1677 1678 1679 1680
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1681
	kvmppc_free_hpt(kvm);
1682
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

1697
int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1698 1699 1700 1701
{
	return EMULATE_FAIL;
}

1702
int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);