book3s_hv.c 129.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48

49
#include <asm/ftrace.h>
50
#include <asm/reg.h>
51
#include <asm/ppc-opcode.h>
52
#include <asm/asm-prototypes.h>
53
#include <asm/debug.h>
54
#include <asm/disassemble.h>
55 56
#include <asm/cputable.h>
#include <asm/cacheflush.h>
57
#include <linux/uaccess.h>
58 59 60 61 62 63
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
64
#include <asm/cputhreads.h>
65
#include <asm/page.h>
66
#include <asm/hvcall.h>
67
#include <asm/switch_to.h>
68
#include <asm/smp.h>
69
#include <asm/dbell.h>
70
#include <asm/hmi.h>
71
#include <asm/pnv-pci.h>
72
#include <asm/mmu.h>
73 74
#include <asm/opal.h>
#include <asm/xics.h>
75
#include <asm/xive.h>
76

77 78
#include "book3s.h"

79 80 81
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

82 83 84 85
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

86 87
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
88 89
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
90

91 92 93
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

94 95
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

96
static int dynamic_mt_modes = 6;
97
module_param(dynamic_mt_modes, int, 0644);
98
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99
static int target_smt_mode;
100
module_param(target_smt_mode, int, 0644);
101
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102

103 104 105 106
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

107 108 109 110 111 112
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

113
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 115
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

116
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 118 119
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

120 121 122
/* If set, the threads on each CPU core have to be in the same MMU mode */
static bool no_mixing_hpt_and_radix;

123
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125

126 127 128 129 130
/*
 * RWMR values for POWER8.  These control the rate at which PURR
 * and SPURR count and should be set according to the number of
 * online threads in the vcore being run.
 */
131 132 133 134 135 136 137 138
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
139 140 141 142 143 144 145 146 147 148 149 150 151

static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_2THREAD,
	RWMR_RPA_P8_3THREAD,
	RWMR_RPA_P8_4THREAD,
	RWMR_RPA_P8_5THREAD,
	RWMR_RPA_P8_6THREAD,
	RWMR_RPA_P8_7THREAD,
	RWMR_RPA_P8_8THREAD,
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

172 173
static bool kvmppc_ipi_thread(int cpu)
{
174 175 176 177 178 179 180 181 182 183
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
199
	if (cpu >= 0 && cpu < nr_cpu_ids) {
200
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
201 202 203 204
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
205 206 207 208 209 210 211
		return true;
	}
#endif

	return false;
}

212
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
213
{
214
	int cpu;
215
	struct swait_queue_head *wqp;
216 217

	wqp = kvm_arch_vcpu_wq(vcpu);
218
	if (swq_has_sleeper(wqp)) {
219
		swake_up_one(wqp);
220 221 222
		++vcpu->stat.halt_wakeup;
	}

223 224
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
225
		return;
226 227

	/* CPU points to the first thread of the core */
228
	cpu = vcpu->cpu;
229 230
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
231 232
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
260 261 262 263
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
264 265
 */

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

287
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
288
{
289
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
290
	unsigned long flags;
291

292 293 294 295 296 297
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
298 299 300
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

301
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
302 303 304 305 306
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
307
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
308 309
}

310
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
311
{
312
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
313
	unsigned long flags;
314

315 316 317
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

318
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 320
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
321
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
322 323
}

324
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
325
{
326 327 328 329 330 331
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
332
	vcpu->arch.shregs.msr = msr;
333
	kvmppc_end_cede(vcpu);
334 335
}

T
Thomas Huth 已提交
336
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 338 339 340
{
	vcpu->arch.pvr = pvr;
}

341 342 343
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
344
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345
{
346
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347 348
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

349 350 351 352 353 354 355 356 357 358 359 360
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
361 362 363
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
364
			guest_pcr_bit = PCR_ARCH_205;
365 366 367
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
368
			guest_pcr_bit = PCR_ARCH_206;
369 370
			break;
		case PVR_ARCH_207:
371 372 373 374
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
375 376 377 378 379 380
			break;
		default:
			return -EINVAL;
		}
	}

381 382 383 384
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

385 386
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
387 388
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
389 390 391 392 393
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
394
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
395 396 397 398 399
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
400
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
401 402 403 404 405
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
406
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
407 408 409 410 411 412
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
413 414
	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
415 416 417 418 419 420 421 422
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
423
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
424 425 426
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
427
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
428
{
429
	struct kvm_vcpu *ret;
430 431

	mutex_lock(&kvm->lock);
432
	ret = kvm_get_vcpu_by_id(kvm, id);
433 434 435 436 437 438
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
439
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
440
	vpa->yield_count = cpu_to_be32(1);
441 442
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

459 460 461 462
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
463 464
		__be16 hword;
		__be32 word;
465 466 467 468 469 470 471 472 473 474
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

475 476 477 478 479
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
480
	unsigned long len, nb;
481 482
	void *va;
	struct kvm_vcpu *tvcpu;
483 484 485
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
486 487 488 489 490

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

491 492 493 494 495
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
496
			return H_PARAMETER;
497 498

		/* convert logical addr to kernel addr and read length */
499 500
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
501
			return H_PARAMETER;
502
		if (subfunc == H_VPA_REG_VPA)
503
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
504
		else
505
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
506
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
522 523 524 525 526 527
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
528 529
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
		if (len < sizeof(struct lppaca))
530
			break;
531 532 533 534 535 536
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
537
			break;
538 539 540 541 542
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
543
			break;
544 545 546 547 548 549 550 551 552

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
553
			break;
554 555 556 557 558 559 560 561 562 563

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
564
			break;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
585
	}
586

587 588
	spin_unlock(&tvcpu->arch.vpa_update_lock);

589
	return err;
590 591
}

592
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
593
{
594
	struct kvm *kvm = vcpu->kvm;
595 596
	void *va;
	unsigned long nb;
597
	unsigned long gpa;
598

599 600 601 602 603 604 605 606 607 608 609 610 611 612
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
613
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
614 615 616 617 618
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
619
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
620 621 622 623 624 625 626 627 628
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
629
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
630
		va = NULL;
631 632
	}
	if (vpap->pinned_addr)
633 634 635
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
636
	vpap->pinned_addr = va;
637
	vpap->dirty = false;
638 639 640 641 642 643
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
644 645 646 647 648
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

649 650
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
651
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
652 653
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
654 655
	}
	if (vcpu->arch.dtl.update_pending) {
656
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
657 658 659 660
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
661
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
662 663 664
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

665 666 667 668 669 670 671
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
672
	unsigned long flags;
673

674 675
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
676
	if (vc->vcore_state != VCORE_INACTIVE &&
677 678 679
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
680 681 682
	return p;
}

683 684 685 686 687
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
688 689 690
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
691
	unsigned long flags;
692 693 694

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
695 696 697 698
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
699
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
700 701
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
702
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
703 704 705 706
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
707 708 709 710 711
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
712 713 714 715 716 717
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
718
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
719
	vcpu->arch.dtl.dirty = true;
720 721
}

722 723 724 725 726 727
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

728 729 730 731 732
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
733
	 * smb_wmb() in kvmppc_guest_entry_inject().
734 735
	 */
	smp_rmb();
736 737 738 739 740
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
771 772
		if (!ppc_breakpoint_available())
			return H_P2;
773 774 775 776 777 778 779 780 781 782 783 784
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
799 800
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
801 802 803 804 805 806 807 808 809 810 811 812 813 814
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
815
		yield_count = be32_to_cpu(lppaca->yield_count);
816 817 818 819
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

820 821 822 823
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
824
	int yield_count;
825
	struct kvm_vcpu *tvcpu;
826
	int idx, rc;
827

828 829 830 831
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

832 833 834 835 836 837 838 839 840 841 842 843
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
844 845
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
846 847
		break;
	case H_CONFER:
848 849 850 851 852 853 854 855
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
856 857 858 859
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
860 861 862 863 864 865
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
866 867 868 869
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

870
		idx = srcu_read_lock(&vcpu->kvm->srcu);
871
		rc = kvmppc_rtas_hcall(vcpu);
872
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
873 874 875 876 877 878 879 880

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
881 882 883 884 885 886 887 888 889 890
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
891 892 893 894 895 896 897 898
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
899 900 901 902
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
903 904
	case H_IPOLL:
	case H_XIRR_X:
905
		if (kvmppc_xics_enabled(vcpu)) {
906 907 908 909
			if (xive_enabled()) {
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
910 911
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
937 938 939 940 941 942 943 944
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

945 946 947 948 949 950 951
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
952
	case H_SET_MODE:
953 954
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1087 1088
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1089 1090 1091 1092 1093
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1112 1113 1114 1115 1116 1117 1118 1119 1120
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1121
	case BOOK3S_INTERRUPT_H_DOORBELL:
1122
	case BOOK3S_INTERRUPT_H_VIRT:
1123 1124 1125
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1126
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1127
	case BOOK3S_INTERRUPT_HMI:
1128
	case BOOK3S_INTERRUPT_PERFMON:
1129
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1130 1131
		r = RESUME_GUEST;
		break;
1132
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1147
		break;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1167 1168 1169 1170
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1171 1172 1173 1174 1175 1176 1177 1178 1179
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1180 1181 1182 1183 1184
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1185 1186
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1187
		r = RESUME_PAGE_FAULT;
1188 1189
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1190
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1191 1192 1193 1194
		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
			DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1195
		r = RESUME_PAGE_FAULT;
1196 1197 1198
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1199 1200 1201 1202
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1203 1204
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1205 1206 1207 1208
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1209 1210 1211 1212 1213 1214
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1215 1216 1217
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1218 1219 1220 1221
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1222 1223
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1224
		r = EMULATE_FAIL;
1225
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1226
		    cpu_has_feature(CPU_FTR_ARCH_300))
1227 1228 1229 1230 1231
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1232
		break;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

1246 1247 1248
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1249 1250 1251 1252 1253
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1254
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1255 1256 1257 1258 1259 1260 1261
		r = RESUME_HOST;
		break;
	}

	return r;
}

1262 1263
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1264 1265 1266 1267
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1268
	sregs->pvr = vcpu->arch.pvr;
1269 1270 1271 1272 1273 1274 1275 1276
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1277 1278
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1279 1280 1281
{
	int i, j;

1282 1283 1284
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1299 1300
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1301
{
1302
	struct kvm *kvm = vcpu->kvm;
1303 1304 1305
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1306
	mutex_lock(&kvm->lock);
1307
	spin_lock(&vc->lock);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1326 1327 1328
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1329
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1330 1331
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1332 1333
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1334 1335 1336 1337 1338 1339
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1340 1341 1342 1343

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1344 1345
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1346
	mutex_unlock(&kvm->lock);
1347 1348
}

1349 1350
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1351
{
1352 1353
	int r = 0;
	long int i;
1354

1355
	switch (id) {
1356 1357 1358
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1359
	case KVM_REG_PPC_HIOR:
1360 1361 1362 1363 1364
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1365 1366 1367
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1383
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1384 1385 1386 1387 1388 1389
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1390
		break;
1391 1392 1393 1394
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1395 1396 1397 1398 1399 1400
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1401 1402
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1403
		break;
1404 1405 1406 1407 1408 1409 1410 1411 1412
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1413 1414 1415
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1442
		break;
1443 1444 1445 1446 1447 1448
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1466 1467 1468
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1469
	case KVM_REG_PPC_LPCR:
1470
	case KVM_REG_PPC_LPCR_64:
1471 1472
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1473 1474 1475
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1508 1509 1510
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1542 1543 1544
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1545 1546 1547 1548
	case KVM_REG_PPC_DEC_EXPIRY:
		*val = get_reg_val(id, vcpu->arch.dec_expires +
				   vcpu->arch.vcore->tb_offset);
		break;
1549 1550 1551
	case KVM_REG_PPC_ONLINE:
		*val = get_reg_val(id, vcpu->arch.online);
		break;
1552
	default:
1553
		r = -EINVAL;
1554 1555 1556 1557 1558 1559
		break;
	}

	return r;
}

1560 1561
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1562
{
1563 1564
	int r = 0;
	long int i;
1565
	unsigned long addr, len;
1566

1567
	switch (id) {
1568 1569
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1570
		if (set_reg_val(id, *val))
1571 1572
			r = -EINVAL;
		break;
1573 1574 1575
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1576 1577 1578
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1594
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1595 1596 1597 1598 1599 1600 1601
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1602 1603 1604 1605
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1606 1607 1608 1609 1610 1611
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1612 1613
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1614
		break;
1615 1616 1617 1618 1619 1620 1621 1622 1623
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1624 1625 1626
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1656
		break;
1657 1658 1659 1660 1661 1662
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1683 1684
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1685 1686 1687 1688
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1689 1690 1691 1692 1693
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1694
	case KVM_REG_PPC_LPCR:
1695 1696 1697 1698
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1699
		break;
1700 1701 1702
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1734 1735 1736
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1768 1769 1770
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1771 1772 1773 1774
	case KVM_REG_PPC_DEC_EXPIRY:
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
			vcpu->arch.vcore->tb_offset;
		break;
1775
	case KVM_REG_PPC_ONLINE:
1776 1777 1778 1779 1780 1781
		i = set_reg_val(id, *val);
		if (i && !vcpu->arch.online)
			atomic_inc(&vcpu->arch.vcore->online_count);
		else if (!i && vcpu->arch.online)
			atomic_dec(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = i;
1782
		break;
1783
	default:
1784
		r = -EINVAL;
1785 1786 1787 1788 1789 1790
		break;
	}

	return r;
}

1791 1792 1793 1794 1795 1796 1797
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
1798
static int threads_per_vcore(struct kvm *kvm)
1799
{
1800
	if (kvm->arch.threads_indep)
1801 1802 1803 1804
		return 1;
	return threads_per_subcore;
}

1805
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1806 1807 1808 1809 1810 1811 1812 1813 1814
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1815
	spin_lock_init(&vcore->stoltb_lock);
1816
	init_swait_queue_head(&vcore->wq);
1817 1818
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1819
	vcore->first_vcpuid = id;
1820
	vcore->kvm = kvm;
1821
	INIT_LIST_HEAD(&vcore->preempt_list);
1822 1823 1824 1825

	return vcore;
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

1838
#define N_TIMINGS	(ARRAY_SIZE(timings))
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1974 1975
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1976 1977
{
	struct kvm_vcpu *vcpu;
1978
	int err;
1979 1980
	int core;
	struct kvmppc_vcore *vcore;
1981

1982
	err = -ENOMEM;
1983
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1984 1985 1986 1987 1988 1989 1990 1991
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
2003 2004 2005
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
2006
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2007
	spin_lock_init(&vcpu->arch.vpa_update_lock);
2008 2009
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
2010
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2011

2012 2013 2014
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
2015 2016
	 * On POWER9, we want to virtualize the doorbell facility, so we
	 * turn off the HFSCR bit, which causes those instructions to trap.
2017 2018
	 */
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2019 2020 2021
	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		vcpu->arch.hfscr |= HFSCR_TM;
	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2022
		vcpu->arch.hfscr &= ~HFSCR_TM;
2023 2024
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
2025

2026 2027
	kvmppc_mmu_book3s_hv_init(vcpu);

2028
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2029 2030 2031 2032

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
2033 2034
	vcore = NULL;
	err = -EINVAL;
2035
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2036 2037 2038 2039 2040 2041 2042
		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
			pr_devel("KVM: VCPU ID too high\n");
			core = KVM_MAX_VCORES;
		} else {
			BUG_ON(kvm->arch.smt_mode != 1);
			core = kvmppc_pack_vcpu_id(kvm, id);
		}
2043 2044 2045
	} else {
		core = id / kvm->arch.smt_mode;
	}
2046 2047
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
2048 2049 2050 2051
		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
			pr_devel("KVM: collision on id %u", id);
			vcore = NULL;
		} else if (!vcore) {
2052
			err = -ENOMEM;
2053 2054
			vcore = kvmppc_vcore_create(kvm,
					id & ~(kvm->arch.smt_mode - 1));
2055 2056 2057
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
2068
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2069
	vcpu->arch.thread_cpu = -1;
2070
	vcpu->arch.prev_cpu = -1;
2071

2072 2073 2074
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2075 2076
	debugfs_vcpu_init(vcpu, id);

2077 2078 2079
	return vcpu;

free_vcpu:
2080
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2081 2082 2083 2084
out:
	return ERR_PTR(err);
}

2085 2086 2087 2088
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2089
	int esmt = 0;
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2107
		esmt = smt_mode;
2108 2109 2110 2111 2112 2113
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2114
		kvm->arch.emul_smt_mode = esmt;
2115 2116 2117 2118 2119 2120 2121
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2122 2123 2124 2125 2126 2127 2128
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2129
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2130
{
2131
	spin_lock(&vcpu->arch.vpa_update_lock);
2132 2133 2134
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2135
	spin_unlock(&vcpu->arch.vpa_update_lock);
2136
	kvm_vcpu_uninit(vcpu);
2137
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2138 2139
}

2140 2141 2142 2143 2144 2145
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2146
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2147
{
2148
	unsigned long dec_nsec, now;
2149

2150 2151 2152 2153
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2154
		kvmppc_core_prepare_to_enter(vcpu);
2155
		return;
2156
	}
2157 2158
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
T
Thomas Gleixner 已提交
2159
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2160
	vcpu->arch.timer_running = 1;
2161 2162
}

2163
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2164
{
2165 2166 2167 2168 2169
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2170 2171
}

2172
extern int __kvmppc_vcore_entry(void);
2173

2174 2175
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2176
{
2177 2178
	u64 now;

2179 2180
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2181
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2182 2183 2184 2185 2186
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2187
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2188
	--vc->n_runnable;
2189
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2190 2191
}

2192 2193 2194
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2195
	long timeout = 10000;
2196

2197
	tpaca = paca_ptrs[cpu];
2198 2199

	/* Ensure the thread won't go into the kernel if it wakes */
2200
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2201
	tpaca->kvm_hstate.kvm_vcore = NULL;
2202 2203 2204
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

2230
	tpaca = paca_ptrs[cpu];
2231
	tpaca->kvm_hstate.hwthread_req = 0;
2232
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2233 2234
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
	int i;

	cpu = cpu_first_thread_sibling(cpu);
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
	struct kvm *kvm = vcpu->kvm;

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
	if (vcpu->arch.prev_cpu != pcpu) {
		if (vcpu->arch.prev_cpu >= 0 &&
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
		    cpu_first_thread_sibling(pcpu))
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
		vcpu->arch.prev_cpu = pcpu;
	}
}

2279
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2280 2281 2282
{
	int cpu;
	struct paca_struct *tpaca;
2283
	struct kvm *kvm = vc->kvm;
2284

2285 2286 2287 2288 2289 2290 2291
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2292
		vcpu->cpu = vc->pcpu;
2293
		vcpu->arch.thread_cpu = cpu;
2294
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2295
	}
2296
	tpaca = paca_ptrs[cpu];
2297
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2298
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2299
	tpaca->kvm_hstate.fake_suspend = 0;
2300
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2301
	smp_wmb();
2302
	tpaca->kvm_hstate.kvm_vcore = vc;
2303
	if (cpu != smp_processor_id())
2304
		kvmppc_ipi_thread(cpu);
2305
}
2306

2307
static void kvmppc_wait_for_nap(int n_threads)
2308
{
2309 2310
	int cpu = smp_processor_id();
	int i, loops;
2311

2312 2313
	if (n_threads <= 1)
		return;
2314 2315 2316
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2317
		 * We set the vcore pointer when starting a thread
2318
		 * and the thread clears it when finished, so we look
2319
		 * for any threads that still have a non-NULL vcore ptr.
2320
		 */
2321
		for (i = 1; i < n_threads; ++i)
2322
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2323
				break;
2324
		if (i == n_threads) {
2325 2326
			HMT_medium();
			return;
2327
		}
2328
		HMT_low();
2329 2330
	}
	HMT_medium();
2331
	for (i = 1; i < n_threads; ++i)
2332
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2333
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2334 2335 2336 2337
}

/*
 * Check that we are on thread 0 and that any other threads in
2338 2339
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2340 2341 2342 2343
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2344
	int thr;
2345

2346 2347
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2348
		return 0;
2349 2350 2351

	thr = 0;
	while (++thr < threads_per_subcore)
2352 2353
		if (cpu_online(cpu + thr))
			return 0;
2354 2355

	/* Grab all hw threads so they can't go into the kernel */
2356
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2357 2358 2359 2360 2361 2362 2363 2364
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2365 2366 2367
	return 1;
}

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2397
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2409
	struct preempted_vcore_list *lp;
2410 2411 2412

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2413
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2414 2415 2416 2417 2418 2419 2420
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2421 2422 2423 2424
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2425
struct core_info {
2426 2427
	int		n_subcores;
	int		max_subcore_threads;
2428
	int		total_threads;
2429
	int		subcore_threads[MAX_SUBCORES];
2430
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2431 2432
};

2433 2434
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2435
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2436 2437 2438
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2439 2440 2441
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2442 2443
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2444
	cip->total_threads = vc->num_threads;
2445
	cip->subcore_threads[0] = vc->num_threads;
2446
	cip->vc[0] = vc;
2447 2448 2449 2450
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2451
	/*
2452 2453
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
	 * split-core mode, with one thread per subcore.
2454 2455 2456 2457 2458
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2471 2472
}

2473
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2474 2475 2476 2477 2478
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
2479
	vc->tb_offset_applied = 0;
2480 2481
}

2482 2483 2484 2485 2486 2487 2488 2489
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2490 2491
	/* Some POWER9 chips require all threads to be in the same MMU mode */
	if (no_mixing_hpt_and_radix &&
2492 2493 2494
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2495 2496
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2497
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2498
		return false;
2499
	cip->max_subcore_threads = n_threads;
2500 2501 2502 2503 2504

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2505 2506 2507
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2522
	return can_dynamic_split(pvc, cip);
2523 2524
}

2525 2526
static void prepare_threads(struct kvmppc_vcore *vc)
{
2527 2528
	int i;
	struct kvm_vcpu *vcpu;
2529

2530
	for_each_runnable_thread(i, vcpu, vc) {
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2587
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2588
{
2589
	int still_running = 0, i;
2590 2591
	u64 now;
	long ret;
2592
	struct kvm_vcpu *vcpu;
2593

2594
	spin_lock(&vc->lock);
2595
	now = get_tb();
2596
	for_each_runnable_thread(i, vcpu, vc) {
2597 2598 2599 2600 2601 2602 2603 2604
		/*
		 * It's safe to unlock the vcore in the loop here, because
		 * for_each_runnable_thread() is safe against removal of
		 * the vcpu, and the vcore state is VCORE_EXITING here,
		 * so any vcpus becoming runnable will have their arch.trap
		 * set to zero and can't actually run in the guest.
		 */
		spin_unlock(&vc->lock);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2620
		spin_lock(&vc->lock);
2621 2622 2623 2624
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2625
				kvmppc_set_timer(vcpu);
2626 2627 2628
			else
				++still_running;
		} else {
2629 2630 2631 2632
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2633
	if (!is_master) {
2634
		if (still_running > 0) {
2635
			kvmppc_vcore_preempt(vc);
2636 2637 2638 2639 2640 2641
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2642 2643
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2644 2645
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2646 2647 2648 2649
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2650 2651
}

2652 2653 2654 2655 2656
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2657
static inline int kvmppc_clear_host_core(unsigned int cpu)
2658 2659 2660 2661
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2662
		return 0;
2663 2664 2665 2666 2667 2668 2669
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2670
	return 0;
2671 2672 2673 2674 2675 2676 2677
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2678
static inline int kvmppc_set_host_core(unsigned int cpu)
2679 2680 2681 2682
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2683
		return 0;
2684 2685 2686 2687 2688 2689 2690

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2691
	return 0;
2692 2693
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
2706 2707 2708
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
2709 2710 2711
	}
}

2712 2713 2714 2715
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2716
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2717
{
2718
	struct kvm_vcpu *vcpu;
2719
	int i;
2720
	int srcu_idx;
2721
	struct core_info core_info;
2722
	struct kvmppc_vcore *pvc;
2723 2724 2725 2726 2727
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2728 2729
	int pcpu, thr;
	int target_threads;
2730
	int controlled_threads;
2731
	int trap;
2732
	bool is_power8;
2733
	bool hpt_on_radix;
2734

2735 2736 2737 2738 2739 2740 2741 2742 2743
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2744 2745

	/*
2746
	 * Initialize *vc.
2747
	 */
2748
	init_vcore_to_run(vc);
2749
	vc->preempt_tb = TB_NIL;
2750

2751 2752 2753 2754 2755
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
2756
	controlled_threads = threads_per_vcore(vc->kvm);
2757

2758
	/*
2759 2760 2761
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2762
	 * On POWER9, we need to be not in independent-threads mode if
2763 2764
	 * this is a HPT guest on a radix host machine where the
	 * CPU threads may not be in different MMU modes.
2765
	 */
2766 2767
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
		!kvm_is_radix(vc->kvm);
2768 2769 2770
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2771
		for_each_runnable_thread(i, vcpu, vc) {
2772
			vcpu->arch.ret = -EBUSY;
2773 2774 2775
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2776 2777 2778
		goto out;
	}

2779 2780 2781 2782 2783 2784
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2785
	target_threads = controlled_threads;
2786 2787 2788 2789
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2790

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
2807
	 * If the mmu_ready flag has been cleared, don't go into the
2808
	 * guest because that means a HPT resize operation is in progress.
2809 2810 2811 2812
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
2813
	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

2830 2831 2832 2833 2834
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
2835 2836 2837
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

2838
	if (split > 1 || hpt_on_radix) {
2839 2840 2841
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
2842
			split_info.vc[sub] = core_info.vc[sub];
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
2860 2861 2862 2863 2864 2865 2866
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
2867 2868
		}

2869 2870 2871
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
2872 2873

	for (thr = 0; thr < controlled_threads; ++thr) {
2874 2875 2876 2877 2878
		struct paca_struct *paca = paca_ptrs[pcpu + thr];

		paca->kvm_hstate.tid = thr;
		paca->kvm_hstate.napping = 0;
		paca->kvm_hstate.kvm_split_mode = sip;
2879
	}
2880

2881
	/* Initiate micro-threading (split-core) on POWER8 if required */
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2894
		}
2895
	}
2896

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	/*
	 * On POWER8, set RWMR register.
	 * Since it only affects PURR and SPURR, it doesn't affect
	 * the host, so we don't save/restore the host value.
	 */
	if (is_power8) {
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
		int n_online = atomic_read(&vc->online_count);

		/*
		 * Use the 8-thread value if we're doing split-core
		 * or if the vcore's online count looks bogus.
		 */
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
			rwmr_val = p8_rwmr_values[n_online];
		mtspr(SPRN_RWMR, rwmr_val);
	}

2916 2917 2918
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2919
		thr = is_power8 ? subcore_thread_map[sub] : sub;
2920 2921
		thr0_done = false;
		active |= 1 << thr;
2922 2923 2924 2925 2926 2927 2928 2929 2930
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
2931
		}
2932 2933 2934 2935 2936 2937
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
2938
	}
2939

2940 2941 2942 2943 2944 2945
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

2946 2947 2948 2949
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
2950 2951
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
2952
	 */
2953
	if (cmd_bit || hpt_on_radix) {
2954
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2955 2956 2957
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2958
	}
2959

2960
	vc->vcore_state = VCORE_RUNNING;
2961
	preempt_disable();
2962 2963 2964

	trace_kvmppc_run_core(vc, 0);

2965
	for (sub = 0; sub < core_info.n_subcores; ++sub)
2966
		spin_unlock(&core_info.vc[sub]->lock);
2967

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	if (kvm_is_radix(vc->kvm)) {
		int tmp = pcpu;

		/*
		 * Do we need to flush the process scoped TLB for the LPAR?
		 *
		 * On POWER9, individual threads can come in here, but the
		 * TLB is shared between the 4 threads in a core, hence
		 * invalidating on one thread invalidates for all.
		 * Thus we make all 4 threads use the same bit here.
		 *
		 * Hash must be flushed in realmode in order to use tlbiel.
		 */
		mtspr(SPRN_LPID, vc->kvm->arch.lpid);
		isync();

		if (cpu_has_feature(CPU_FTR_ARCH_300))
			tmp &= ~0x3UL;

		if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
			radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
			/* Clear the bit after the TLB flush */
			cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
		}
	}

2994 2995 2996 2997 2998
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
2999

3000
	guest_enter_irqoff();
3001

3002
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3003

3004 3005
	this_cpu_disable_ftrace();

3006
	trap = __kvmppc_vcore_entry();
3007

3008 3009
	this_cpu_enable_ftrace();

3010 3011
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

3012 3013 3014
	trace_hardirqs_off();
	set_irq_happened(trap);

3015
	spin_lock(&vc->lock);
3016
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3017
	vc->vcore_state = VCORE_EXITING;
3018

3019
	/* wait for secondary threads to finish writing their state to memory */
3020
	kvmppc_wait_for_nap(controlled_threads);
3021 3022

	/* Return to whole-core mode if we split the core earlier */
3023
	if (cmd_bit) {
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
3039 3040 3041
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
3042 3043 3044
			struct paca_struct *paca = paca_ptrs[pcpu + thr];

			while (paca->kvm_hstate.kvm_split_mode) {
3045 3046 3047 3048 3049
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
3050
	}
3051
	split_info.do_nap = 0;
3052

3053 3054 3055
	kvmppc_set_host_core(pcpu);

	local_irq_enable();
3056
	guest_exit();
3057

3058
	/* Let secondaries go back to the offline loop */
3059
	for (i = 0; i < controlled_threads; ++i) {
3060 3061 3062
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
3063
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3064 3065
	}

3066
	spin_unlock(&vc->lock);
3067

3068 3069
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
3070

3071 3072
	preempt_enable();

3073 3074 3075 3076
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
3077

3078
	spin_lock(&vc->lock);
3079 3080

 out:
3081
	vc->vcore_state = VCORE_INACTIVE;
3082
	trace_kvmppc_run_core(vc, 1);
3083 3084
}

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
/*
 * Load up hypervisor-mode registers on P9.
 */
static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	s64 hdec;
	u64 tb, purr, spurr;
	int trap;
	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
	unsigned long host_ciabr = mfspr(SPRN_CIABR);
	unsigned long host_dawr = mfspr(SPRN_DAWR);
	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
	unsigned long host_psscr = mfspr(SPRN_PSSCR);
	unsigned long host_pidr = mfspr(SPRN_PID);

	hdec = time_limit - mftb();
	if (hdec < 0)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	mtspr(SPRN_HDEC, hdec);

	if (vc->tb_offset) {
		u64 new_tb = mftb() + vc->tb_offset;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = vc->tb_offset;
	}

	if (vc->pcr)
		mtspr(SPRN_PCR, vc->pcr);
	mtspr(SPRN_DPDES, vc->dpdes);
	mtspr(SPRN_VTB, vc->vtb);

	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, vcpu->arch.purr);
	mtspr(SPRN_SPURR, vcpu->arch.spurr);

	if (cpu_has_feature(CPU_FTR_DAWR)) {
		mtspr(SPRN_DAWR, vcpu->arch.dawr);
		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
	}
	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
	mtspr(SPRN_IC, vcpu->arch.ic);
	mtspr(SPRN_PID, vcpu->arch.pid);

	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));

	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);

	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);

	mtspr(SPRN_AMOR, ~0UL);

	mtspr(SPRN_LPCR, vc->lpcr);
	isync();

	kvmppc_xive_push_vcpu(vcpu);

	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);

	trap = __kvmhv_vcpu_entry_p9(vcpu);

	/* Advance host PURR/SPURR by the amount used by guest */
	purr = mfspr(SPRN_PURR);
	spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
	      purr - vcpu->arch.purr);
	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
	      spurr - vcpu->arch.spurr);
	vcpu->arch.purr = purr;
	vcpu->arch.spurr = spurr;

	vcpu->arch.ic = mfspr(SPRN_IC);
	vcpu->arch.pid = mfspr(SPRN_PID);
	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;

	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);

	mtspr(SPRN_PSSCR, host_psscr);
	mtspr(SPRN_HFSCR, host_hfscr);
	mtspr(SPRN_CIABR, host_ciabr);
	mtspr(SPRN_DAWR, host_dawr);
	mtspr(SPRN_DAWRX, host_dawrx);
	mtspr(SPRN_PID, host_pidr);

	/*
	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
	 * case we interrupted the guest between a tlbie and a ptesync.
	 */
	asm volatile("eieio; tlbsync; ptesync");

	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
	isync();

	vc->dpdes = mfspr(SPRN_DPDES);
	vc->vtb = mfspr(SPRN_VTB);
	mtspr(SPRN_DPDES, 0);
	if (vc->pcr)
		mtspr(SPRN_PCR, 0);

	if (vc->tb_offset_applied) {
		u64 new_tb = mftb() - vc->tb_offset_applied;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = 0;
	}

	mtspr(SPRN_HDEC, 0x7fffffff);
	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);

	return trap;
}

/*
 * Virtual-mode guest entry for POWER9 and later when the host and
 * guest are both using the radix MMU.  The LPIDR has already been set.
 */
int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	unsigned long host_dscr = mfspr(SPRN_DSCR);
	unsigned long host_tidr = mfspr(SPRN_TIDR);
	unsigned long host_iamr = mfspr(SPRN_IAMR);
	s64 dec;
	u64 tb;
	int trap, save_pmu;

	dec = mfspr(SPRN_DEC);
	tb = mftb();
	if (dec < 512)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	local_paca->kvm_hstate.dec_expires = dec + tb;
	if (local_paca->kvm_hstate.dec_expires < time_limit)
		time_limit = local_paca->kvm_hstate.dec_expires;

	vcpu->arch.ceded = 0;

	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */

	kvmppc_subcore_enter_guest();

	vc->entry_exit_map = 1;
	vc->in_guest = 1;

	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
	}

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	kvmhv_load_guest_pmu(vcpu);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	load_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	load_vr_state(&vcpu->arch.vr);
#endif

	mtspr(SPRN_DSCR, vcpu->arch.dscr);
	mtspr(SPRN_IAMR, vcpu->arch.iamr);
	mtspr(SPRN_PSPB, vcpu->arch.pspb);
	mtspr(SPRN_FSCR, vcpu->arch.fscr);
	mtspr(SPRN_TAR, vcpu->arch.tar);
	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
	mtspr(SPRN_BESCR, vcpu->arch.bescr);
	mtspr(SPRN_WORT, vcpu->arch.wort);
	mtspr(SPRN_TIDR, vcpu->arch.tid);
	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
	mtspr(SPRN_AMR, vcpu->arch.amr);
	mtspr(SPRN_UAMOR, vcpu->arch.uamor);

	if (!(vcpu->arch.ctrl & 1))
		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);

	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());

	if (vcpu->arch.doorbell_request) {
		vc->dpdes = 1;
		smp_wmb();
		vcpu->arch.doorbell_request = 0;
	}

	trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit);

	vcpu->arch.slb_max = 0;
	dec = mfspr(SPRN_DEC);
	tb = mftb();
	vcpu->arch.dec_expires = dec + tb;
	vcpu->cpu = -1;
	vcpu->arch.thread_cpu = -1;
	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);

	vcpu->arch.iamr = mfspr(SPRN_IAMR);
	vcpu->arch.pspb = mfspr(SPRN_PSPB);
	vcpu->arch.fscr = mfspr(SPRN_FSCR);
	vcpu->arch.tar = mfspr(SPRN_TAR);
	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
	vcpu->arch.bescr = mfspr(SPRN_BESCR);
	vcpu->arch.wort = mfspr(SPRN_WORT);
	vcpu->arch.tid = mfspr(SPRN_TIDR);
	vcpu->arch.amr = mfspr(SPRN_AMR);
	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
	vcpu->arch.dscr = mfspr(SPRN_DSCR);

	mtspr(SPRN_PSPB, 0);
	mtspr(SPRN_WORT, 0);
	mtspr(SPRN_AMR, 0);
	mtspr(SPRN_UAMOR, 0);
	mtspr(SPRN_DSCR, host_dscr);
	mtspr(SPRN_TIDR, host_tidr);
	mtspr(SPRN_IAMR, host_iamr);
	mtspr(SPRN_PSPB, 0);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	store_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	store_vr_state(&vcpu->arch.vr);
#endif

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	save_pmu = 1;
	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
		save_pmu = lp->pmcregs_in_use;
	}

	kvmhv_save_guest_pmu(vcpu, save_pmu);

	vc->entry_exit_map = 0x101;
	vc->in_guest = 0;

	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());

	kvmhv_load_host_pmu();

	kvmppc_subcore_exit_guest();

	return trap;
}

3352 3353 3354 3355
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
3356 3357
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
3358 3359 3360
{
	DEFINE_WAIT(wait);

3361
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3362 3363
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
3364
		schedule();
3365 3366
		spin_lock(&vc->lock);
	}
3367 3368 3369
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

3387 3388 3389 3390 3391
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	if (!xive_enabled())
		return false;
3392
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3393 3394 3395 3396 3397 3398 3399 3400 3401
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

3402 3403 3404
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3405
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3406 3407 3408 3409 3410
		return true;

	return false;
}

3411 3412
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3413 3414 3415 3416 3417 3418 3419 3420
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3421
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3422 3423 3424 3425 3426 3427
			return 1;
	}

	return 0;
}

3428 3429 3430 3431 3432 3433
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3434
	ktime_t cur, start_poll, start_wait;
3435 3436
	int do_sleep = 1;
	u64 block_ns;
3437
	DECLARE_SWAITQUEUE(wait);
3438

3439
	/* Poll for pending exceptions and ceded state */
3440
	cur = start_poll = ktime_get();
3441
	if (vc->halt_poll_ns) {
3442 3443
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3459 3460
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3461
			goto out;
3462
		}
3463 3464
	}

3465
	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3466 3467

	if (kvmppc_vcore_check_block(vc)) {
3468
		finish_swait(&vc->wq, &wait);
3469
		do_sleep = 0;
3470 3471 3472
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3473
		goto out;
3474 3475
	}

3476 3477
	start_wait = ktime_get();

3478
	vc->vcore_state = VCORE_SLEEPING;
3479
	trace_kvmppc_vcore_blocked(vc, 0);
3480
	spin_unlock(&vc->lock);
3481
	schedule();
3482
	finish_swait(&vc->wq, &wait);
3483 3484
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3485
	trace_kvmppc_vcore_blocked(vc, 1);
3486
	++vc->runner->stat.halt_successful_wait;
3487 3488 3489 3490

	cur = ktime_get();

out:
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3509 3510

	/* Adjust poll time */
3511
	if (halt_poll_ns) {
3512 3513 3514
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3515
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3516 3517
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3518 3519
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3520
			grow_halt_poll_ns(vc);
3521 3522
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3523 3524 3525 3526
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3527
}
3528

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&kvm->lock);
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
	mutex_unlock(&kvm->lock);
	return r;
}

3548 3549
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3550
	int n_ceded, i, r;
3551
	struct kvmppc_vcore *vc;
3552
	struct kvm_vcpu *v;
3553

3554 3555
	trace_kvmppc_run_vcpu_enter(vcpu);

3556 3557 3558
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3559
	kvmppc_update_vpas(vcpu);
3560 3561 3562 3563 3564 3565

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3566
	vcpu->arch.ceded = 0;
3567 3568
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3569
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3570
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3571
	vcpu->arch.busy_preempt = TB_NIL;
3572
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3573 3574
	++vc->n_runnable;

3575 3576 3577 3578 3579
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3580
	if (!signal_pending(current)) {
3581 3582
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
		     vc->vcore_state == VCORE_RUNNING) &&
3583
			   !VCORE_IS_EXITING(vc)) {
3584
			kvmppc_create_dtl_entry(vcpu, vc);
3585
			kvmppc_start_thread(vcpu, vc);
3586
			trace_kvm_guest_enter(vcpu);
3587
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3588
			swake_up_one(&vc->wq);
3589 3590
		}

3591
	}
3592

3593 3594
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3595 3596
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3597
			spin_unlock(&vc->lock);
3598
			r = kvmhv_setup_mmu(vcpu);
3599 3600 3601
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3602 3603
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3604 3605 3606 3607 3608
				vcpu->arch.ret = r;
				break;
			}
		}

3609 3610 3611
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3612
		if (vc->vcore_state != VCORE_INACTIVE) {
3613
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3614 3615
			continue;
		}
3616
		for_each_runnable_thread(i, v, vc) {
3617
			kvmppc_core_prepare_to_enter(v);
3618 3619 3620 3621 3622 3623 3624 3625
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3626 3627 3628
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3629
		for_each_runnable_thread(i, v, vc) {
3630
			if (!kvmppc_vcpu_woken(v))
3631
				n_ceded += v->arch.ceded;
3632 3633 3634
			else
				v->arch.ceded = 0;
		}
3635 3636
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3637
			kvmppc_vcore_blocked(vc);
3638
		} else if (need_resched()) {
3639
			kvmppc_vcore_preempt(vc);
3640 3641
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3642 3643
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3644
		} else {
3645
			kvmppc_run_core(vc);
3646
		}
3647
		vc->runner = NULL;
3648
	}
3649

3650 3651
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3652 3653
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3654
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3655

3656 3657 3658
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3659 3660 3661 3662 3663 3664 3665 3666 3667
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3668 3669
		i = -1;
		v = next_runnable_thread(vc, &i);
3670
		wake_up(&v->arch.cpu_run);
3671 3672
	}

3673
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3674 3675
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3676 3677
}

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
static int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
				 struct kvm_vcpu *vcpu, u64 time_limit)
{
	int trap, r, pcpu, pcpu0;
	int srcu_idx;
	struct kvmppc_vcore *vc;
	struct kvm *kvm = vcpu->kvm;

	trace_kvmppc_run_vcpu_enter(vcpu);

	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	vc = vcpu->arch.vcore;
	vcpu->arch.ceded = 0;
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
	vcpu->arch.busy_preempt = TB_NIL;
	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
	vc->runnable_threads[0] = vcpu;
	vc->n_runnable = 1;
	vc->runner = vcpu;

	/* See if the MMU is ready to go */
	if (!kvm->arch.mmu_ready) {
		r = kvmhv_setup_mmu(vcpu);
		if (r) {
			kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			kvm_run->fail_entry.
				hardware_entry_failure_reason = 0;
			vcpu->arch.ret = r;
			goto out;
		}
	}

	if (need_resched())
		cond_resched();

	kvmppc_update_vpas(vcpu);

	init_vcore_to_run(vc);
	vc->preempt_tb = TB_NIL;

	preempt_disable();
	pcpu = smp_processor_id();
	vc->pcpu = pcpu;
	kvmppc_prepare_radix_vcpu(vcpu, pcpu);

	local_irq_disable();
	hard_irq_disable();
	if (signal_pending(current))
		goto sigpend;
	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
		goto out;

	kvmppc_core_prepare_to_enter(vcpu);

	kvmppc_clear_host_core(pcpu);

	local_paca->kvm_hstate.tid = 0;
	local_paca->kvm_hstate.napping = 0;
	local_paca->kvm_hstate.kvm_split_mode = NULL;
	kvmppc_start_thread(vcpu, vc);
	kvmppc_create_dtl_entry(vcpu, vc);
	trace_kvm_guest_enter(vcpu);

	vc->vcore_state = VCORE_RUNNING;
	trace_kvmppc_run_core(vc, 0);

	mtspr(SPRN_LPID, vc->kvm->arch.lpid);
	isync();

	/* See comment above in kvmppc_run_core() about this */
	pcpu0 = pcpu;
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		pcpu0 &= ~0x3UL;

	if (cpumask_test_cpu(pcpu0, &kvm->arch.need_tlb_flush)) {
		radix__local_flush_tlb_lpid_guest(kvm->arch.lpid);
		/* Clear the bit after the TLB flush */
		cpumask_clear_cpu(pcpu0, &kvm->arch.need_tlb_flush);
	}

	trace_hardirqs_on();
	guest_enter_irqoff();

	srcu_idx = srcu_read_lock(&kvm->srcu);

	this_cpu_disable_ftrace();

	trap = kvmhv_p9_guest_entry(vcpu, time_limit);
	vcpu->arch.trap = trap;

	this_cpu_enable_ftrace();

	srcu_read_unlock(&kvm->srcu, srcu_idx);

	mtspr(SPRN_LPID, kvm->arch.host_lpid);
	isync();

	trace_hardirqs_off();
	set_irq_happened(trap);

	kvmppc_set_host_core(pcpu);

	local_irq_enable();
	guest_exit();

	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);

	preempt_enable();

	/* cancel pending decrementer exception if DEC is now positive */
	if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
		kvmppc_core_dequeue_dec(vcpu);

	trace_kvm_guest_exit(vcpu);
	r = RESUME_GUEST;
	if (trap)
		r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
	vcpu->arch.ret = r;

	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
	    !kvmppc_vcpu_woken(vcpu)) {
		kvmppc_set_timer(vcpu);
		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
			if (signal_pending(current)) {
				vcpu->stat.signal_exits++;
				kvm_run->exit_reason = KVM_EXIT_INTR;
				vcpu->arch.ret = -EINTR;
				break;
			}
			spin_lock(&vc->lock);
			kvmppc_vcore_blocked(vc);
			spin_unlock(&vc->lock);
		}
	}
	vcpu->arch.ceded = 0;

	vc->vcore_state = VCORE_INACTIVE;
	trace_kvmppc_run_core(vc, 1);

 done:
	kvmppc_remove_runnable(vc, vcpu);
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);

	return vcpu->arch.ret;

 sigpend:
	vcpu->stat.signal_exits++;
	kvm_run->exit_reason = KVM_EXIT_INTR;
	vcpu->arch.ret = -EINTR;
 out:
	local_irq_enable();
	preempt_enable();
	goto done;
}

3839
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3840 3841
{
	int r;
3842
	int srcu_idx;
3843
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3844 3845
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
3846
	struct kvm *kvm;
3847

3848 3849 3850 3851 3852
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
3867 3868
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
3869 3870 3871 3872 3873 3874 3875
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

3876 3877 3878 3879 3880 3881 3882 3883 3884
	/*
	 * Force online to 1 for the sake of old userspace which doesn't
	 * set it.
	 */
	if (!vcpu->arch.online) {
		atomic_inc(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = 1;
	}

3885 3886
	kvmppc_core_prepare_to_enter(vcpu);

3887 3888 3889 3890 3891 3892
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

3893 3894 3895
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3896 3897
	smp_mb();

3898 3899
	flush_all_to_thread(current);

3900
	/* Save userspace EBB and other register values */
3901 3902 3903 3904
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
3905
		user_tar = mfspr(SPRN_TAR);
3906
	}
3907
	user_vrsave = mfspr(SPRN_VRSAVE);
3908

3909
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3910
	vcpu->arch.pgdir = current->mm->pgd;
3911
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3912

3913
	do {
3914 3915 3916 3917
		if (kvm->arch.threads_indep && kvm_is_radix(kvm))
			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0);
		else
			r = kvmppc_run_vcpu(run, vcpu);
3918 3919 3920

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3921
			trace_kvm_hcall_enter(vcpu);
3922
			r = kvmppc_pseries_do_hcall(vcpu);
3923
			trace_kvm_hcall_exit(vcpu, r);
3924
			kvmppc_core_prepare_to_enter(vcpu);
3925
		} else if (r == RESUME_PAGE_FAULT) {
3926
			srcu_idx = srcu_read_lock(&kvm->srcu);
3927 3928
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3929
			srcu_read_unlock(&kvm->srcu, srcu_idx);
3930 3931 3932 3933 3934 3935
		} else if (r == RESUME_PASSTHROUGH) {
			if (WARN_ON(xive_enabled()))
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
3936
	} while (is_kvmppc_resume_guest(r));
3937

3938
	/* Restore userspace EBB and other register values */
3939 3940 3941 3942
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
3943 3944
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
3945
	}
3946
	mtspr(SPRN_VRSAVE, user_vrsave);
3947

3948
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3949
	atomic_dec(&kvm->arch.vcpus_running);
3950 3951 3952
	return r;
}

3953
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3954
				     int shift, int sllp)
3955
{
3956 3957 3958 3959
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3960
	/*
3961
	 * Add 16MB MPSS support (may get filtered out by userspace)
3962
	 */
3963 3964 3965 3966 3967 3968
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
3969
	}
3970 3971 3972
	(*sps)++;
}

3973 3974
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
3975 3976 3977
{
	struct kvm_ppc_one_seg_page_size *sps;

3978 3979 3980 3981 3982 3983 3984 3985
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

3986 3987 3988
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
3989 3990 3991

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
3992 3993 3994
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3995 3996 3997 3998

	return 0;
}

3999 4000 4001
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
4002 4003
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
4004
{
4005
	struct kvm_memslots *slots;
4006
	struct kvm_memory_slot *memslot;
4007
	int i, r;
4008
	unsigned long n;
4009
	unsigned long *buf, *p;
4010
	struct kvm_vcpu *vcpu;
4011 4012 4013 4014

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
4015
	if (log->slot >= KVM_USER_MEM_SLOTS)
4016 4017
		goto out;

4018 4019
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
4020 4021 4022 4023
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

4024
	/*
4025 4026
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
4027
	 */
4028
	n = kvm_dirty_bitmap_bytes(memslot);
4029 4030
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
4031

4032 4033 4034 4035
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4036 4037 4038
	if (r)
		goto out;

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

4049 4050 4051 4052 4053 4054 4055 4056 4057
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

4058
	r = -EFAULT;
4059
	if (copy_to_user(log->dirty_bitmap, buf, n))
4060 4061 4062 4063 4064 4065 4066 4067
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

4068 4069
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
4070 4071 4072 4073
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
4074
	}
4075 4076
}

4077 4078
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
4079
{
4080
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4081 4082
	if (!slot->arch.rmap)
		return -ENOMEM;
4083

4084 4085
	return 0;
}
4086

4087 4088
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
4089
					const struct kvm_userspace_memory_region *mem)
4090
{
4091
	return 0;
4092 4093
}

4094
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4095
				const struct kvm_userspace_memory_region *mem,
4096 4097
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
4098
{
4099 4100
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

4101 4102 4103 4104 4105 4106 4107 4108
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
4109 4110
}

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

4137 4138 4139 4140 4141
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

4142
void kvmppc_setup_partition_table(struct kvm *kvm)
4143 4144 4145
{
	unsigned long dw0, dw1;

4146 4147 4148 4149 4150 4151
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
4152

4153 4154 4155 4156 4157 4158 4159
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
4160 4161 4162 4163

	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}

4164 4165 4166 4167
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
 * Must be called with kvm->lock held.
 */
4168
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4169 4170 4171 4172 4173 4174
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
4175
	unsigned long lpcr = 0, senc;
4176
	unsigned long psize, porder;
4177
	int srcu_idx;
4178

4179
	/* Allocate hashed page table (if not done already) and reset it */
4180
	if (!kvm->arch.hpt.virt) {
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
4192 4193 4194
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
4195 4196

		kvmppc_set_hpt(kvm, &info);
4197 4198
	}

4199
	/* Look up the memslot for guest physical address 0 */
4200
	srcu_idx = srcu_read_lock(&kvm->srcu);
4201
	memslot = gfn_to_memslot(kvm, 0);
4202

4203 4204 4205
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4206
		goto out_srcu;
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);

	up_read(&current->mm->mmap_sem);

4219
	/* We can handle 4k, 64k or 16M pages in the VRMA */
4220 4221 4222 4223 4224 4225 4226
	if (psize >= 0x1000000)
		psize = 0x1000000;
	else if (psize >= 0x10000)
		psize = 0x10000;
	else
		psize = 0x1000;
	porder = __ilog2(psize);
4227

4228 4229 4230 4231 4232
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
4233

4234 4235 4236 4237 4238 4239
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
4240

4241
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4242 4243
	smp_wmb();
	err = 0;
4244 4245
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
4246 4247
 out:
	return err;
4248

4249 4250
 up_out:
	up_read(&current->mm->mmap_sem);
4251
	goto out_srcu;
4252 4253
}

4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvmppc_rmap_reset(kvm);
	kvm->arch.radix = 0;
	kvm->arch.process_table = 0;
	return 0;
}

/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;

	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvm->arch.radix = 1;
	return 0;
}

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

4316
	cpus_read_lock();
4317

4318 4319 4320 4321 4322 4323 4324 4325
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

4326 4327
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4338
		cpus_read_unlock();
4339 4340
		kfree(ops->rm_core);
		kfree(ops);
4341
		return;
4342
	}
4343

4344 4345 4346 4347 4348
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
4349 4350 4351 4352 4353
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
4354
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4355 4356 4357 4358 4359 4360 4361
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

4362
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4363
{
4364
	unsigned long lpcr, lpid;
4365
	char buf[32];
4366
	int ret;
4367

4368 4369 4370
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
4371
	if ((long)lpid < 0)
4372 4373
		return -ENOMEM;
	kvm->arch.lpid = lpid;
4374

4375 4376
	kvmppc_alloc_host_rm_ops();

4377 4378 4379 4380
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
4381 4382
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
4383
	 */
4384 4385
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
4386

4387 4388 4389 4390
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

4391 4392
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4393

4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
4405 4406 4407
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4408 4409 4410
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
4411 4412
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4413
		lpcr &= ~LPCR_VPM0;
4414 4415 4416 4417 4418 4419 4420 4421
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
		if (xive_enabled())
			lpcr |= LPCR_LPES;
4422 4423
	}

4424
	/*
4425
	 * If the host uses radix, the guest starts out as radix.
4426 4427 4428
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
4429
		kvm->arch.mmu_ready = 1;
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

4440
	kvm->arch.lpcr = lpcr;
4441

4442 4443 4444
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

4445 4446 4447 4448
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
4449
	if (radix_enabled())
4450 4451
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4452 4453 4454 4455 4456 4457
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

4458
	/*
4459 4460
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
4461 4462
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
4463
	 */
4464 4465 4466
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.threads_indep = indep_threads_mode;
	if (!kvm->arch.threads_indep)
4467
		kvm_hv_vm_activated();
4468

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
4480
	kvm->arch.emul_smt_mode = 1;
4481

4482 4483 4484 4485 4486
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4487
	kvmppc_mmu_debugfs_init(kvm);
4488 4489
	if (radix_enabled())
		kvmhv_radix_debugfs_init(kvm);
4490

4491
	return 0;
4492 4493
}

4494 4495 4496 4497
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

4498
	for (i = 0; i < KVM_MAX_VCORES; ++i)
4499 4500 4501 4502
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

4503
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4504
{
4505 4506
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

4507
	if (!kvm->arch.threads_indep)
4508
		kvm_hv_vm_deactivated();
4509

4510
	kvmppc_free_vcores(kvm);
4511

4512

4513 4514 4515
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
4516
		kvmppc_free_hpt(&kvm->arch.hpt);
4517

4518 4519 4520 4521 4522 4523 4524
	/* Perform global invalidation and return lpid to the pool */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		kvm->arch.process_table = 0;
		kvmppc_setup_partition_table(kvm);
	}
	kvmppc_free_lpid(kvm->arch.lpid);

4525
	kvmppc_free_pimap(kvm);
4526 4527
}

4528 4529 4530
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
4531
{
4532
	return EMULATE_FAIL;
4533 4534
}

4535 4536
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
4537 4538 4539 4540
{
	return EMULATE_FAIL;
}

4541 4542
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
4543 4544 4545 4546
{
	return EMULATE_FAIL;
}

4547
static int kvmppc_core_check_processor_compat_hv(void)
4548
{
4549 4550
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
4551
		return -EIO;
4552

4553
	return 0;
4554 4555
}

4556 4557 4558 4559 4560 4561 4562
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

4563
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4564 4565 4566
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
4567 4568 4569 4570 4571 4572 4573

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
4574
	int i, rc = 0;
4575

4576 4577 4578
	if (!kvm_irq_bypass)
		return 1;

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
4599
	 * what our real-mode EOI code does, or a XIVE interrupt
4600 4601
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
4602
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

4634 4635 4636 4637 4638 4639 4640
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

4641 4642 4643
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

4644 4645 4646 4647 4648 4649
	if (xive_enabled())
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
4650

4651 4652 4653 4654 4655 4656 4657 4658 4659
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
4660
	int i, rc = 0;
4661

4662 4663 4664
	if (!kvm_irq_bypass)
		return 0;

4665 4666 4667 4668 4669
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
4670 4671
	if (!kvm->arch.pimap)
		goto unlock;
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

4685 4686 4687 4688
	if (xive_enabled())
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4689

4690
	/* invalidate the entry (what do do on error from the above ?) */
4691 4692 4693 4694 4695 4696
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
4697
 unlock:
4698
	mutex_unlock(&kvm->lock);
4699
	return rc;
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
4738 4739
#endif

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
4755
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

4794 4795 4796 4797 4798 4799 4800
	default:
		r = -ENOTTY;
	}

	return r;
}

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
4835
	unsigned int hcall;
4836

4837 4838 4839 4840 4841
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
4842 4843
}

4844 4845
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
4846
	unsigned long lpcr;
4847
	int radix;
4848
	int err;
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
4859
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4860
	if (!!(cfg->process_table & PATB_GR) != radix)
4861 4862 4863 4864 4865 4866
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

4867 4868 4869 4870
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

4871
	mutex_lock(&kvm->lock);
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

4891 4892 4893 4894 4895
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4896
	err = 0;
4897

4898 4899 4900
 out_unlock:
	mutex_unlock(&kvm->lock);
	return err;
4901 4902
}

4903
static struct kvmppc_ops kvm_ops_hv = {
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4934
	.hcall_implemented = kvmppc_hcall_impl_hv,
4935 4936 4937 4938
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
4939 4940
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
4941
	.set_smt_mode = kvmhv_set_smt_mode,
4942 4943
};

4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
4955
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

4970 4971
			paca_ptrs[cpu]->sibling_subcore_state =
						sibling_subcore_state;
4972 4973 4974 4975 4976
		}
	}
	return 0;
}

4977 4978 4979 4980 4981
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

4982
static int kvmppc_book3s_init_hv(void)
4983 4984
{
	int r;
4985 4986 4987 4988 4989
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
4990
		return -ENODEV;
4991

4992 4993 4994 4995
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

4996 4997
	/*
	 * We need a way of accessing the XICS interrupt controller,
4998
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4999 5000 5001
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
5002
	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
5003 5004 5005 5006 5007 5008 5009
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
5010 5011
		/* presence of intc confirmed - node can be dropped again */
		of_node_put(np);
5012 5013 5014
	}
#endif

5015 5016
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
5017

5018 5019
	init_default_hcalls();

5020 5021
	init_vcore_lists();

5022
	r = kvmppc_mmu_hv_init();
5023 5024 5025 5026 5027
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040

	/*
	 * POWER9 chips before version 2.02 can't have some threads in
	 * HPT mode and some in radix mode on the same core.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		unsigned int pvr = mfspr(SPRN_PVR);
		if ((pvr >> 16) == PVR_POWER9 &&
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
			no_mixing_hpt_and_radix = true;
	}

5041 5042 5043
	return r;
}

5044
static void kvmppc_book3s_exit_hv(void)
5045
{
5046
	kvmppc_free_host_rm_ops();
5047 5048
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
5049
	kvmppc_hv_ops = NULL;
5050 5051
}

5052 5053
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
5054
MODULE_LICENSE("GPL");
5055 5056
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");