book3s_hv.c 130.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48

49
#include <asm/ftrace.h>
50
#include <asm/reg.h>
51
#include <asm/ppc-opcode.h>
52
#include <asm/asm-prototypes.h>
53
#include <asm/debug.h>
54
#include <asm/disassemble.h>
55 56
#include <asm/cputable.h>
#include <asm/cacheflush.h>
57
#include <linux/uaccess.h>
58 59 60 61 62 63
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
64
#include <asm/cputhreads.h>
65
#include <asm/page.h>
66
#include <asm/hvcall.h>
67
#include <asm/switch_to.h>
68
#include <asm/smp.h>
69
#include <asm/dbell.h>
70
#include <asm/hmi.h>
71
#include <asm/pnv-pci.h>
72
#include <asm/mmu.h>
73 74
#include <asm/opal.h>
#include <asm/xics.h>
75
#include <asm/xive.h>
76

77 78
#include "book3s.h"

79 80 81
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

82 83 84 85
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

86 87
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
88 89
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
90

91 92 93
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

94 95
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

96
static int dynamic_mt_modes = 6;
97
module_param(dynamic_mt_modes, int, 0644);
98
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99
static int target_smt_mode;
100
module_param(target_smt_mode, int, 0644);
101
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102

103 104 105 106
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

107 108 109 110 111 112
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

113
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 115
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

116
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 118 119
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

120 121 122
/* If set, the threads on each CPU core have to be in the same MMU mode */
static bool no_mixing_hpt_and_radix;

123
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125

126 127 128 129 130
/*
 * RWMR values for POWER8.  These control the rate at which PURR
 * and SPURR count and should be set according to the number of
 * online threads in the vcore being run.
 */
131 132 133 134 135 136 137 138
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
139 140 141 142 143 144 145 146 147 148 149 150 151

static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_2THREAD,
	RWMR_RPA_P8_3THREAD,
	RWMR_RPA_P8_4THREAD,
	RWMR_RPA_P8_5THREAD,
	RWMR_RPA_P8_6THREAD,
	RWMR_RPA_P8_7THREAD,
	RWMR_RPA_P8_8THREAD,
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

172 173
static bool kvmppc_ipi_thread(int cpu)
{
174 175 176 177 178 179 180 181 182 183
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
199
	if (cpu >= 0 && cpu < nr_cpu_ids) {
200
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
201 202 203 204
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
205 206 207 208 209 210 211
		return true;
	}
#endif

	return false;
}

212
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
213
{
214
	int cpu;
215
	struct swait_queue_head *wqp;
216 217

	wqp = kvm_arch_vcpu_wq(vcpu);
218
	if (swq_has_sleeper(wqp)) {
219
		swake_up_one(wqp);
220 221 222
		++vcpu->stat.halt_wakeup;
	}

223 224
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
225
		return;
226 227

	/* CPU points to the first thread of the core */
228
	cpu = vcpu->cpu;
229 230
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
231 232
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
260 261 262 263
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
264 265
 */

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

287
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
288
{
289
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
290
	unsigned long flags;
291

292 293 294 295 296 297
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
298 299 300
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

301
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
302 303 304 305 306
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
307
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
308 309
}

310
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
311
{
312
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
313
	unsigned long flags;
314

315 316 317
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

318
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 320
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
321
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
322 323
}

324
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
325
{
326 327 328 329 330 331
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
332
	vcpu->arch.shregs.msr = msr;
333
	kvmppc_end_cede(vcpu);
334 335
}

T
Thomas Huth 已提交
336
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 338 339 340
{
	vcpu->arch.pvr = pvr;
}

341 342 343
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
344
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345
{
346
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347 348
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

349 350 351 352 353 354 355 356 357 358 359 360
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
361 362 363
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
364
			guest_pcr_bit = PCR_ARCH_205;
365 366 367
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
368
			guest_pcr_bit = PCR_ARCH_206;
369 370
			break;
		case PVR_ARCH_207:
371 372 373 374
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
375 376 377 378 379 380
			break;
		default:
			return -EINVAL;
		}
	}

381 382 383 384
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

385 386
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
387 388
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
389 390 391 392 393
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
394
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
395 396 397 398 399
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
400
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
401 402 403 404 405
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
406
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
407 408 409 410 411 412
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
413 414
	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
415 416 417 418 419 420 421 422
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
423
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
424 425 426
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
427
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
428
{
429
	struct kvm_vcpu *ret;
430 431

	mutex_lock(&kvm->lock);
432
	ret = kvm_get_vcpu_by_id(kvm, id);
433 434 435 436 437 438
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
439
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
440
	vpa->yield_count = cpu_to_be32(1);
441 442
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

459 460 461 462
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
463 464
		__be16 hword;
		__be32 word;
465 466 467 468 469 470 471 472 473 474
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

475 476 477 478 479
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
480
	unsigned long len, nb;
481 482
	void *va;
	struct kvm_vcpu *tvcpu;
483 484 485
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
486 487 488 489 490

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

491 492 493 494 495
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
496
			return H_PARAMETER;
497 498

		/* convert logical addr to kernel addr and read length */
499 500
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
501
			return H_PARAMETER;
502
		if (subfunc == H_VPA_REG_VPA)
503
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
504
		else
505
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
506
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
522 523 524 525 526 527
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
528 529
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
		if (len < sizeof(struct lppaca))
530
			break;
531 532 533 534 535 536
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
537
			break;
538 539 540 541 542
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
543
			break;
544 545 546 547 548 549 550 551 552

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
553
			break;
554 555 556 557 558 559 560 561 562 563

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
564
			break;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
585
	}
586

587 588
	spin_unlock(&tvcpu->arch.vpa_update_lock);

589
	return err;
590 591
}

592
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
593
{
594
	struct kvm *kvm = vcpu->kvm;
595 596
	void *va;
	unsigned long nb;
597
	unsigned long gpa;
598

599 600 601 602 603 604 605 606 607 608 609 610 611 612
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
613
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
614 615 616 617 618
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
619
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
620 621 622 623 624 625 626 627 628
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
629
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
630
		va = NULL;
631 632
	}
	if (vpap->pinned_addr)
633 634 635
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
636
	vpap->pinned_addr = va;
637
	vpap->dirty = false;
638 639 640 641 642 643
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
644 645 646 647 648
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

649 650
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
651
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
652 653
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
654 655
	}
	if (vcpu->arch.dtl.update_pending) {
656
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
657 658 659 660
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
661
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
662 663 664
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

665 666 667 668 669 670 671
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
672
	unsigned long flags;
673

674 675
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
676
	if (vc->vcore_state != VCORE_INACTIVE &&
677 678 679
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
680 681 682
	return p;
}

683 684 685 686 687
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
688 689 690
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
691
	unsigned long flags;
692 693 694

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
695 696 697 698
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
699
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
700 701
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
702
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
703 704 705 706
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
707 708 709 710 711
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
712 713 714 715 716 717
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
718
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
719
	vcpu->arch.dtl.dirty = true;
720 721
}

722 723 724 725 726 727
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

728 729 730 731 732
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
733
	 * smb_wmb() in kvmppc_guest_entry_inject().
734 735
	 */
	smp_rmb();
736 737 738 739 740
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
771 772
		if (!ppc_breakpoint_available())
			return H_P2;
773 774 775 776 777 778 779 780 781 782 783 784
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
799 800
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
801 802 803 804 805 806 807 808 809 810 811 812 813 814
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
815
		yield_count = be32_to_cpu(lppaca->yield_count);
816 817 818 819
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

820 821 822 823
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
824
	int yield_count;
825
	struct kvm_vcpu *tvcpu;
826
	int idx, rc;
827

828 829 830 831
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

832 833 834 835 836 837 838 839 840 841 842 843
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
844 845
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
846 847
		break;
	case H_CONFER:
848 849 850 851 852 853 854 855
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
856 857 858 859
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
860 861 862 863 864 865
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
866 867 868 869
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

870
		idx = srcu_read_lock(&vcpu->kvm->srcu);
871
		rc = kvmppc_rtas_hcall(vcpu);
872
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
873 874 875 876 877 878 879 880

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
881 882 883 884 885 886 887 888 889 890
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
891 892 893 894 895 896 897 898
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
899 900 901 902
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
903 904
	case H_IPOLL:
	case H_XIRR_X:
905
		if (kvmppc_xics_enabled(vcpu)) {
906 907 908 909
			if (xive_enabled()) {
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
910 911
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
937 938 939 940 941 942 943 944 945 946 947 948 949

	case H_SET_PARTITION_TABLE:
		ret = H_FUNCTION;
		if (vcpu->kvm->arch.nested_enable)
			ret = kvmhv_set_partition_table(vcpu);
		break;
	case H_ENTER_NESTED:
		ret = H_FUNCTION;
		break;
	case H_TLB_INVALIDATE:
		ret = H_FUNCTION;
		break;

950 951 952 953 954 955 956 957
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

958 959 960 961 962 963 964
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
965
	case H_SET_MODE:
966 967
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1100 1101
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1102 1103 1104 1105 1106
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1125 1126 1127 1128 1129 1130 1131 1132 1133
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1134
	case BOOK3S_INTERRUPT_H_DOORBELL:
1135
	case BOOK3S_INTERRUPT_H_VIRT:
1136 1137 1138
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1139
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1140
	case BOOK3S_INTERRUPT_HMI:
1141
	case BOOK3S_INTERRUPT_PERFMON:
1142
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1143 1144
		r = RESUME_GUEST;
		break;
1145
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1160
		break;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1180 1181 1182 1183
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1184 1185 1186 1187 1188 1189 1190 1191 1192
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1193 1194 1195 1196 1197
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1198 1199
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1200
		r = RESUME_PAGE_FAULT;
1201 1202
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1203
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1204 1205 1206 1207
		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
			DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1208
		r = RESUME_PAGE_FAULT;
1209 1210 1211
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1212 1213 1214 1215
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1216 1217
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1218 1219 1220 1221
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1222 1223 1224 1225 1226 1227
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1228 1229 1230
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1231 1232 1233 1234
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1235 1236
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1237
		r = EMULATE_FAIL;
1238
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1239
		    cpu_has_feature(CPU_FTR_ARCH_300))
1240 1241 1242 1243 1244
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1245
		break;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

1259 1260 1261
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1262 1263 1264 1265 1266
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1267
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1268 1269 1270 1271 1272 1273 1274
		r = RESUME_HOST;
		break;
	}

	return r;
}

1275 1276
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1277 1278 1279 1280
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1281
	sregs->pvr = vcpu->arch.pvr;
1282 1283 1284 1285 1286 1287 1288 1289
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1290 1291
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1292 1293 1294
{
	int i, j;

1295 1296 1297
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1312 1313
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1314
{
1315
	struct kvm *kvm = vcpu->kvm;
1316 1317 1318
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1319
	mutex_lock(&kvm->lock);
1320
	spin_lock(&vc->lock);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1339 1340 1341
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1342
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1343 1344
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1345 1346
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1347 1348 1349 1350 1351 1352
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1353 1354 1355 1356

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1357 1358
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1359
	mutex_unlock(&kvm->lock);
1360 1361
}

1362 1363
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1364
{
1365 1366
	int r = 0;
	long int i;
1367

1368
	switch (id) {
1369 1370 1371
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1372
	case KVM_REG_PPC_HIOR:
1373 1374 1375 1376 1377
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1378 1379 1380
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1396
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1397 1398 1399 1400 1401 1402
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1403
		break;
1404 1405 1406 1407
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1408 1409 1410 1411 1412 1413
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1414 1415
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1416
		break;
1417 1418 1419 1420 1421 1422 1423 1424 1425
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1426 1427 1428
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1455
		break;
1456 1457 1458 1459 1460 1461
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1479 1480 1481
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1482
	case KVM_REG_PPC_LPCR:
1483
	case KVM_REG_PPC_LPCR_64:
1484 1485
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1486 1487 1488
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1521 1522 1523
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1555 1556 1557
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1558 1559 1560 1561
	case KVM_REG_PPC_DEC_EXPIRY:
		*val = get_reg_val(id, vcpu->arch.dec_expires +
				   vcpu->arch.vcore->tb_offset);
		break;
1562 1563 1564
	case KVM_REG_PPC_ONLINE:
		*val = get_reg_val(id, vcpu->arch.online);
		break;
1565
	default:
1566
		r = -EINVAL;
1567 1568 1569 1570 1571 1572
		break;
	}

	return r;
}

1573 1574
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1575
{
1576 1577
	int r = 0;
	long int i;
1578
	unsigned long addr, len;
1579

1580
	switch (id) {
1581 1582
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1583
		if (set_reg_val(id, *val))
1584 1585
			r = -EINVAL;
		break;
1586 1587 1588
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1589 1590 1591
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1607
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1608 1609 1610 1611 1612 1613 1614
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1615 1616 1617 1618
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1619 1620 1621 1622 1623 1624
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1625 1626
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1627
		break;
1628 1629 1630 1631 1632 1633 1634 1635 1636
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1637 1638 1639
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1669
		break;
1670 1671 1672 1673 1674 1675
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1696 1697
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1698 1699 1700 1701
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1702 1703 1704 1705 1706
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1707
	case KVM_REG_PPC_LPCR:
1708 1709 1710 1711
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1712
		break;
1713 1714 1715
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1747 1748 1749
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1781 1782 1783
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1784 1785 1786 1787
	case KVM_REG_PPC_DEC_EXPIRY:
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
			vcpu->arch.vcore->tb_offset;
		break;
1788
	case KVM_REG_PPC_ONLINE:
1789 1790 1791 1792 1793 1794
		i = set_reg_val(id, *val);
		if (i && !vcpu->arch.online)
			atomic_inc(&vcpu->arch.vcore->online_count);
		else if (!i && vcpu->arch.online)
			atomic_dec(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = i;
1795
		break;
1796
	default:
1797
		r = -EINVAL;
1798 1799 1800 1801 1802 1803
		break;
	}

	return r;
}

1804 1805 1806 1807 1808 1809 1810
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
1811
static int threads_per_vcore(struct kvm *kvm)
1812
{
1813
	if (kvm->arch.threads_indep)
1814 1815 1816 1817
		return 1;
	return threads_per_subcore;
}

1818
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1819 1820 1821 1822 1823 1824 1825 1826 1827
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1828
	spin_lock_init(&vcore->stoltb_lock);
1829
	init_swait_queue_head(&vcore->wq);
1830 1831
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1832
	vcore->first_vcpuid = id;
1833
	vcore->kvm = kvm;
1834
	INIT_LIST_HEAD(&vcore->preempt_list);
1835 1836 1837 1838

	return vcore;
}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

1851
#define N_TIMINGS	(ARRAY_SIZE(timings))
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1987 1988
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1989 1990
{
	struct kvm_vcpu *vcpu;
1991
	int err;
1992 1993
	int core;
	struct kvmppc_vcore *vcore;
1994

1995
	err = -ENOMEM;
1996
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1997 1998 1999 2000 2001 2002 2003 2004
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
2016 2017 2018
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
2019
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2020
	spin_lock_init(&vcpu->arch.vpa_update_lock);
2021 2022
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
2023
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2024

2025 2026 2027
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
2028 2029
	 * On POWER9, we want to virtualize the doorbell facility, so we
	 * turn off the HFSCR bit, which causes those instructions to trap.
2030 2031
	 */
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2032 2033 2034
	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		vcpu->arch.hfscr |= HFSCR_TM;
	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2035
		vcpu->arch.hfscr &= ~HFSCR_TM;
2036 2037
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
2038

2039 2040
	kvmppc_mmu_book3s_hv_init(vcpu);

2041
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2042 2043 2044 2045

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
2046 2047
	vcore = NULL;
	err = -EINVAL;
2048
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2049 2050 2051 2052 2053 2054 2055
		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
			pr_devel("KVM: VCPU ID too high\n");
			core = KVM_MAX_VCORES;
		} else {
			BUG_ON(kvm->arch.smt_mode != 1);
			core = kvmppc_pack_vcpu_id(kvm, id);
		}
2056 2057 2058
	} else {
		core = id / kvm->arch.smt_mode;
	}
2059 2060
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
2061 2062 2063 2064
		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
			pr_devel("KVM: collision on id %u", id);
			vcore = NULL;
		} else if (!vcore) {
2065
			err = -ENOMEM;
2066 2067
			vcore = kvmppc_vcore_create(kvm,
					id & ~(kvm->arch.smt_mode - 1));
2068 2069 2070
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
2081
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2082
	vcpu->arch.thread_cpu = -1;
2083
	vcpu->arch.prev_cpu = -1;
2084

2085 2086 2087
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2088 2089
	debugfs_vcpu_init(vcpu, id);

2090 2091 2092
	return vcpu;

free_vcpu:
2093
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2094 2095 2096 2097
out:
	return ERR_PTR(err);
}

2098 2099 2100 2101
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2102
	int esmt = 0;
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2120
		esmt = smt_mode;
2121 2122 2123 2124 2125 2126
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2127
		kvm->arch.emul_smt_mode = esmt;
2128 2129 2130 2131 2132 2133 2134
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2135 2136 2137 2138 2139 2140 2141
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2142
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2143
{
2144
	spin_lock(&vcpu->arch.vpa_update_lock);
2145 2146 2147
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2148
	spin_unlock(&vcpu->arch.vpa_update_lock);
2149
	kvm_vcpu_uninit(vcpu);
2150
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2151 2152
}

2153 2154 2155 2156 2157 2158
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2159
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2160
{
2161
	unsigned long dec_nsec, now;
2162

2163 2164 2165 2166
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2167
		kvmppc_core_prepare_to_enter(vcpu);
2168
		return;
2169
	}
2170 2171
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
T
Thomas Gleixner 已提交
2172
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2173
	vcpu->arch.timer_running = 1;
2174 2175
}

2176
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2177
{
2178 2179 2180 2181 2182
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2183 2184
}

2185
extern int __kvmppc_vcore_entry(void);
2186

2187 2188
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2189
{
2190 2191
	u64 now;

2192 2193
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2194
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2195 2196 2197 2198 2199
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2200
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2201
	--vc->n_runnable;
2202
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2203 2204
}

2205 2206 2207
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2208
	long timeout = 10000;
2209

2210
	tpaca = paca_ptrs[cpu];
2211 2212

	/* Ensure the thread won't go into the kernel if it wakes */
2213
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2214
	tpaca->kvm_hstate.kvm_vcore = NULL;
2215 2216 2217
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

2243
	tpaca = paca_ptrs[cpu];
2244
	tpaca->kvm_hstate.hwthread_req = 0;
2245
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2246 2247
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2248 2249
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
	int i;

	cpu = cpu_first_thread_sibling(cpu);
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
	struct kvm *kvm = vcpu->kvm;

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
	if (vcpu->arch.prev_cpu != pcpu) {
		if (vcpu->arch.prev_cpu >= 0 &&
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
		    cpu_first_thread_sibling(pcpu))
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
		vcpu->arch.prev_cpu = pcpu;
	}
}

2292
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2293 2294 2295
{
	int cpu;
	struct paca_struct *tpaca;
2296
	struct kvm *kvm = vc->kvm;
2297

2298 2299 2300 2301 2302 2303 2304
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2305
		vcpu->cpu = vc->pcpu;
2306
		vcpu->arch.thread_cpu = cpu;
2307
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2308
	}
2309
	tpaca = paca_ptrs[cpu];
2310
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2311
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2312
	tpaca->kvm_hstate.fake_suspend = 0;
2313
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2314
	smp_wmb();
2315
	tpaca->kvm_hstate.kvm_vcore = vc;
2316
	if (cpu != smp_processor_id())
2317
		kvmppc_ipi_thread(cpu);
2318
}
2319

2320
static void kvmppc_wait_for_nap(int n_threads)
2321
{
2322 2323
	int cpu = smp_processor_id();
	int i, loops;
2324

2325 2326
	if (n_threads <= 1)
		return;
2327 2328 2329
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2330
		 * We set the vcore pointer when starting a thread
2331
		 * and the thread clears it when finished, so we look
2332
		 * for any threads that still have a non-NULL vcore ptr.
2333
		 */
2334
		for (i = 1; i < n_threads; ++i)
2335
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2336
				break;
2337
		if (i == n_threads) {
2338 2339
			HMT_medium();
			return;
2340
		}
2341
		HMT_low();
2342 2343
	}
	HMT_medium();
2344
	for (i = 1; i < n_threads; ++i)
2345
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2346
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2347 2348 2349 2350
}

/*
 * Check that we are on thread 0 and that any other threads in
2351 2352
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2353 2354 2355 2356
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2357
	int thr;
2358

2359 2360
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2361
		return 0;
2362 2363 2364

	thr = 0;
	while (++thr < threads_per_subcore)
2365 2366
		if (cpu_online(cpu + thr))
			return 0;
2367 2368

	/* Grab all hw threads so they can't go into the kernel */
2369
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2370 2371 2372 2373 2374 2375 2376 2377
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2378 2379 2380
	return 1;
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2410
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2422
	struct preempted_vcore_list *lp;
2423 2424 2425

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2426
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2427 2428 2429 2430 2431 2432 2433
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2434 2435 2436 2437
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2438
struct core_info {
2439 2440
	int		n_subcores;
	int		max_subcore_threads;
2441
	int		total_threads;
2442
	int		subcore_threads[MAX_SUBCORES];
2443
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2444 2445
};

2446 2447
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2448
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2449 2450 2451
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2452 2453 2454
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2455 2456
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2457
	cip->total_threads = vc->num_threads;
2458
	cip->subcore_threads[0] = vc->num_threads;
2459
	cip->vc[0] = vc;
2460 2461 2462 2463
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2464
	/*
2465 2466
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
	 * split-core mode, with one thread per subcore.
2467 2468 2469 2470 2471
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2484 2485
}

2486
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2487 2488 2489 2490 2491
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
2492
	vc->tb_offset_applied = 0;
2493 2494
}

2495 2496 2497 2498 2499 2500 2501 2502
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2503 2504
	/* Some POWER9 chips require all threads to be in the same MMU mode */
	if (no_mixing_hpt_and_radix &&
2505 2506 2507
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2508 2509
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2510
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2511
		return false;
2512
	cip->max_subcore_threads = n_threads;
2513 2514 2515 2516 2517

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2518 2519 2520
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2535
	return can_dynamic_split(pvc, cip);
2536 2537
}

2538 2539
static void prepare_threads(struct kvmppc_vcore *vc)
{
2540 2541
	int i;
	struct kvm_vcpu *vcpu;
2542

2543
	for_each_runnable_thread(i, vcpu, vc) {
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2600
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2601
{
2602
	int still_running = 0, i;
2603 2604
	u64 now;
	long ret;
2605
	struct kvm_vcpu *vcpu;
2606

2607
	spin_lock(&vc->lock);
2608
	now = get_tb();
2609
	for_each_runnable_thread(i, vcpu, vc) {
2610 2611 2612 2613 2614 2615 2616 2617
		/*
		 * It's safe to unlock the vcore in the loop here, because
		 * for_each_runnable_thread() is safe against removal of
		 * the vcpu, and the vcore state is VCORE_EXITING here,
		 * so any vcpus becoming runnable will have their arch.trap
		 * set to zero and can't actually run in the guest.
		 */
		spin_unlock(&vc->lock);
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2633
		spin_lock(&vc->lock);
2634 2635 2636 2637
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2638
				kvmppc_set_timer(vcpu);
2639 2640 2641
			else
				++still_running;
		} else {
2642 2643 2644 2645
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2646
	if (!is_master) {
2647
		if (still_running > 0) {
2648
			kvmppc_vcore_preempt(vc);
2649 2650 2651 2652 2653 2654
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2655 2656
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2657 2658
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2659 2660 2661 2662
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2663 2664
}

2665 2666 2667 2668 2669
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2670
static inline int kvmppc_clear_host_core(unsigned int cpu)
2671 2672 2673 2674
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2675
		return 0;
2676 2677 2678 2679 2680 2681 2682
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2683
	return 0;
2684 2685 2686 2687 2688 2689 2690
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2691
static inline int kvmppc_set_host_core(unsigned int cpu)
2692 2693 2694 2695
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2696
		return 0;
2697 2698 2699 2700 2701 2702 2703

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2704
	return 0;
2705 2706
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
2719 2720 2721
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
2722 2723 2724
	}
}

2725 2726 2727 2728
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2729
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2730
{
2731
	struct kvm_vcpu *vcpu;
2732
	int i;
2733
	int srcu_idx;
2734
	struct core_info core_info;
2735
	struct kvmppc_vcore *pvc;
2736 2737 2738 2739 2740
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2741 2742
	int pcpu, thr;
	int target_threads;
2743
	int controlled_threads;
2744
	int trap;
2745
	bool is_power8;
2746
	bool hpt_on_radix;
2747

2748 2749 2750 2751 2752 2753 2754 2755 2756
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2757 2758

	/*
2759
	 * Initialize *vc.
2760
	 */
2761
	init_vcore_to_run(vc);
2762
	vc->preempt_tb = TB_NIL;
2763

2764 2765 2766 2767 2768
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
2769
	controlled_threads = threads_per_vcore(vc->kvm);
2770

2771
	/*
2772 2773 2774
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2775
	 * On POWER9, we need to be not in independent-threads mode if
2776 2777
	 * this is a HPT guest on a radix host machine where the
	 * CPU threads may not be in different MMU modes.
2778
	 */
2779 2780
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
		!kvm_is_radix(vc->kvm);
2781 2782 2783
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2784
		for_each_runnable_thread(i, vcpu, vc) {
2785
			vcpu->arch.ret = -EBUSY;
2786 2787 2788
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2789 2790 2791
		goto out;
	}

2792 2793 2794 2795 2796 2797
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2798
	target_threads = controlled_threads;
2799 2800 2801 2802
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
2820
	 * If the mmu_ready flag has been cleared, don't go into the
2821
	 * guest because that means a HPT resize operation is in progress.
2822 2823 2824 2825
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
2826
	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

2843 2844 2845 2846 2847
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
2848 2849 2850
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

2851
	if (split > 1 || hpt_on_radix) {
2852 2853 2854
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
2855
			split_info.vc[sub] = core_info.vc[sub];
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
2873 2874 2875 2876 2877 2878 2879
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
2880 2881
		}

2882 2883 2884
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
2885 2886

	for (thr = 0; thr < controlled_threads; ++thr) {
2887 2888 2889 2890 2891
		struct paca_struct *paca = paca_ptrs[pcpu + thr];

		paca->kvm_hstate.tid = thr;
		paca->kvm_hstate.napping = 0;
		paca->kvm_hstate.kvm_split_mode = sip;
2892
	}
2893

2894
	/* Initiate micro-threading (split-core) on POWER8 if required */
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2907
		}
2908
	}
2909

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	/*
	 * On POWER8, set RWMR register.
	 * Since it only affects PURR and SPURR, it doesn't affect
	 * the host, so we don't save/restore the host value.
	 */
	if (is_power8) {
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
		int n_online = atomic_read(&vc->online_count);

		/*
		 * Use the 8-thread value if we're doing split-core
		 * or if the vcore's online count looks bogus.
		 */
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
			rwmr_val = p8_rwmr_values[n_online];
		mtspr(SPRN_RWMR, rwmr_val);
	}

2929 2930 2931
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2932
		thr = is_power8 ? subcore_thread_map[sub] : sub;
2933 2934
		thr0_done = false;
		active |= 1 << thr;
2935 2936 2937 2938 2939 2940 2941 2942 2943
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
2944
		}
2945 2946 2947 2948 2949 2950
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
2951
	}
2952

2953 2954 2955 2956 2957 2958
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

2959 2960 2961 2962
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
2963 2964
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
2965
	 */
2966
	if (cmd_bit || hpt_on_radix) {
2967
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2968 2969 2970
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2971
	}
2972

2973
	vc->vcore_state = VCORE_RUNNING;
2974
	preempt_disable();
2975 2976 2977

	trace_kvmppc_run_core(vc, 0);

2978
	for (sub = 0; sub < core_info.n_subcores; ++sub)
2979
		spin_unlock(&core_info.vc[sub]->lock);
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	if (kvm_is_radix(vc->kvm)) {
		int tmp = pcpu;

		/*
		 * Do we need to flush the process scoped TLB for the LPAR?
		 *
		 * On POWER9, individual threads can come in here, but the
		 * TLB is shared between the 4 threads in a core, hence
		 * invalidating on one thread invalidates for all.
		 * Thus we make all 4 threads use the same bit here.
		 *
		 * Hash must be flushed in realmode in order to use tlbiel.
		 */
		mtspr(SPRN_LPID, vc->kvm->arch.lpid);
		isync();

		if (cpu_has_feature(CPU_FTR_ARCH_300))
			tmp &= ~0x3UL;

		if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
			radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
			/* Clear the bit after the TLB flush */
			cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
		}
	}

3007 3008 3009 3010 3011
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
3012

3013
	guest_enter_irqoff();
3014

3015
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3016

3017 3018
	this_cpu_disable_ftrace();

3019
	trap = __kvmppc_vcore_entry();
3020

3021 3022
	this_cpu_enable_ftrace();

3023 3024
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

3025 3026 3027
	trace_hardirqs_off();
	set_irq_happened(trap);

3028
	spin_lock(&vc->lock);
3029
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3030
	vc->vcore_state = VCORE_EXITING;
3031

3032
	/* wait for secondary threads to finish writing their state to memory */
3033
	kvmppc_wait_for_nap(controlled_threads);
3034 3035

	/* Return to whole-core mode if we split the core earlier */
3036
	if (cmd_bit) {
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
3052 3053 3054
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
3055 3056 3057
			struct paca_struct *paca = paca_ptrs[pcpu + thr];

			while (paca->kvm_hstate.kvm_split_mode) {
3058 3059 3060 3061 3062
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
3063
	}
3064
	split_info.do_nap = 0;
3065

3066 3067 3068
	kvmppc_set_host_core(pcpu);

	local_irq_enable();
3069
	guest_exit();
3070

3071
	/* Let secondaries go back to the offline loop */
3072
	for (i = 0; i < controlled_threads; ++i) {
3073 3074 3075
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
3076
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3077 3078
	}

3079
	spin_unlock(&vc->lock);
3080

3081 3082
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
3083

3084 3085
	preempt_enable();

3086 3087 3088 3089
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
3090

3091
	spin_lock(&vc->lock);
3092 3093

 out:
3094
	vc->vcore_state = VCORE_INACTIVE;
3095
	trace_kvmppc_run_core(vc, 1);
3096 3097
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
/*
 * Load up hypervisor-mode registers on P9.
 */
static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	s64 hdec;
	u64 tb, purr, spurr;
	int trap;
	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
	unsigned long host_ciabr = mfspr(SPRN_CIABR);
	unsigned long host_dawr = mfspr(SPRN_DAWR);
	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
	unsigned long host_psscr = mfspr(SPRN_PSSCR);
	unsigned long host_pidr = mfspr(SPRN_PID);

	hdec = time_limit - mftb();
	if (hdec < 0)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	mtspr(SPRN_HDEC, hdec);

	if (vc->tb_offset) {
		u64 new_tb = mftb() + vc->tb_offset;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = vc->tb_offset;
	}

	if (vc->pcr)
		mtspr(SPRN_PCR, vc->pcr);
	mtspr(SPRN_DPDES, vc->dpdes);
	mtspr(SPRN_VTB, vc->vtb);

	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, vcpu->arch.purr);
	mtspr(SPRN_SPURR, vcpu->arch.spurr);

	if (cpu_has_feature(CPU_FTR_DAWR)) {
		mtspr(SPRN_DAWR, vcpu->arch.dawr);
		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
	}
	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
	mtspr(SPRN_IC, vcpu->arch.ic);
	mtspr(SPRN_PID, vcpu->arch.pid);

	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));

	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);

	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);

	mtspr(SPRN_AMOR, ~0UL);

	mtspr(SPRN_LPCR, vc->lpcr);
	isync();

	kvmppc_xive_push_vcpu(vcpu);

	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);

	trap = __kvmhv_vcpu_entry_p9(vcpu);

	/* Advance host PURR/SPURR by the amount used by guest */
	purr = mfspr(SPRN_PURR);
	spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
	      purr - vcpu->arch.purr);
	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
	      spurr - vcpu->arch.spurr);
	vcpu->arch.purr = purr;
	vcpu->arch.spurr = spurr;

	vcpu->arch.ic = mfspr(SPRN_IC);
	vcpu->arch.pid = mfspr(SPRN_PID);
	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;

	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);

	mtspr(SPRN_PSSCR, host_psscr);
	mtspr(SPRN_HFSCR, host_hfscr);
	mtspr(SPRN_CIABR, host_ciabr);
	mtspr(SPRN_DAWR, host_dawr);
	mtspr(SPRN_DAWRX, host_dawrx);
	mtspr(SPRN_PID, host_pidr);

	/*
	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
	 * case we interrupted the guest between a tlbie and a ptesync.
	 */
	asm volatile("eieio; tlbsync; ptesync");

	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
	isync();

	vc->dpdes = mfspr(SPRN_DPDES);
	vc->vtb = mfspr(SPRN_VTB);
	mtspr(SPRN_DPDES, 0);
	if (vc->pcr)
		mtspr(SPRN_PCR, 0);

	if (vc->tb_offset_applied) {
		u64 new_tb = mftb() - vc->tb_offset_applied;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = 0;
	}

	mtspr(SPRN_HDEC, 0x7fffffff);
	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);

	return trap;
}

/*
 * Virtual-mode guest entry for POWER9 and later when the host and
 * guest are both using the radix MMU.  The LPIDR has already been set.
 */
int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	unsigned long host_dscr = mfspr(SPRN_DSCR);
	unsigned long host_tidr = mfspr(SPRN_TIDR);
	unsigned long host_iamr = mfspr(SPRN_IAMR);
	s64 dec;
	u64 tb;
	int trap, save_pmu;

	dec = mfspr(SPRN_DEC);
	tb = mftb();
	if (dec < 512)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	local_paca->kvm_hstate.dec_expires = dec + tb;
	if (local_paca->kvm_hstate.dec_expires < time_limit)
		time_limit = local_paca->kvm_hstate.dec_expires;

	vcpu->arch.ceded = 0;

	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */

	kvmppc_subcore_enter_guest();

	vc->entry_exit_map = 1;
	vc->in_guest = 1;

	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
	}

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	kvmhv_load_guest_pmu(vcpu);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	load_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	load_vr_state(&vcpu->arch.vr);
#endif

	mtspr(SPRN_DSCR, vcpu->arch.dscr);
	mtspr(SPRN_IAMR, vcpu->arch.iamr);
	mtspr(SPRN_PSPB, vcpu->arch.pspb);
	mtspr(SPRN_FSCR, vcpu->arch.fscr);
	mtspr(SPRN_TAR, vcpu->arch.tar);
	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
	mtspr(SPRN_BESCR, vcpu->arch.bescr);
	mtspr(SPRN_WORT, vcpu->arch.wort);
	mtspr(SPRN_TIDR, vcpu->arch.tid);
	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
	mtspr(SPRN_AMR, vcpu->arch.amr);
	mtspr(SPRN_UAMOR, vcpu->arch.uamor);

	if (!(vcpu->arch.ctrl & 1))
		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);

	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());

	if (vcpu->arch.doorbell_request) {
		vc->dpdes = 1;
		smp_wmb();
		vcpu->arch.doorbell_request = 0;
	}

	trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit);

	vcpu->arch.slb_max = 0;
	dec = mfspr(SPRN_DEC);
	tb = mftb();
	vcpu->arch.dec_expires = dec + tb;
	vcpu->cpu = -1;
	vcpu->arch.thread_cpu = -1;
	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);

	vcpu->arch.iamr = mfspr(SPRN_IAMR);
	vcpu->arch.pspb = mfspr(SPRN_PSPB);
	vcpu->arch.fscr = mfspr(SPRN_FSCR);
	vcpu->arch.tar = mfspr(SPRN_TAR);
	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
	vcpu->arch.bescr = mfspr(SPRN_BESCR);
	vcpu->arch.wort = mfspr(SPRN_WORT);
	vcpu->arch.tid = mfspr(SPRN_TIDR);
	vcpu->arch.amr = mfspr(SPRN_AMR);
	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
	vcpu->arch.dscr = mfspr(SPRN_DSCR);

	mtspr(SPRN_PSPB, 0);
	mtspr(SPRN_WORT, 0);
	mtspr(SPRN_AMR, 0);
	mtspr(SPRN_UAMOR, 0);
	mtspr(SPRN_DSCR, host_dscr);
	mtspr(SPRN_TIDR, host_tidr);
	mtspr(SPRN_IAMR, host_iamr);
	mtspr(SPRN_PSPB, 0);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	store_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	store_vr_state(&vcpu->arch.vr);
#endif

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	save_pmu = 1;
	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
		save_pmu = lp->pmcregs_in_use;
	}

	kvmhv_save_guest_pmu(vcpu, save_pmu);

	vc->entry_exit_map = 0x101;
	vc->in_guest = 0;

	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());

	kvmhv_load_host_pmu();

	kvmppc_subcore_exit_guest();

	return trap;
}

3365 3366 3367 3368
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
3369 3370
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
3371 3372 3373
{
	DEFINE_WAIT(wait);

3374
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3375 3376
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
3377
		schedule();
3378 3379
		spin_lock(&vc->lock);
	}
3380 3381 3382
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

3400 3401 3402 3403 3404
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	if (!xive_enabled())
		return false;
3405
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3406 3407 3408 3409 3410 3411 3412 3413 3414
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

3415 3416 3417
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3418
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3419 3420 3421 3422 3423
		return true;

	return false;
}

3424 3425
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3426 3427 3428 3429 3430 3431 3432 3433
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3434
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3435 3436 3437 3438 3439 3440
			return 1;
	}

	return 0;
}

3441 3442 3443 3444 3445 3446
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3447
	ktime_t cur, start_poll, start_wait;
3448 3449
	int do_sleep = 1;
	u64 block_ns;
3450
	DECLARE_SWAITQUEUE(wait);
3451

3452
	/* Poll for pending exceptions and ceded state */
3453
	cur = start_poll = ktime_get();
3454
	if (vc->halt_poll_ns) {
3455 3456
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3457

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3472 3473
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3474
			goto out;
3475
		}
3476 3477
	}

3478
	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3479 3480

	if (kvmppc_vcore_check_block(vc)) {
3481
		finish_swait(&vc->wq, &wait);
3482
		do_sleep = 0;
3483 3484 3485
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3486
		goto out;
3487 3488
	}

3489 3490
	start_wait = ktime_get();

3491
	vc->vcore_state = VCORE_SLEEPING;
3492
	trace_kvmppc_vcore_blocked(vc, 0);
3493
	spin_unlock(&vc->lock);
3494
	schedule();
3495
	finish_swait(&vc->wq, &wait);
3496 3497
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3498
	trace_kvmppc_vcore_blocked(vc, 1);
3499
	++vc->runner->stat.halt_successful_wait;
3500 3501 3502 3503

	cur = ktime_get();

out:
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3522 3523

	/* Adjust poll time */
3524
	if (halt_poll_ns) {
3525 3526 3527
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3528
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3529 3530
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3531 3532
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3533
			grow_halt_poll_ns(vc);
3534 3535
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3536 3537 3538 3539
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3540
}
3541

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&kvm->lock);
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
	mutex_unlock(&kvm->lock);
	return r;
}

3561 3562
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3563
	int n_ceded, i, r;
3564
	struct kvmppc_vcore *vc;
3565
	struct kvm_vcpu *v;
3566

3567 3568
	trace_kvmppc_run_vcpu_enter(vcpu);

3569 3570 3571
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3572
	kvmppc_update_vpas(vcpu);
3573 3574 3575 3576 3577 3578

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3579
	vcpu->arch.ceded = 0;
3580 3581
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3582
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3583
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3584
	vcpu->arch.busy_preempt = TB_NIL;
3585
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3586 3587
	++vc->n_runnable;

3588 3589 3590 3591 3592
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3593
	if (!signal_pending(current)) {
3594 3595
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
		     vc->vcore_state == VCORE_RUNNING) &&
3596
			   !VCORE_IS_EXITING(vc)) {
3597
			kvmppc_create_dtl_entry(vcpu, vc);
3598
			kvmppc_start_thread(vcpu, vc);
3599
			trace_kvm_guest_enter(vcpu);
3600
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3601
			swake_up_one(&vc->wq);
3602 3603
		}

3604
	}
3605

3606 3607
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3608 3609
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3610
			spin_unlock(&vc->lock);
3611
			r = kvmhv_setup_mmu(vcpu);
3612 3613 3614
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3615 3616
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3617 3618 3619 3620 3621
				vcpu->arch.ret = r;
				break;
			}
		}

3622 3623 3624
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3625
		if (vc->vcore_state != VCORE_INACTIVE) {
3626
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3627 3628
			continue;
		}
3629
		for_each_runnable_thread(i, v, vc) {
3630
			kvmppc_core_prepare_to_enter(v);
3631 3632 3633 3634 3635 3636 3637 3638
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3639 3640 3641
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3642
		for_each_runnable_thread(i, v, vc) {
3643
			if (!kvmppc_vcpu_woken(v))
3644
				n_ceded += v->arch.ceded;
3645 3646 3647
			else
				v->arch.ceded = 0;
		}
3648 3649
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3650
			kvmppc_vcore_blocked(vc);
3651
		} else if (need_resched()) {
3652
			kvmppc_vcore_preempt(vc);
3653 3654
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3655 3656
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3657
		} else {
3658
			kvmppc_run_core(vc);
3659
		}
3660
		vc->runner = NULL;
3661
	}
3662

3663 3664
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3665 3666
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3667
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3668

3669 3670 3671
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3672 3673 3674 3675 3676 3677 3678 3679 3680
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3681 3682
		i = -1;
		v = next_runnable_thread(vc, &i);
3683
		wake_up(&v->arch.cpu_run);
3684 3685
	}

3686
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3687 3688
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3689 3690
}

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
static int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
				 struct kvm_vcpu *vcpu, u64 time_limit)
{
	int trap, r, pcpu, pcpu0;
	int srcu_idx;
	struct kvmppc_vcore *vc;
	struct kvm *kvm = vcpu->kvm;

	trace_kvmppc_run_vcpu_enter(vcpu);

	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	vc = vcpu->arch.vcore;
	vcpu->arch.ceded = 0;
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
	vcpu->arch.busy_preempt = TB_NIL;
	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
	vc->runnable_threads[0] = vcpu;
	vc->n_runnable = 1;
	vc->runner = vcpu;

	/* See if the MMU is ready to go */
	if (!kvm->arch.mmu_ready) {
		r = kvmhv_setup_mmu(vcpu);
		if (r) {
			kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			kvm_run->fail_entry.
				hardware_entry_failure_reason = 0;
			vcpu->arch.ret = r;
			goto out;
		}
	}

	if (need_resched())
		cond_resched();

	kvmppc_update_vpas(vcpu);

	init_vcore_to_run(vc);
	vc->preempt_tb = TB_NIL;

	preempt_disable();
	pcpu = smp_processor_id();
	vc->pcpu = pcpu;
	kvmppc_prepare_radix_vcpu(vcpu, pcpu);

	local_irq_disable();
	hard_irq_disable();
	if (signal_pending(current))
		goto sigpend;
	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
		goto out;

	kvmppc_core_prepare_to_enter(vcpu);

	kvmppc_clear_host_core(pcpu);

	local_paca->kvm_hstate.tid = 0;
	local_paca->kvm_hstate.napping = 0;
	local_paca->kvm_hstate.kvm_split_mode = NULL;
	kvmppc_start_thread(vcpu, vc);
	kvmppc_create_dtl_entry(vcpu, vc);
	trace_kvm_guest_enter(vcpu);

	vc->vcore_state = VCORE_RUNNING;
	trace_kvmppc_run_core(vc, 0);

	mtspr(SPRN_LPID, vc->kvm->arch.lpid);
	isync();

	/* See comment above in kvmppc_run_core() about this */
	pcpu0 = pcpu;
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		pcpu0 &= ~0x3UL;

	if (cpumask_test_cpu(pcpu0, &kvm->arch.need_tlb_flush)) {
		radix__local_flush_tlb_lpid_guest(kvm->arch.lpid);
		/* Clear the bit after the TLB flush */
		cpumask_clear_cpu(pcpu0, &kvm->arch.need_tlb_flush);
	}

	trace_hardirqs_on();
	guest_enter_irqoff();

	srcu_idx = srcu_read_lock(&kvm->srcu);

	this_cpu_disable_ftrace();

	trap = kvmhv_p9_guest_entry(vcpu, time_limit);
	vcpu->arch.trap = trap;

	this_cpu_enable_ftrace();

	srcu_read_unlock(&kvm->srcu, srcu_idx);

	mtspr(SPRN_LPID, kvm->arch.host_lpid);
	isync();

	trace_hardirqs_off();
	set_irq_happened(trap);

	kvmppc_set_host_core(pcpu);

	local_irq_enable();
	guest_exit();

	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);

	preempt_enable();

	/* cancel pending decrementer exception if DEC is now positive */
	if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
		kvmppc_core_dequeue_dec(vcpu);

	trace_kvm_guest_exit(vcpu);
	r = RESUME_GUEST;
	if (trap)
		r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
	vcpu->arch.ret = r;

	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
	    !kvmppc_vcpu_woken(vcpu)) {
		kvmppc_set_timer(vcpu);
		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
			if (signal_pending(current)) {
				vcpu->stat.signal_exits++;
				kvm_run->exit_reason = KVM_EXIT_INTR;
				vcpu->arch.ret = -EINTR;
				break;
			}
			spin_lock(&vc->lock);
			kvmppc_vcore_blocked(vc);
			spin_unlock(&vc->lock);
		}
	}
	vcpu->arch.ceded = 0;

	vc->vcore_state = VCORE_INACTIVE;
	trace_kvmppc_run_core(vc, 1);

 done:
	kvmppc_remove_runnable(vc, vcpu);
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);

	return vcpu->arch.ret;

 sigpend:
	vcpu->stat.signal_exits++;
	kvm_run->exit_reason = KVM_EXIT_INTR;
	vcpu->arch.ret = -EINTR;
 out:
	local_irq_enable();
	preempt_enable();
	goto done;
}

3852
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3853 3854
{
	int r;
3855
	int srcu_idx;
3856
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3857 3858
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
3859
	struct kvm *kvm;
3860

3861 3862 3863 3864 3865
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
3880 3881
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
3882 3883 3884 3885 3886 3887 3888
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

3889 3890 3891 3892 3893 3894 3895 3896 3897
	/*
	 * Force online to 1 for the sake of old userspace which doesn't
	 * set it.
	 */
	if (!vcpu->arch.online) {
		atomic_inc(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = 1;
	}

3898 3899
	kvmppc_core_prepare_to_enter(vcpu);

3900 3901 3902 3903 3904 3905
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

3906 3907 3908
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3909 3910
	smp_mb();

3911 3912
	flush_all_to_thread(current);

3913
	/* Save userspace EBB and other register values */
3914 3915 3916 3917
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
3918
		user_tar = mfspr(SPRN_TAR);
3919
	}
3920
	user_vrsave = mfspr(SPRN_VRSAVE);
3921

3922
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3923
	vcpu->arch.pgdir = current->mm->pgd;
3924
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3925

3926
	do {
3927 3928 3929 3930
		if (kvm->arch.threads_indep && kvm_is_radix(kvm))
			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0);
		else
			r = kvmppc_run_vcpu(run, vcpu);
3931 3932 3933

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3934
			trace_kvm_hcall_enter(vcpu);
3935
			r = kvmppc_pseries_do_hcall(vcpu);
3936
			trace_kvm_hcall_exit(vcpu, r);
3937
			kvmppc_core_prepare_to_enter(vcpu);
3938
		} else if (r == RESUME_PAGE_FAULT) {
3939
			srcu_idx = srcu_read_lock(&kvm->srcu);
3940 3941
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3942
			srcu_read_unlock(&kvm->srcu, srcu_idx);
3943 3944 3945 3946 3947 3948
		} else if (r == RESUME_PASSTHROUGH) {
			if (WARN_ON(xive_enabled()))
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
3949
	} while (is_kvmppc_resume_guest(r));
3950

3951
	/* Restore userspace EBB and other register values */
3952 3953 3954 3955
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
3956 3957
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
3958
	}
3959
	mtspr(SPRN_VRSAVE, user_vrsave);
3960

3961
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3962
	atomic_dec(&kvm->arch.vcpus_running);
3963 3964 3965
	return r;
}

3966
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3967
				     int shift, int sllp)
3968
{
3969 3970 3971 3972
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3973
	/*
3974
	 * Add 16MB MPSS support (may get filtered out by userspace)
3975
	 */
3976 3977 3978 3979 3980 3981
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
3982
	}
3983 3984 3985
	(*sps)++;
}

3986 3987
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
3988 3989 3990
{
	struct kvm_ppc_one_seg_page_size *sps;

3991 3992 3993 3994 3995 3996 3997 3998
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

3999 4000 4001
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
4002 4003 4004

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
4005 4006 4007
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4008 4009 4010 4011

	return 0;
}

4012 4013 4014
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
4015 4016
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
4017
{
4018
	struct kvm_memslots *slots;
4019
	struct kvm_memory_slot *memslot;
4020
	int i, r;
4021
	unsigned long n;
4022
	unsigned long *buf, *p;
4023
	struct kvm_vcpu *vcpu;
4024 4025 4026 4027

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
4028
	if (log->slot >= KVM_USER_MEM_SLOTS)
4029 4030
		goto out;

4031 4032
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
4033 4034 4035 4036
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

4037
	/*
4038 4039
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
4040
	 */
4041
	n = kvm_dirty_bitmap_bytes(memslot);
4042 4043
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
4044

4045 4046 4047 4048
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4049 4050 4051
	if (r)
		goto out;

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

4062 4063 4064 4065 4066 4067 4068 4069 4070
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

4071
	r = -EFAULT;
4072
	if (copy_to_user(log->dirty_bitmap, buf, n))
4073 4074 4075 4076 4077 4078 4079 4080
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

4081 4082
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
4083 4084 4085 4086
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
4087
	}
4088 4089
}

4090 4091
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
4092
{
4093
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4094 4095
	if (!slot->arch.rmap)
		return -ENOMEM;
4096

4097 4098
	return 0;
}
4099

4100 4101
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
4102
					const struct kvm_userspace_memory_region *mem)
4103
{
4104
	return 0;
4105 4106
}

4107
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4108
				const struct kvm_userspace_memory_region *mem,
4109 4110
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
4111
{
4112 4113
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

4114 4115 4116 4117 4118 4119 4120 4121
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
4122 4123
}

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

4150 4151 4152 4153 4154
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

4155
void kvmppc_setup_partition_table(struct kvm *kvm)
4156 4157 4158
{
	unsigned long dw0, dw1;

4159 4160 4161 4162 4163 4164
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
4165

4166 4167 4168 4169 4170 4171 4172
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
4173
	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4174 4175
}

4176 4177 4178 4179
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
 * Must be called with kvm->lock held.
 */
4180
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4181 4182 4183 4184 4185 4186
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
4187
	unsigned long lpcr = 0, senc;
4188
	unsigned long psize, porder;
4189
	int srcu_idx;
4190

4191
	/* Allocate hashed page table (if not done already) and reset it */
4192
	if (!kvm->arch.hpt.virt) {
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
4204 4205 4206
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
4207 4208

		kvmppc_set_hpt(kvm, &info);
4209 4210
	}

4211
	/* Look up the memslot for guest physical address 0 */
4212
	srcu_idx = srcu_read_lock(&kvm->srcu);
4213
	memslot = gfn_to_memslot(kvm, 0);
4214

4215 4216 4217
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4218
		goto out_srcu;
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);

	up_read(&current->mm->mmap_sem);

4231
	/* We can handle 4k, 64k or 16M pages in the VRMA */
4232 4233 4234 4235 4236 4237 4238
	if (psize >= 0x1000000)
		psize = 0x1000000;
	else if (psize >= 0x10000)
		psize = 0x10000;
	else
		psize = 0x1000;
	porder = __ilog2(psize);
4239

4240 4241 4242 4243 4244
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
4245

4246 4247 4248 4249 4250 4251
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
4252

4253
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4254 4255
	smp_wmb();
	err = 0;
4256 4257
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
4258 4259
 out:
	return err;
4260

4261 4262
 up_out:
	up_read(&current->mm->mmap_sem);
4263
	goto out_srcu;
4264 4265
}

4266 4267 4268
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
4269 4270 4271 4272
	if (kvm->arch.nested_enable) {
		kvm->arch.nested_enable = false;
		kvmhv_release_all_nested(kvm);
	}
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvmppc_rmap_reset(kvm);
	kvm->arch.radix = 0;
	kvm->arch.process_table = 0;
	return 0;
}

/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;

	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvm->arch.radix = 1;
	return 0;
}

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

4332
	cpus_read_lock();
4333

4334 4335 4336 4337 4338 4339 4340 4341
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

4342 4343
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4354
		cpus_read_unlock();
4355 4356
		kfree(ops->rm_core);
		kfree(ops);
4357
		return;
4358
	}
4359

4360 4361 4362 4363 4364
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
4365 4366 4367 4368 4369
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
4370
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4371 4372 4373 4374 4375 4376 4377
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

4378
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4379
{
4380
	unsigned long lpcr, lpid;
4381
	char buf[32];
4382
	int ret;
4383

4384 4385 4386
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
4387
	if ((long)lpid < 0)
4388 4389
		return -ENOMEM;
	kvm->arch.lpid = lpid;
4390

4391 4392
	kvmppc_alloc_host_rm_ops();

4393 4394
	kvmhv_vm_nested_init(kvm);

4395 4396 4397 4398
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
4399 4400
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
4401
	 */
4402 4403
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
4404

4405 4406 4407 4408
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

4409 4410
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4411

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
4423 4424 4425
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4426 4427 4428
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
4429 4430
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4431
		lpcr &= ~LPCR_VPM0;
4432 4433 4434 4435 4436 4437 4438 4439
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
		if (xive_enabled())
			lpcr |= LPCR_LPES;
4440 4441
	}

4442
	/*
4443
	 * If the host uses radix, the guest starts out as radix.
4444 4445 4446
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
4447
		kvm->arch.mmu_ready = 1;
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

4458
	kvm->arch.lpcr = lpcr;
4459

4460 4461 4462
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

4463 4464 4465 4466
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
4467
	if (radix_enabled())
4468 4469
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4470 4471 4472 4473 4474 4475
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

4476
	/*
4477 4478
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
4479 4480
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
4481
	 */
4482 4483 4484
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.threads_indep = indep_threads_mode;
	if (!kvm->arch.threads_indep)
4485
		kvm_hv_vm_activated();
4486

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
4498
	kvm->arch.emul_smt_mode = 1;
4499

4500 4501 4502 4503 4504
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4505
	kvmppc_mmu_debugfs_init(kvm);
4506 4507
	if (radix_enabled())
		kvmhv_radix_debugfs_init(kvm);
4508

4509
	return 0;
4510 4511
}

4512 4513 4514 4515
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

4516
	for (i = 0; i < KVM_MAX_VCORES; ++i)
4517 4518 4519 4520
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

4521
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4522
{
4523 4524
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

4525
	if (!kvm->arch.threads_indep)
4526
		kvm_hv_vm_deactivated();
4527

4528
	kvmppc_free_vcores(kvm);
4529

4530

4531 4532 4533
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
4534
		kvmppc_free_hpt(&kvm->arch.hpt);
4535

4536 4537
	/* Perform global invalidation and return lpid to the pool */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4538 4539
		if (kvm->arch.nested_enable)
			kvmhv_release_all_nested(kvm);
4540
		kvm->arch.process_table = 0;
4541
		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4542 4543 4544
	}
	kvmppc_free_lpid(kvm->arch.lpid);

4545
	kvmppc_free_pimap(kvm);
4546 4547
}

4548 4549 4550
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
4551
{
4552
	return EMULATE_FAIL;
4553 4554
}

4555 4556
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
4557 4558 4559 4560
{
	return EMULATE_FAIL;
}

4561 4562
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
4563 4564 4565 4566
{
	return EMULATE_FAIL;
}

4567
static int kvmppc_core_check_processor_compat_hv(void)
4568
{
4569 4570
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
4571
		return -EIO;
4572

4573
	return 0;
4574 4575
}

4576 4577 4578 4579 4580 4581 4582
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

4583
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4584 4585 4586
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
4587 4588 4589 4590 4591 4592 4593

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
4594
	int i, rc = 0;
4595

4596 4597 4598
	if (!kvm_irq_bypass)
		return 1;

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
4619
	 * what our real-mode EOI code does, or a XIVE interrupt
4620 4621
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
4622
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

4654 4655 4656 4657 4658 4659 4660
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

4661 4662 4663
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

4664 4665 4666 4667 4668 4669
	if (xive_enabled())
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
4670

4671 4672 4673 4674 4675 4676 4677 4678 4679
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
4680
	int i, rc = 0;
4681

4682 4683 4684
	if (!kvm_irq_bypass)
		return 0;

4685 4686 4687 4688 4689
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
4690 4691
	if (!kvm->arch.pimap)
		goto unlock;
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

4705 4706 4707 4708
	if (xive_enabled())
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4709

4710
	/* invalidate the entry (what do do on error from the above ?) */
4711 4712 4713 4714 4715 4716
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
4717
 unlock:
4718
	mutex_unlock(&kvm->lock);
4719
	return rc;
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
4758 4759
#endif

4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
4775
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

4814 4815 4816 4817 4818 4819 4820
	default:
		r = -ENOTTY;
	}

	return r;
}

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
4855
	unsigned int hcall;
4856

4857 4858 4859 4860 4861
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
4862 4863
}

4864 4865
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
4866
	unsigned long lpcr;
4867
	int radix;
4868
	int err;
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
4879
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4880
	if (!!(cfg->process_table & PATB_GR) != radix)
4881 4882 4883 4884 4885 4886
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

4887 4888 4889 4890
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

4891
	mutex_lock(&kvm->lock);
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

4911 4912 4913 4914 4915
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4916
	err = 0;
4917

4918 4919 4920
 out_unlock:
	mutex_unlock(&kvm->lock);
	return err;
4921 4922
}

4923
static struct kvmppc_ops kvm_ops_hv = {
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4954
	.hcall_implemented = kvmppc_hcall_impl_hv,
4955 4956 4957 4958
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
4959 4960
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
4961
	.set_smt_mode = kvmhv_set_smt_mode,
4962 4963
};

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
4975
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

4990 4991
			paca_ptrs[cpu]->sibling_subcore_state =
						sibling_subcore_state;
4992 4993 4994 4995 4996
		}
	}
	return 0;
}

4997 4998 4999 5000 5001
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

5002
static int kvmppc_book3s_init_hv(void)
5003 5004
{
	int r;
5005 5006 5007 5008 5009
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
5010
		return -ENODEV;
5011

5012 5013 5014 5015
	r = kvmhv_nested_init();
	if (r)
		return r;

5016 5017 5018 5019
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

5020 5021
	/*
	 * We need a way of accessing the XICS interrupt controller,
5022
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5023 5024 5025
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
5026
	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
5027 5028 5029 5030 5031 5032 5033
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
5034 5035
		/* presence of intc confirmed - node can be dropped again */
		of_node_put(np);
5036 5037 5038
	}
#endif

5039 5040
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
5041

5042 5043
	init_default_hcalls();

5044 5045
	init_vcore_lists();

5046
	r = kvmppc_mmu_hv_init();
5047 5048 5049 5050 5051
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064

	/*
	 * POWER9 chips before version 2.02 can't have some threads in
	 * HPT mode and some in radix mode on the same core.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		unsigned int pvr = mfspr(SPRN_PVR);
		if ((pvr >> 16) == PVR_POWER9 &&
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
			no_mixing_hpt_and_radix = true;
	}

5065 5066 5067
	return r;
}

5068
static void kvmppc_book3s_exit_hv(void)
5069
{
5070
	kvmppc_free_host_rm_ops();
5071 5072
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
5073
	kvmppc_hv_ops = NULL;
5074
	kvmhv_nested_exit();
5075 5076
}

5077 5078
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
5079
MODULE_LICENSE("GPL");
5080 5081
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");