book3s_hv.c 141.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48

49
#include <asm/ftrace.h>
50
#include <asm/reg.h>
51
#include <asm/ppc-opcode.h>
52
#include <asm/asm-prototypes.h>
53
#include <asm/archrandom.h>
54
#include <asm/debug.h>
55
#include <asm/disassemble.h>
56 57
#include <asm/cputable.h>
#include <asm/cacheflush.h>
58
#include <linux/uaccess.h>
59 60 61 62 63 64
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
65
#include <asm/cputhreads.h>
66
#include <asm/page.h>
67
#include <asm/hvcall.h>
68
#include <asm/switch_to.h>
69
#include <asm/smp.h>
70
#include <asm/dbell.h>
71
#include <asm/hmi.h>
72
#include <asm/pnv-pci.h>
73
#include <asm/mmu.h>
74 75
#include <asm/opal.h>
#include <asm/xics.h>
76
#include <asm/xive.h>
77

78 79
#include "book3s.h"

80 81 82
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

83 84 85 86
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

87 88
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
89 90
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
91

92 93 94
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

95 96
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

97
static int dynamic_mt_modes = 6;
98
module_param(dynamic_mt_modes, int, 0644);
99
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
100
static int target_smt_mode;
101
module_param(target_smt_mode, int, 0644);
102
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
103

104 105 106 107
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

108 109 110 111
static bool one_vm_per_core;
module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");

112 113 114 115 116 117
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

118
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
119 120
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

121
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
122 123 124
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

125 126 127 128 129 130 131 132 133 134
/* If set, guests are allowed to create and control nested guests */
static bool nested = true;
module_param(nested, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");

static inline bool nesting_enabled(struct kvm *kvm)
{
	return kvm->arch.nested_enable && kvm_is_radix(kvm);
}

135 136 137
/* If set, the threads on each CPU core have to be in the same MMU mode */
static bool no_mixing_hpt_and_radix;

138
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
139
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140

141 142 143 144 145
/*
 * RWMR values for POWER8.  These control the rate at which PURR
 * and SPURR count and should be set according to the number of
 * online threads in the vcore being run.
 */
146 147 148 149 150 151 152 153
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
154 155 156 157 158 159 160 161 162 163 164 165 166

static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_2THREAD,
	RWMR_RPA_P8_3THREAD,
	RWMR_RPA_P8_4THREAD,
	RWMR_RPA_P8_5THREAD,
	RWMR_RPA_P8_6THREAD,
	RWMR_RPA_P8_7THREAD,
	RWMR_RPA_P8_8THREAD,
};

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

187 188
static bool kvmppc_ipi_thread(int cpu)
{
189 190
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

191 192 193 194
	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
	if (kvmhv_on_pseries())
		return false;

195 196 197 198 199 200 201 202
	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218
	if (cpu >= 0 && cpu < nr_cpu_ids) {
219
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220 221 222 223
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224 225 226 227 228 229 230
		return true;
	}
#endif

	return false;
}

231
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232
{
233
	int cpu;
234
	struct swait_queue_head *wqp;
235 236

	wqp = kvm_arch_vcpu_wq(vcpu);
237
	if (swq_has_sleeper(wqp)) {
238
		swake_up_one(wqp);
239 240 241
		++vcpu->stat.halt_wakeup;
	}

242 243
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
244
		return;
245 246

	/* CPU points to the first thread of the core */
247
	cpu = vcpu->cpu;
248 249
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
250 251
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
279 280 281 282
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
283 284
 */

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

306
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
307
{
308
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
309
	unsigned long flags;
310

311 312 313 314 315 316
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
317 318 319
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

320
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321 322 323 324 325
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
326
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 328
}

329
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330
{
331
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
332
	unsigned long flags;
333

334 335 336
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

337
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
338 339
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
340
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
341 342
}

343
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
344
{
345 346 347 348 349 350
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
351
	vcpu->arch.shregs.msr = msr;
352
	kvmppc_end_cede(vcpu);
353 354
}

T
Thomas Huth 已提交
355
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
356 357 358 359
{
	vcpu->arch.pvr = pvr;
}

360 361 362
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
363
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
364
{
365
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
366 367
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

368 369 370 371 372 373 374 375 376 377 378 379
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
380 381 382
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
383
			guest_pcr_bit = PCR_ARCH_205;
384 385 386
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
387
			guest_pcr_bit = PCR_ARCH_206;
388 389
			break;
		case PVR_ARCH_207:
390 391 392 393
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
394 395 396 397 398 399
			break;
		default:
			return -EINVAL;
		}
	}

400 401 402 403
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

404 405
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
406 407
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
408 409 410 411 412
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
413
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
414 415 416 417 418
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
419
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
420 421 422 423 424
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
425
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
426 427 428 429 430 431
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
432 433
	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
434 435 436 437 438 439 440 441
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
442
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
443 444 445
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
446
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
447
{
448
	struct kvm_vcpu *ret;
449 450

	mutex_lock(&kvm->lock);
451
	ret = kvm_get_vcpu_by_id(kvm, id);
452 453 454 455 456 457
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
458
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
459
	vpa->yield_count = cpu_to_be32(1);
460 461
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

478 479 480 481
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
482 483
		__be16 hword;
		__be32 word;
484 485 486 487 488 489 490 491 492 493
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

494 495 496 497 498
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
499
	unsigned long len, nb;
500 501
	void *va;
	struct kvm_vcpu *tvcpu;
502 503 504
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
505 506 507 508 509

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

510 511 512 513 514
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
515
			return H_PARAMETER;
516 517

		/* convert logical addr to kernel addr and read length */
518 519
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
520
			return H_PARAMETER;
521
		if (subfunc == H_VPA_REG_VPA)
522
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
523
		else
524
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
525
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
541 542 543 544 545 546
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
547 548
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
		if (len < sizeof(struct lppaca))
549
			break;
550 551 552 553 554 555
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
556
			break;
557 558 559 560 561
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
562
			break;
563 564 565 566 567 568 569 570 571

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
572
			break;
573 574 575 576 577 578 579 580 581 582

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
583
			break;
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
604
	}
605

606 607
	spin_unlock(&tvcpu->arch.vpa_update_lock);

608
	return err;
609 610
}

611
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
612
{
613
	struct kvm *kvm = vcpu->kvm;
614 615
	void *va;
	unsigned long nb;
616
	unsigned long gpa;
617

618 619 620 621 622 623 624 625 626 627 628 629 630 631
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
632
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
633 634 635 636 637
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
638
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
639 640 641 642 643 644 645 646 647
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
648
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
649
		va = NULL;
650 651
	}
	if (vpap->pinned_addr)
652 653 654
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
655
	vpap->pinned_addr = va;
656
	vpap->dirty = false;
657 658 659 660 661 662
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
663 664 665 666 667
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

668 669
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
670
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
671 672
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
673 674
	}
	if (vcpu->arch.dtl.update_pending) {
675
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
676 677 678 679
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
680
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
681 682 683
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

684 685 686 687 688 689 690
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
691
	unsigned long flags;
692

693 694
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
695
	if (vc->vcore_state != VCORE_INACTIVE &&
696 697 698
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
699 700 701
	return p;
}

702 703 704 705 706
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
707 708 709
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
710
	unsigned long flags;
711 712 713

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
714 715 716 717
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
718
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
719 720
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
721
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
722 723 724 725
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
726 727 728 729 730
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
731 732 733 734 735 736
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
737
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
738
	vcpu->arch.dtl.dirty = true;
739 740
}

741 742 743 744 745 746
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

747 748 749 750 751
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
752
	 * smb_wmb() in kvmppc_guest_entry_inject().
753 754
	 */
	smp_rmb();
755 756 757 758 759
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
790 791
		if (!ppc_breakpoint_available())
			return H_P2;
792 793 794 795 796 797 798 799 800 801 802 803
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
818 819
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
820 821 822 823 824 825 826 827 828 829 830 831 832 833
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
834
		yield_count = be32_to_cpu(lppaca->yield_count);
835 836 837 838
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

839 840 841 842
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
843
	int yield_count;
844
	struct kvm_vcpu *tvcpu;
845
	int idx, rc;
846

847 848 849 850
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

851 852 853 854 855 856 857 858 859 860 861 862
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
863 864
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
865 866
		break;
	case H_CONFER:
867 868 869 870 871 872 873 874
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
875 876 877 878
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
879 880 881 882 883 884
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
885 886 887 888
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

889
		idx = srcu_read_lock(&vcpu->kvm->srcu);
890
		rc = kvmppc_rtas_hcall(vcpu);
891
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
892 893 894 895 896 897 898 899

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
900 901 902 903 904 905 906 907 908 909
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
910 911 912 913 914 915 916 917
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
918 919 920 921
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
922 923
	case H_IPOLL:
	case H_XIRR_X:
924
		if (kvmppc_xics_enabled(vcpu)) {
925
			if (xics_on_xive()) {
926 927 928
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
929 930
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
931 932
		}
		return RESUME_HOST;
933 934 935 936 937 938 939
	case H_SET_DABR:
		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
		break;
	case H_SET_XDABR:
		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		break;
940
#ifdef CONFIG_SPAPR_TCE_IOMMU
941 942 943 944 945 946
	case H_GET_TCE:
		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
970
#endif
971 972 973 974
	case H_RANDOM:
		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
			ret = H_HARDWARE;
		break;
975 976 977

	case H_SET_PARTITION_TABLE:
		ret = H_FUNCTION;
978
		if (nesting_enabled(vcpu->kvm))
979 980 981 982
			ret = kvmhv_set_partition_table(vcpu);
		break;
	case H_ENTER_NESTED:
		ret = H_FUNCTION;
983
		if (!nesting_enabled(vcpu->kvm))
984 985 986 987
			break;
		ret = kvmhv_enter_nested_guest(vcpu);
		if (ret == H_INTERRUPT) {
			kvmppc_set_gpr(vcpu, 3, 0);
988
			vcpu->arch.hcall_needed = 0;
989
			return -EINTR;
990 991 992 993
		} else if (ret == H_TOO_HARD) {
			kvmppc_set_gpr(vcpu, 3, 0);
			vcpu->arch.hcall_needed = 0;
			return RESUME_HOST;
994
		}
995 996 997
		break;
	case H_TLB_INVALIDATE:
		ret = H_FUNCTION;
998 999
		if (nesting_enabled(vcpu->kvm))
			ret = kvmhv_do_nested_tlbie(vcpu);
1000
		break;
1001 1002 1003 1004 1005
	case H_COPY_TOFROM_GUEST:
		ret = H_FUNCTION;
		if (nesting_enabled(vcpu->kvm))
			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
		break;
1006 1007 1008 1009 1010 1011 1012 1013
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/*
 * Handle H_CEDE in the nested virtualization case where we haven't
 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
 * that the cede logic in kvmppc_run_single_vcpu() works properly.
 */
static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
{
	vcpu->arch.shregs.msr |= MSR_EE;
	vcpu->arch.ceded = 1;
	smp_mb();
	if (vcpu->arch.prodded) {
		vcpu->arch.prodded = 0;
		smp_mb();
		vcpu->arch.ceded = 0;
	}
}

1032 1033 1034 1035 1036 1037 1038
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
1039
	case H_SET_MODE:
1040 1041
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1174 1175
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1176 1177 1178 1179 1180
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1199 1200 1201 1202 1203 1204 1205 1206 1207
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1208
	case BOOK3S_INTERRUPT_H_DOORBELL:
1209
	case BOOK3S_INTERRUPT_H_VIRT:
1210 1211 1212
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1213
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1214
	case BOOK3S_INTERRUPT_HMI:
1215
	case BOOK3S_INTERRUPT_PERFMON:
1216
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1217 1218
		r = RESUME_GUEST;
		break;
1219
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1220
		/* Print the MCE event to host console. */
1221
		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

		/*
		 * If the guest can do FWNMI, exit to userspace so it can
		 * deliver a FWNMI to the guest.
		 * Otherwise we synthesize a machine check for the guest
		 * so that it knows that the machine check occurred.
		 */
		if (!vcpu->kvm->arch.fwnmi_enabled) {
			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
			kvmppc_core_queue_machine_check(vcpu, flags);
			r = RESUME_GUEST;
			break;
		}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
1248
		break;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1268 1269 1270 1271
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1272 1273 1274 1275 1276 1277 1278 1279 1280
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1281 1282 1283 1284 1285
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1286 1287
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1288
		r = RESUME_PAGE_FAULT;
1289 1290
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1291
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1292 1293 1294 1295
		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
			DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1296
		r = RESUME_PAGE_FAULT;
1297 1298 1299
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1300 1301 1302 1303
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1304 1305
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1306 1307 1308 1309
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1310 1311 1312 1313 1314 1315
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1316 1317 1318
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1319 1320 1321 1322
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1323 1324
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1325
		r = EMULATE_FAIL;
1326
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1327
		    cpu_has_feature(CPU_FTR_ARCH_300))
1328 1329 1330 1331 1332
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1333
		break;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

1347 1348 1349
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1350 1351 1352 1353 1354
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1355
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1356 1357 1358 1359 1360 1361 1362
		r = RESUME_HOST;
		break;
	}

	return r;
}

1363
static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
{
	int r;
	int srcu_idx;

	vcpu->stat.sum_exits++;

	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		pr_emerg("KVM trap in HV mode while nested!\n");
		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
			 vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		return RESUME_HOST;
	}
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_HOST;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
	case BOOK3S_INTERRUPT_H_VIRT:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
	case BOOK3S_INTERRUPT_PERFMON:
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/* Pass the machine check to the L1 guest */
		r = RESUME_HOST;
		/* Print the MCE event to host console. */
1411
		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1412 1413 1414 1415 1416 1417 1418 1419 1420
		break;
	/*
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1421
		r = kvmhv_nested_page_fault(run, vcpu);
1422 1423 1424 1425 1426 1427 1428 1429 1430
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
					 DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1431
		r = kvmhv_nested_page_fault(run, vcpu);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

	case BOOK3S_INTERRUPT_HV_RM_HARD:
		vcpu->arch.trap = 0;
		r = RESUME_GUEST;
1450
		if (!xics_on_xive())
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
			kvmppc_xics_rm_complete(vcpu, 0);
		break;
	default:
		r = RESUME_HOST;
		break;
	}

	return r;
}

1461 1462
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1463 1464 1465 1466
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1467
	sregs->pvr = vcpu->arch.pvr;
1468 1469 1470 1471 1472 1473 1474 1475
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1476 1477
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1478 1479 1480
{
	int i, j;

1481 1482 1483
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1498 1499
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1500
{
1501
	struct kvm *kvm = vcpu->kvm;
1502 1503 1504
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1505
	mutex_lock(&kvm->lock);
1506
	spin_lock(&vc->lock);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1525 1526 1527
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1528
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1529 1530
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1531 1532
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1533 1534 1535 1536 1537 1538
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1539 1540 1541 1542

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1543 1544
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1545
	mutex_unlock(&kvm->lock);
1546 1547
}

1548 1549
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1550
{
1551 1552
	int r = 0;
	long int i;
1553

1554
	switch (id) {
1555 1556 1557
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1558
	case KVM_REG_PPC_HIOR:
1559 1560 1561 1562 1563
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1564 1565 1566
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1582
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1583 1584 1585 1586 1587 1588
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1589
		break;
1590 1591 1592 1593
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1594 1595 1596 1597 1598 1599
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1600 1601
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1602
		break;
1603 1604 1605 1606 1607 1608 1609 1610 1611
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1612 1613 1614
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1641
		break;
1642 1643 1644 1645 1646 1647
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1665 1666 1667
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1668
	case KVM_REG_PPC_LPCR:
1669
	case KVM_REG_PPC_LPCR_64:
1670 1671
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1672 1673 1674
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1707 1708 1709
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1741 1742 1743
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1744 1745 1746 1747
	case KVM_REG_PPC_DEC_EXPIRY:
		*val = get_reg_val(id, vcpu->arch.dec_expires +
				   vcpu->arch.vcore->tb_offset);
		break;
1748 1749 1750
	case KVM_REG_PPC_ONLINE:
		*val = get_reg_val(id, vcpu->arch.online);
		break;
1751 1752 1753
	case KVM_REG_PPC_PTCR:
		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
		break;
1754
	default:
1755
		r = -EINVAL;
1756 1757 1758 1759 1760 1761
		break;
	}

	return r;
}

1762 1763
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1764
{
1765 1766
	int r = 0;
	long int i;
1767
	unsigned long addr, len;
1768

1769
	switch (id) {
1770 1771
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1772
		if (set_reg_val(id, *val))
1773 1774
			r = -EINVAL;
		break;
1775 1776 1777
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1778 1779 1780
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1796
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1797 1798 1799 1800 1801 1802 1803
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1804 1805 1806 1807
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1808 1809 1810 1811 1812 1813
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1814 1815
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1816
		break;
1817 1818 1819 1820 1821 1822 1823 1824 1825
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1826 1827 1828
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1858
		break;
1859 1860 1861 1862 1863 1864
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1885 1886
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1887 1888 1889 1890
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1891 1892 1893 1894 1895
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1896
	case KVM_REG_PPC_LPCR:
1897 1898 1899 1900
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1901
		break;
1902 1903 1904
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1936 1937 1938
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1970 1971 1972
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1973 1974 1975 1976
	case KVM_REG_PPC_DEC_EXPIRY:
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
			vcpu->arch.vcore->tb_offset;
		break;
1977
	case KVM_REG_PPC_ONLINE:
1978 1979 1980 1981 1982 1983
		i = set_reg_val(id, *val);
		if (i && !vcpu->arch.online)
			atomic_inc(&vcpu->arch.vcore->online_count);
		else if (!i && vcpu->arch.online)
			atomic_dec(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = i;
1984
		break;
1985 1986 1987
	case KVM_REG_PPC_PTCR:
		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
		break;
1988
	default:
1989
		r = -EINVAL;
1990 1991 1992 1993 1994 1995
		break;
	}

	return r;
}

1996 1997 1998 1999 2000 2001 2002
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
2003
static int threads_per_vcore(struct kvm *kvm)
2004
{
2005
	if (kvm->arch.threads_indep)
2006 2007 2008 2009
		return 1;
	return threads_per_subcore;
}

2010
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2011 2012 2013 2014 2015 2016 2017 2018 2019
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
2020
	spin_lock_init(&vcore->stoltb_lock);
2021
	init_swait_queue_head(&vcore->wq);
2022 2023
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
2024
	vcore->first_vcpuid = id;
2025
	vcore->kvm = kvm;
2026
	INIT_LIST_HEAD(&vcore->preempt_list);
2027 2028 2029 2030

	return vcore;
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

2043
#define N_TIMINGS	(ARRAY_SIZE(timings))
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

2179 2180
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
2181 2182
{
	struct kvm_vcpu *vcpu;
2183
	int err;
2184 2185
	int core;
	struct kvmppc_vcore *vcore;
2186

2187
	err = -ENOMEM;
2188
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2189 2190 2191 2192 2193 2194 2195 2196
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
2208 2209 2210
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
2211
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2212
	spin_lock_init(&vcpu->arch.vpa_update_lock);
2213 2214
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
2215
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2216

2217 2218 2219
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
2220
	 * On POWER9, we want to virtualize the doorbell facility, so we
2221 2222
	 * don't set the HFSCR_MSGP bit, and that causes those instructions
	 * to trap and then we emulate them.
2223
	 */
2224 2225 2226 2227 2228 2229 2230 2231
	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
			vcpu->arch.hfscr |= HFSCR_TM;
	}
	if (cpu_has_feature(CPU_FTR_TM_COMP))
2232
		vcpu->arch.hfscr |= HFSCR_TM;
2233

2234 2235
	kvmppc_mmu_book3s_hv_init(vcpu);

2236
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2237 2238 2239 2240

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
2241 2242
	vcore = NULL;
	err = -EINVAL;
2243
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2244 2245 2246 2247 2248 2249 2250
		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
			pr_devel("KVM: VCPU ID too high\n");
			core = KVM_MAX_VCORES;
		} else {
			BUG_ON(kvm->arch.smt_mode != 1);
			core = kvmppc_pack_vcpu_id(kvm, id);
		}
2251 2252 2253
	} else {
		core = id / kvm->arch.smt_mode;
	}
2254 2255
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
2256 2257 2258 2259
		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
			pr_devel("KVM: collision on id %u", id);
			vcore = NULL;
		} else if (!vcore) {
2260
			err = -ENOMEM;
2261 2262
			vcore = kvmppc_vcore_create(kvm,
					id & ~(kvm->arch.smt_mode - 1));
2263 2264 2265
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
2276
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2277
	vcpu->arch.thread_cpu = -1;
2278
	vcpu->arch.prev_cpu = -1;
2279

2280 2281 2282
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2283 2284
	debugfs_vcpu_init(vcpu, id);

2285 2286 2287
	return vcpu;

free_vcpu:
2288
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2289 2290 2291 2292
out:
	return ERR_PTR(err);
}

2293 2294 2295 2296
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2297
	int esmt = 0;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2315
		esmt = smt_mode;
2316 2317 2318 2319 2320 2321
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2322
		kvm->arch.emul_smt_mode = esmt;
2323 2324 2325 2326 2327 2328 2329
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2330 2331 2332 2333 2334 2335 2336
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2337
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2338
{
2339
	spin_lock(&vcpu->arch.vpa_update_lock);
2340 2341 2342
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2343
	spin_unlock(&vcpu->arch.vpa_update_lock);
2344
	kvm_vcpu_uninit(vcpu);
2345
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2346 2347
}

2348 2349 2350 2351 2352 2353
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2354
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2355
{
2356
	unsigned long dec_nsec, now;
2357

2358 2359 2360 2361
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2362
		kvmppc_core_prepare_to_enter(vcpu);
2363
		return;
2364
	}
2365
	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
T
Thomas Gleixner 已提交
2366
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2367
	vcpu->arch.timer_running = 1;
2368 2369
}

2370
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2371
{
2372 2373 2374 2375 2376
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2377 2378
}

2379
extern int __kvmppc_vcore_entry(void);
2380

2381 2382
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2383
{
2384 2385
	u64 now;

2386 2387
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2388
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2389 2390 2391 2392 2393
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2394
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2395
	--vc->n_runnable;
2396
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2397 2398
}

2399 2400 2401
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2402
	long timeout = 10000;
2403

2404
	tpaca = paca_ptrs[cpu];
2405 2406

	/* Ensure the thread won't go into the kernel if it wakes */
2407
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2408
	tpaca->kvm_hstate.kvm_vcore = NULL;
2409 2410 2411
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

2437
	tpaca = paca_ptrs[cpu];
2438
	tpaca->kvm_hstate.hwthread_req = 0;
2439
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2440 2441
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2442 2443
}

2444 2445
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
2446 2447
	struct kvm_nested_guest *nested = vcpu->arch.nested;
	cpumask_t *cpu_in_guest;
2448 2449 2450
	int i;

	cpu = cpu_first_thread_sibling(cpu);
2451 2452 2453 2454 2455 2456 2457
	if (nested) {
		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
		cpu_in_guest = &nested->cpu_in_guest;
	} else {
		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
		cpu_in_guest = &kvm->arch.cpu_in_guest;
	}
2458 2459 2460 2461 2462 2463 2464
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
2465
		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2466 2467 2468
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2469 2470
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
2471
	struct kvm_nested_guest *nested = vcpu->arch.nested;
2472
	struct kvm *kvm = vcpu->kvm;
2473 2474 2475 2476 2477 2478 2479 2480 2481
	int prev_cpu;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return;

	if (nested)
		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
	else
		prev_cpu = vcpu->arch.prev_cpu;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
2495 2496 2497
	if (prev_cpu != pcpu) {
		if (prev_cpu >= 0 &&
		    cpu_first_thread_sibling(prev_cpu) !=
2498
		    cpu_first_thread_sibling(pcpu))
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
			radix_flush_cpu(kvm, prev_cpu, vcpu);
		if (nested)
			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
		else
			vcpu->arch.prev_cpu = pcpu;
	}
}

static void kvmppc_radix_check_need_tlb_flush(struct kvm *kvm, int pcpu,
					      struct kvm_nested_guest *nested)
{
	cpumask_t *need_tlb_flush;
	int lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return;

	if (cpu_has_feature(CPU_FTR_ARCH_300))
		pcpu &= ~0x3UL;

	if (nested) {
		lpid = nested->shadow_lpid;
		need_tlb_flush = &nested->need_tlb_flush;
	} else {
		lpid = kvm->arch.lpid;
		need_tlb_flush = &kvm->arch.need_tlb_flush;
	}

	mtspr(SPRN_LPID, lpid);
	isync();
	smp_mb();

	if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
		radix__local_flush_tlb_lpid_guest(lpid);
		/* Clear the bit after the TLB flush */
		cpumask_clear_cpu(pcpu, need_tlb_flush);
2535 2536 2537
	}
}

2538
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2539 2540 2541
{
	int cpu;
	struct paca_struct *tpaca;
2542
	struct kvm *kvm = vc->kvm;
2543

2544 2545 2546 2547 2548 2549 2550
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2551
		vcpu->cpu = vc->pcpu;
2552
		vcpu->arch.thread_cpu = cpu;
2553
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2554
	}
2555
	tpaca = paca_ptrs[cpu];
2556
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2557
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2558
	tpaca->kvm_hstate.fake_suspend = 0;
2559
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2560
	smp_wmb();
2561
	tpaca->kvm_hstate.kvm_vcore = vc;
2562
	if (cpu != smp_processor_id())
2563
		kvmppc_ipi_thread(cpu);
2564
}
2565

2566
static void kvmppc_wait_for_nap(int n_threads)
2567
{
2568 2569
	int cpu = smp_processor_id();
	int i, loops;
2570

2571 2572
	if (n_threads <= 1)
		return;
2573 2574 2575
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2576
		 * We set the vcore pointer when starting a thread
2577
		 * and the thread clears it when finished, so we look
2578
		 * for any threads that still have a non-NULL vcore ptr.
2579
		 */
2580
		for (i = 1; i < n_threads; ++i)
2581
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2582
				break;
2583
		if (i == n_threads) {
2584 2585
			HMT_medium();
			return;
2586
		}
2587
		HMT_low();
2588 2589
	}
	HMT_medium();
2590
	for (i = 1; i < n_threads; ++i)
2591
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2592
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2593 2594 2595 2596
}

/*
 * Check that we are on thread 0 and that any other threads in
2597 2598
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2599 2600 2601 2602
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2603
	int thr;
2604

2605 2606
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2607
		return 0;
2608 2609 2610

	thr = 0;
	while (++thr < threads_per_subcore)
2611 2612
		if (cpu_online(cpu + thr))
			return 0;
2613 2614

	/* Grab all hw threads so they can't go into the kernel */
2615
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2616 2617 2618 2619 2620 2621 2622 2623
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2624 2625 2626
	return 1;
}

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2656
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2668
	struct preempted_vcore_list *lp;
2669 2670 2671

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2672
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2673 2674 2675 2676 2677 2678 2679
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2680 2681 2682 2683
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2684
struct core_info {
2685 2686
	int		n_subcores;
	int		max_subcore_threads;
2687
	int		total_threads;
2688
	int		subcore_threads[MAX_SUBCORES];
2689
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2690 2691
};

2692 2693
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2694
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2695 2696 2697
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2698 2699 2700
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2701 2702
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2703
	cip->total_threads = vc->num_threads;
2704
	cip->subcore_threads[0] = vc->num_threads;
2705
	cip->vc[0] = vc;
2706 2707 2708 2709
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2710
	/*
2711 2712
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
	 * split-core mode, with one thread per subcore.
2713 2714 2715 2716 2717
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2730 2731
}

2732
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2733 2734 2735 2736 2737
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
2738
	vc->tb_offset_applied = 0;
2739 2740
}

2741 2742 2743 2744 2745 2746 2747 2748
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2749 2750 2751 2752
	/* In one_vm_per_core mode, require all vcores to be from the same vm */
	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
		return false;

2753 2754
	/* Some POWER9 chips require all threads to be in the same MMU mode */
	if (no_mixing_hpt_and_radix &&
2755 2756 2757
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2758 2759
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2760
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2761
		return false;
2762
	cip->max_subcore_threads = n_threads;
2763 2764 2765 2766 2767

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2768 2769 2770
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2785
	return can_dynamic_split(pvc, cip);
2786 2787
}

2788 2789
static void prepare_threads(struct kvmppc_vcore *vc)
{
2790 2791
	int i;
	struct kvm_vcpu *vcpu;
2792

2793
	for_each_runnable_thread(i, vcpu, vc) {
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2850
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2851
{
2852
	int still_running = 0, i;
2853 2854
	u64 now;
	long ret;
2855
	struct kvm_vcpu *vcpu;
2856

2857
	spin_lock(&vc->lock);
2858
	now = get_tb();
2859
	for_each_runnable_thread(i, vcpu, vc) {
2860 2861 2862 2863 2864 2865 2866 2867
		/*
		 * It's safe to unlock the vcore in the loop here, because
		 * for_each_runnable_thread() is safe against removal of
		 * the vcpu, and the vcore state is VCORE_EXITING here,
		 * so any vcpus becoming runnable will have their arch.trap
		 * set to zero and can't actually run in the guest.
		 */
		spin_unlock(&vc->lock);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2883
		spin_lock(&vc->lock);
2884 2885 2886 2887
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2888
				kvmppc_set_timer(vcpu);
2889 2890 2891
			else
				++still_running;
		} else {
2892 2893 2894 2895
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2896
	if (!is_master) {
2897
		if (still_running > 0) {
2898
			kvmppc_vcore_preempt(vc);
2899 2900 2901 2902 2903 2904
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2905 2906
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2907 2908
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2909 2910 2911 2912
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2913 2914
}

2915 2916 2917 2918 2919
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2920
static inline int kvmppc_clear_host_core(unsigned int cpu)
2921 2922 2923 2924
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2925
		return 0;
2926 2927 2928 2929 2930 2931 2932
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2933
	return 0;
2934 2935 2936 2937 2938 2939 2940
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2941
static inline int kvmppc_set_host_core(unsigned int cpu)
2942 2943 2944 2945
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2946
		return 0;
2947 2948 2949 2950 2951 2952 2953

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2954
	return 0;
2955 2956
}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
2969 2970 2971
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
2972 2973 2974
	}
}

2975 2976 2977 2978
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2979
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2980
{
2981
	struct kvm_vcpu *vcpu;
2982
	int i;
2983
	int srcu_idx;
2984
	struct core_info core_info;
2985
	struct kvmppc_vcore *pvc;
2986 2987 2988 2989 2990
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2991 2992
	int pcpu, thr;
	int target_threads;
2993
	int controlled_threads;
2994
	int trap;
2995
	bool is_power8;
2996
	bool hpt_on_radix;
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
3007 3008

	/*
3009
	 * Initialize *vc.
3010
	 */
3011
	init_vcore_to_run(vc);
3012
	vc->preempt_tb = TB_NIL;
3013

3014 3015 3016 3017 3018
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
3019
	controlled_threads = threads_per_vcore(vc->kvm);
3020

3021
	/*
3022 3023 3024
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
3025
	 * On POWER9, we need to be not in independent-threads mode if
3026 3027
	 * this is a HPT guest on a radix host machine where the
	 * CPU threads may not be in different MMU modes.
3028
	 */
3029 3030
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
		!kvm_is_radix(vc->kvm);
3031 3032 3033
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3034
		for_each_runnable_thread(i, vcpu, vc) {
3035
			vcpu->arch.ret = -EBUSY;
3036 3037 3038
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
3039 3040 3041
		goto out;
	}

3042 3043 3044 3045 3046 3047
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
3048
	target_threads = controlled_threads;
3049 3050 3051 3052
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
3053

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
3070
	 * If the mmu_ready flag has been cleared, don't go into the
3071
	 * guest because that means a HPT resize operation is in progress.
3072 3073 3074 3075
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
3076
	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

3093 3094 3095 3096 3097
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
3098 3099 3100
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

3101
	if (split > 1 || hpt_on_radix) {
3102 3103 3104
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
3105
			split_info.vc[sub] = core_info.vc[sub];
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
3123 3124 3125 3126 3127 3128 3129
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
3130 3131
		}

3132 3133 3134
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
3135 3136

	for (thr = 0; thr < controlled_threads; ++thr) {
3137 3138 3139 3140 3141
		struct paca_struct *paca = paca_ptrs[pcpu + thr];

		paca->kvm_hstate.tid = thr;
		paca->kvm_hstate.napping = 0;
		paca->kvm_hstate.kvm_split_mode = sip;
3142
	}
3143

3144
	/* Initiate micro-threading (split-core) on POWER8 if required */
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
3157
		}
3158
	}
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	/*
	 * On POWER8, set RWMR register.
	 * Since it only affects PURR and SPURR, it doesn't affect
	 * the host, so we don't save/restore the host value.
	 */
	if (is_power8) {
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
		int n_online = atomic_read(&vc->online_count);

		/*
		 * Use the 8-thread value if we're doing split-core
		 * or if the vcore's online count looks bogus.
		 */
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
			rwmr_val = p8_rwmr_values[n_online];
		mtspr(SPRN_RWMR, rwmr_val);
	}

3179 3180 3181
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3182
		thr = is_power8 ? subcore_thread_map[sub] : sub;
3183 3184
		thr0_done = false;
		active |= 1 << thr;
3185 3186 3187 3188 3189 3190 3191 3192 3193
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
3194
		}
3195 3196 3197 3198 3199 3200
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
3201
	}
3202

3203 3204 3205 3206 3207 3208
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

3209 3210 3211 3212
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
3213 3214
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
3215
	 */
3216
	if (cmd_bit || hpt_on_radix) {
3217
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3218 3219 3220
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
3221
	}
3222

3223
	vc->vcore_state = VCORE_RUNNING;
3224
	preempt_disable();
3225 3226 3227

	trace_kvmppc_run_core(vc, 0);

3228
	for (sub = 0; sub < core_info.n_subcores; ++sub)
3229
		spin_unlock(&core_info.vc[sub]->lock);
3230

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	if (kvm_is_radix(vc->kvm)) {
		/*
		 * Do we need to flush the process scoped TLB for the LPAR?
		 *
		 * On POWER9, individual threads can come in here, but the
		 * TLB is shared between the 4 threads in a core, hence
		 * invalidating on one thread invalidates for all.
		 * Thus we make all 4 threads use the same bit here.
		 *
		 * Hash must be flushed in realmode in order to use tlbiel.
		 */
3242
		kvmppc_radix_check_need_tlb_flush(vc->kvm, pcpu, NULL);
3243 3244
	}

3245 3246 3247 3248 3249
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
3250

3251
	guest_enter_irqoff();
3252

3253
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3254

3255 3256
	this_cpu_disable_ftrace();

3257
	trap = __kvmppc_vcore_entry();
3258

3259 3260
	this_cpu_enable_ftrace();

3261 3262
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

3263 3264 3265
	trace_hardirqs_off();
	set_irq_happened(trap);

3266
	spin_lock(&vc->lock);
3267
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3268
	vc->vcore_state = VCORE_EXITING;
3269

3270
	/* wait for secondary threads to finish writing their state to memory */
3271
	kvmppc_wait_for_nap(controlled_threads);
3272 3273

	/* Return to whole-core mode if we split the core earlier */
3274
	if (cmd_bit) {
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
3290 3291 3292
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
3293 3294 3295
			struct paca_struct *paca = paca_ptrs[pcpu + thr];

			while (paca->kvm_hstate.kvm_split_mode) {
3296 3297 3298 3299 3300
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
3301
	}
3302
	split_info.do_nap = 0;
3303

3304 3305 3306
	kvmppc_set_host_core(pcpu);

	local_irq_enable();
3307
	guest_exit();
3308

3309
	/* Let secondaries go back to the offline loop */
3310
	for (i = 0; i < controlled_threads; ++i) {
3311 3312 3313
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
3314
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3315 3316
	}

3317
	spin_unlock(&vc->lock);
3318

3319 3320
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
3321

3322 3323
	preempt_enable();

3324 3325 3326 3327
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
3328

3329
	spin_lock(&vc->lock);
3330 3331

 out:
3332
	vc->vcore_state = VCORE_INACTIVE;
3333
	trace_kvmppc_run_core(vc, 1);
3334 3335
}

3336 3337 3338
/*
 * Load up hypervisor-mode registers on P9.
 */
3339 3340
static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
				     unsigned long lpcr)
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	s64 hdec;
	u64 tb, purr, spurr;
	int trap;
	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
	unsigned long host_ciabr = mfspr(SPRN_CIABR);
	unsigned long host_dawr = mfspr(SPRN_DAWR);
	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
	unsigned long host_psscr = mfspr(SPRN_PSSCR);
	unsigned long host_pidr = mfspr(SPRN_PID);

	hdec = time_limit - mftb();
	if (hdec < 0)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	mtspr(SPRN_HDEC, hdec);

	if (vc->tb_offset) {
		u64 new_tb = mftb() + vc->tb_offset;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = vc->tb_offset;
	}

	if (vc->pcr)
		mtspr(SPRN_PCR, vc->pcr);
	mtspr(SPRN_DPDES, vc->dpdes);
	mtspr(SPRN_VTB, vc->vtb);

	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, vcpu->arch.purr);
	mtspr(SPRN_SPURR, vcpu->arch.spurr);

	if (cpu_has_feature(CPU_FTR_DAWR)) {
		mtspr(SPRN_DAWR, vcpu->arch.dawr);
		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
	}
	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
	mtspr(SPRN_IC, vcpu->arch.ic);
	mtspr(SPRN_PID, vcpu->arch.pid);

	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));

	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);

	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);

	mtspr(SPRN_AMOR, ~0UL);

3397
	mtspr(SPRN_LPCR, lpcr);
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	isync();

	kvmppc_xive_push_vcpu(vcpu);

	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);

	trap = __kvmhv_vcpu_entry_p9(vcpu);

	/* Advance host PURR/SPURR by the amount used by guest */
	purr = mfspr(SPRN_PURR);
	spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
	      purr - vcpu->arch.purr);
	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
	      spurr - vcpu->arch.spurr);
	vcpu->arch.purr = purr;
	vcpu->arch.spurr = spurr;

	vcpu->arch.ic = mfspr(SPRN_IC);
	vcpu->arch.pid = mfspr(SPRN_PID);
	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;

	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);

3426 3427 3428
	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
	mtspr(SPRN_PSSCR, host_psscr |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	mtspr(SPRN_HFSCR, host_hfscr);
	mtspr(SPRN_CIABR, host_ciabr);
	mtspr(SPRN_DAWR, host_dawr);
	mtspr(SPRN_DAWRX, host_dawrx);
	mtspr(SPRN_PID, host_pidr);

	/*
	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
	 * case we interrupted the guest between a tlbie and a ptesync.
	 */
	asm volatile("eieio; tlbsync; ptesync");

	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
	isync();

	vc->dpdes = mfspr(SPRN_DPDES);
	vc->vtb = mfspr(SPRN_VTB);
	mtspr(SPRN_DPDES, 0);
	if (vc->pcr)
		mtspr(SPRN_PCR, 0);

	if (vc->tb_offset_applied) {
		u64 new_tb = mftb() - vc->tb_offset_applied;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = 0;
	}

	mtspr(SPRN_HDEC, 0x7fffffff);
	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);

	return trap;
}

/*
 * Virtual-mode guest entry for POWER9 and later when the host and
 * guest are both using the radix MMU.  The LPIDR has already been set.
 */
3469 3470
int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
			 unsigned long lpcr)
3471 3472 3473 3474 3475
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	unsigned long host_dscr = mfspr(SPRN_DSCR);
	unsigned long host_tidr = mfspr(SPRN_TIDR);
	unsigned long host_iamr = mfspr(SPRN_IAMR);
3476
	unsigned long host_amr = mfspr(SPRN_AMR);
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
	s64 dec;
	u64 tb;
	int trap, save_pmu;

	dec = mfspr(SPRN_DEC);
	tb = mftb();
	if (dec < 512)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	local_paca->kvm_hstate.dec_expires = dec + tb;
	if (local_paca->kvm_hstate.dec_expires < time_limit)
		time_limit = local_paca->kvm_hstate.dec_expires;

	vcpu->arch.ceded = 0;

	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */

	kvmppc_subcore_enter_guest();

	vc->entry_exit_map = 1;
	vc->in_guest = 1;

	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
	}

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	kvmhv_load_guest_pmu(vcpu);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	load_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	load_vr_state(&vcpu->arch.vr);
#endif

	mtspr(SPRN_DSCR, vcpu->arch.dscr);
	mtspr(SPRN_IAMR, vcpu->arch.iamr);
	mtspr(SPRN_PSPB, vcpu->arch.pspb);
	mtspr(SPRN_FSCR, vcpu->arch.fscr);
	mtspr(SPRN_TAR, vcpu->arch.tar);
	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
	mtspr(SPRN_BESCR, vcpu->arch.bescr);
	mtspr(SPRN_WORT, vcpu->arch.wort);
	mtspr(SPRN_TIDR, vcpu->arch.tid);
	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
	mtspr(SPRN_AMR, vcpu->arch.amr);
	mtspr(SPRN_UAMOR, vcpu->arch.uamor);

	if (!(vcpu->arch.ctrl & 1))
		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);

	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	if (kvmhv_on_pseries()) {
		/* call our hypervisor to load up HV regs and go */
		struct hv_guest_state hvregs;

		kvmhv_save_hv_regs(vcpu, &hvregs);
		hvregs.lpcr = lpcr;
		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
		hvregs.version = HV_GUEST_STATE_VERSION;
		if (vcpu->arch.nested) {
			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
		} else {
			hvregs.lpid = vcpu->kvm->arch.lpid;
			hvregs.vcpu_token = vcpu->vcpu_id;
		}
		hvregs.hdec_expiry = time_limit;
		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
					  __pa(&vcpu->arch.regs));
		kvmhv_restore_hv_return_state(vcpu, &hvregs);
		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3559 3560 3561 3562 3563 3564 3565

		/* H_CEDE has to be handled now, not later */
		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
			kvmppc_nested_cede(vcpu);
			trap = 0;
		}
3566 3567
	} else {
		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	}

	vcpu->arch.slb_max = 0;
	dec = mfspr(SPRN_DEC);
	tb = mftb();
	vcpu->arch.dec_expires = dec + tb;
	vcpu->cpu = -1;
	vcpu->arch.thread_cpu = -1;
	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);

	vcpu->arch.iamr = mfspr(SPRN_IAMR);
	vcpu->arch.pspb = mfspr(SPRN_PSPB);
	vcpu->arch.fscr = mfspr(SPRN_FSCR);
	vcpu->arch.tar = mfspr(SPRN_TAR);
	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
	vcpu->arch.bescr = mfspr(SPRN_BESCR);
	vcpu->arch.wort = mfspr(SPRN_WORT);
	vcpu->arch.tid = mfspr(SPRN_TIDR);
	vcpu->arch.amr = mfspr(SPRN_AMR);
	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
	vcpu->arch.dscr = mfspr(SPRN_DSCR);

	mtspr(SPRN_PSPB, 0);
	mtspr(SPRN_WORT, 0);
	mtspr(SPRN_UAMOR, 0);
	mtspr(SPRN_DSCR, host_dscr);
	mtspr(SPRN_TIDR, host_tidr);
	mtspr(SPRN_IAMR, host_iamr);
	mtspr(SPRN_PSPB, 0);

3599 3600 3601
	if (host_amr != vcpu->arch.amr)
		mtspr(SPRN_AMR, host_amr);

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	store_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	store_vr_state(&vcpu->arch.vr);
#endif

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	save_pmu = 1;
	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
		save_pmu = lp->pmcregs_in_use;
	}

	kvmhv_save_guest_pmu(vcpu, save_pmu);

	vc->entry_exit_map = 0x101;
	vc->in_guest = 0;

	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());

	kvmhv_load_host_pmu();

	kvmppc_subcore_exit_guest();

	return trap;
}

3635 3636 3637 3638
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
3639 3640
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
3641 3642 3643
{
	DEFINE_WAIT(wait);

3644
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3645 3646
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
3647
		schedule();
3648 3649
		spin_lock(&vc->lock);
	}
3650 3651 3652
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

3653 3654
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
3655 3656 3657
	if (!halt_poll_ns_grow)
		return;

3658 3659
	vc->halt_poll_ns *= halt_poll_ns_grow;
	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3660
		vc->halt_poll_ns = halt_poll_ns_grow_start;
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

3671 3672 3673
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
3674
	if (!xics_on_xive())
3675
		return false;
3676
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3677 3678 3679 3680 3681 3682 3683 3684 3685
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

3686 3687 3688
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3689
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3690 3691 3692 3693 3694
		return true;

	return false;
}

3695 3696
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3697 3698 3699 3700 3701 3702 3703 3704
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3705
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3706 3707 3708 3709 3710 3711
			return 1;
	}

	return 0;
}

3712 3713 3714 3715 3716 3717
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3718
	ktime_t cur, start_poll, start_wait;
3719 3720
	int do_sleep = 1;
	u64 block_ns;
3721
	DECLARE_SWAITQUEUE(wait);
3722

3723
	/* Poll for pending exceptions and ceded state */
3724
	cur = start_poll = ktime_get();
3725
	if (vc->halt_poll_ns) {
3726 3727
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3728

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3743 3744
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3745
			goto out;
3746
		}
3747 3748
	}

3749
	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3750 3751

	if (kvmppc_vcore_check_block(vc)) {
3752
		finish_swait(&vc->wq, &wait);
3753
		do_sleep = 0;
3754 3755 3756
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3757
		goto out;
3758 3759
	}

3760 3761
	start_wait = ktime_get();

3762
	vc->vcore_state = VCORE_SLEEPING;
3763
	trace_kvmppc_vcore_blocked(vc, 0);
3764
	spin_unlock(&vc->lock);
3765
	schedule();
3766
	finish_swait(&vc->wq, &wait);
3767 3768
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3769
	trace_kvmppc_vcore_blocked(vc, 1);
3770
	++vc->runner->stat.halt_successful_wait;
3771 3772 3773 3774

	cur = ktime_get();

out:
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3793 3794

	/* Adjust poll time */
3795
	if (halt_poll_ns) {
3796 3797 3798
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3799
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3800 3801
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3802 3803
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3804
			grow_halt_poll_ns(vc);
3805 3806
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3807 3808 3809 3810
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3811
}
3812

3813 3814 3815 3816 3817
/*
 * This never fails for a radix guest, as none of the operations it does
 * for a radix guest can fail or have a way to report failure.
 * kvmhv_run_single_vcpu() relies on this fact.
 */
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&kvm->lock);
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
	mutex_unlock(&kvm->lock);
	return r;
}

3837 3838
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3839
	int n_ceded, i, r;
3840
	struct kvmppc_vcore *vc;
3841
	struct kvm_vcpu *v;
3842

3843 3844
	trace_kvmppc_run_vcpu_enter(vcpu);

3845 3846 3847
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3848
	kvmppc_update_vpas(vcpu);
3849 3850 3851 3852 3853 3854

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3855
	vcpu->arch.ceded = 0;
3856 3857
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3858
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3859
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3860
	vcpu->arch.busy_preempt = TB_NIL;
3861
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3862 3863
	++vc->n_runnable;

3864 3865 3866 3867 3868
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3869
	if (!signal_pending(current)) {
3870 3871
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
		     vc->vcore_state == VCORE_RUNNING) &&
3872
			   !VCORE_IS_EXITING(vc)) {
3873
			kvmppc_create_dtl_entry(vcpu, vc);
3874
			kvmppc_start_thread(vcpu, vc);
3875
			trace_kvm_guest_enter(vcpu);
3876
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3877
			swake_up_one(&vc->wq);
3878 3879
		}

3880
	}
3881

3882 3883
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3884 3885
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3886
			spin_unlock(&vc->lock);
3887
			r = kvmhv_setup_mmu(vcpu);
3888 3889 3890
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3891 3892
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3893 3894 3895 3896 3897
				vcpu->arch.ret = r;
				break;
			}
		}

3898 3899 3900
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3901
		if (vc->vcore_state != VCORE_INACTIVE) {
3902
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3903 3904
			continue;
		}
3905
		for_each_runnable_thread(i, v, vc) {
3906
			kvmppc_core_prepare_to_enter(v);
3907 3908 3909 3910 3911 3912 3913 3914
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3915 3916 3917
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3918
		for_each_runnable_thread(i, v, vc) {
3919
			if (!kvmppc_vcpu_woken(v))
3920
				n_ceded += v->arch.ceded;
3921 3922 3923
			else
				v->arch.ceded = 0;
		}
3924 3925
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3926
			kvmppc_vcore_blocked(vc);
3927
		} else if (need_resched()) {
3928
			kvmppc_vcore_preempt(vc);
3929 3930
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3931 3932
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3933
		} else {
3934
			kvmppc_run_core(vc);
3935
		}
3936
		vc->runner = NULL;
3937
	}
3938

3939 3940
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3941 3942
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3943
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3944

3945 3946 3947
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3948 3949 3950 3951 3952 3953 3954 3955 3956
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3957 3958
		i = -1;
		v = next_runnable_thread(vc, &i);
3959
		wake_up(&v->arch.cpu_run);
3960 3961
	}

3962
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3963 3964
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3965 3966
}

3967 3968 3969
int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
			  struct kvm_vcpu *vcpu, u64 time_limit,
			  unsigned long lpcr)
3970
{
3971
	int trap, r, pcpu;
3972 3973 3974
	int srcu_idx;
	struct kvmppc_vcore *vc;
	struct kvm *kvm = vcpu->kvm;
3975
	struct kvm_nested_guest *nested = vcpu->arch.nested;
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

	trace_kvmppc_run_vcpu_enter(vcpu);

	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	vc = vcpu->arch.vcore;
	vcpu->arch.ceded = 0;
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
	vcpu->arch.busy_preempt = TB_NIL;
	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
	vc->runnable_threads[0] = vcpu;
	vc->n_runnable = 1;
	vc->runner = vcpu;

	/* See if the MMU is ready to go */
3996 3997
	if (!kvm->arch.mmu_ready)
		kvmhv_setup_mmu(vcpu);
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018

	if (need_resched())
		cond_resched();

	kvmppc_update_vpas(vcpu);

	init_vcore_to_run(vc);
	vc->preempt_tb = TB_NIL;

	preempt_disable();
	pcpu = smp_processor_id();
	vc->pcpu = pcpu;
	kvmppc_prepare_radix_vcpu(vcpu, pcpu);

	local_irq_disable();
	hard_irq_disable();
	if (signal_pending(current))
		goto sigpend;
	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
		goto out;

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	if (!nested) {
		kvmppc_core_prepare_to_enter(vcpu);
		if (vcpu->arch.doorbell_request) {
			vc->dpdes = 1;
			smp_wmb();
			vcpu->arch.doorbell_request = 0;
		}
		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
			     &vcpu->arch.pending_exceptions))
			lpcr |= LPCR_MER;
	} else if (vcpu->arch.pending_exceptions ||
		   vcpu->arch.doorbell_request ||
		   xive_interrupt_pending(vcpu)) {
		vcpu->arch.ret = RESUME_HOST;
		goto out;
	}
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

	kvmppc_clear_host_core(pcpu);

	local_paca->kvm_hstate.tid = 0;
	local_paca->kvm_hstate.napping = 0;
	local_paca->kvm_hstate.kvm_split_mode = NULL;
	kvmppc_start_thread(vcpu, vc);
	kvmppc_create_dtl_entry(vcpu, vc);
	trace_kvm_guest_enter(vcpu);

	vc->vcore_state = VCORE_RUNNING;
	trace_kvmppc_run_core(vc, 0);

4048 4049
	if (cpu_has_feature(CPU_FTR_HVMODE))
		kvmppc_radix_check_need_tlb_flush(kvm, pcpu, nested);
4050 4051 4052 4053 4054 4055 4056 4057

	trace_hardirqs_on();
	guest_enter_irqoff();

	srcu_idx = srcu_read_lock(&kvm->srcu);

	this_cpu_disable_ftrace();

4058
	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4059 4060 4061 4062 4063 4064
	vcpu->arch.trap = trap;

	this_cpu_enable_ftrace();

	srcu_read_unlock(&kvm->srcu, srcu_idx);

4065 4066 4067 4068
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		mtspr(SPRN_LPID, kvm->arch.host_lpid);
		isync();
	}
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087

	trace_hardirqs_off();
	set_irq_happened(trap);

	kvmppc_set_host_core(pcpu);

	local_irq_enable();
	guest_exit();

	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);

	preempt_enable();

	/* cancel pending decrementer exception if DEC is now positive */
	if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
		kvmppc_core_dequeue_dec(vcpu);

	trace_kvm_guest_exit(vcpu);
	r = RESUME_GUEST;
4088 4089 4090 4091
	if (trap) {
		if (!nested)
			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
		else
4092
			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4093
	}
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	vcpu->arch.ret = r;

	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
	    !kvmppc_vcpu_woken(vcpu)) {
		kvmppc_set_timer(vcpu);
		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
			if (signal_pending(current)) {
				vcpu->stat.signal_exits++;
				kvm_run->exit_reason = KVM_EXIT_INTR;
				vcpu->arch.ret = -EINTR;
				break;
			}
			spin_lock(&vc->lock);
			kvmppc_vcore_blocked(vc);
			spin_unlock(&vc->lock);
		}
	}
	vcpu->arch.ceded = 0;

	vc->vcore_state = VCORE_INACTIVE;
	trace_kvmppc_run_core(vc, 1);

 done:
	kvmppc_remove_runnable(vc, vcpu);
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);

	return vcpu->arch.ret;

 sigpend:
	vcpu->stat.signal_exits++;
	kvm_run->exit_reason = KVM_EXIT_INTR;
	vcpu->arch.ret = -EINTR;
 out:
	local_irq_enable();
	preempt_enable();
	goto done;
}

4132
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4133 4134
{
	int r;
4135
	int srcu_idx;
4136
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4137 4138
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
4139
	struct kvm *kvm;
4140

4141 4142 4143 4144 4145
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
4160 4161
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
4162 4163 4164 4165 4166 4167 4168
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

4169 4170 4171 4172 4173 4174 4175 4176 4177
	/*
	 * Force online to 1 for the sake of old userspace which doesn't
	 * set it.
	 */
	if (!vcpu->arch.online) {
		atomic_inc(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = 1;
	}

4178 4179
	kvmppc_core_prepare_to_enter(vcpu);

4180 4181 4182 4183 4184 4185
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

4186 4187 4188
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4189 4190
	smp_mb();

4191 4192
	flush_all_to_thread(current);

4193
	/* Save userspace EBB and other register values */
4194 4195 4196 4197
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
4198
		user_tar = mfspr(SPRN_TAR);
4199
	}
4200
	user_vrsave = mfspr(SPRN_VRSAVE);
4201

4202
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4203
	vcpu->arch.pgdir = current->mm->pgd;
4204
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4205

4206
	do {
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
		/*
		 * The early POWER9 chips that can't mix radix and HPT threads
		 * on the same core also need the workaround for the problem
		 * where the TLB would prefetch entries in the guest exit path
		 * for radix guests using the guest PIDR value and LPID 0.
		 * The workaround is in the old path (kvmppc_run_vcpu())
		 * but not the new path (kvmhv_run_single_vcpu()).
		 */
		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
		    !no_mixing_hpt_and_radix)
4217 4218
			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
						  vcpu->arch.vcore->lpcr);
4219 4220
		else
			r = kvmppc_run_vcpu(run, vcpu);
4221 4222 4223

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4224
			trace_kvm_hcall_enter(vcpu);
4225
			r = kvmppc_pseries_do_hcall(vcpu);
4226
			trace_kvm_hcall_exit(vcpu, r);
4227
			kvmppc_core_prepare_to_enter(vcpu);
4228
		} else if (r == RESUME_PAGE_FAULT) {
4229
			srcu_idx = srcu_read_lock(&kvm->srcu);
4230 4231
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4232
			srcu_read_unlock(&kvm->srcu, srcu_idx);
4233
		} else if (r == RESUME_PASSTHROUGH) {
4234
			if (WARN_ON(xics_on_xive()))
4235 4236 4237 4238
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
4239
	} while (is_kvmppc_resume_guest(r));
4240

4241
	/* Restore userspace EBB and other register values */
4242 4243 4244 4245
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
4246 4247
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
4248
	}
4249
	mtspr(SPRN_VRSAVE, user_vrsave);
4250

4251
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4252
	atomic_dec(&kvm->arch.vcpus_running);
4253 4254 4255
	return r;
}

4256
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4257
				     int shift, int sllp)
4258
{
4259 4260 4261 4262
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4263
	/*
4264
	 * Add 16MB MPSS support (may get filtered out by userspace)
4265
	 */
4266 4267 4268 4269 4270 4271
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
4272
	}
4273 4274 4275
	(*sps)++;
}

4276 4277
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
4278 4279 4280
{
	struct kvm_ppc_one_seg_page_size *sps;

4281 4282 4283 4284 4285 4286 4287 4288
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

4289 4290 4291
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
4292 4293 4294

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
4295 4296 4297
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4298

4299 4300 4301 4302
	/* If running as a nested hypervisor, we don't support HPT guests */
	if (kvmhv_on_pseries())
		info->flags |= KVM_PPC_NO_HASH;

4303 4304 4305
	return 0;
}

4306 4307 4308
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
4309 4310
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
4311
{
4312
	struct kvm_memslots *slots;
4313
	struct kvm_memory_slot *memslot;
4314
	int i, r;
4315
	unsigned long n;
4316
	unsigned long *buf, *p;
4317
	struct kvm_vcpu *vcpu;
4318 4319 4320 4321

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
4322
	if (log->slot >= KVM_USER_MEM_SLOTS)
4323 4324
		goto out;

4325 4326
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
4327 4328 4329 4330
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

4331
	/*
4332 4333
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
4334
	 */
4335
	n = kvm_dirty_bitmap_bytes(memslot);
4336 4337
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
4338

4339 4340 4341 4342
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4343 4344 4345
	if (r)
		goto out;

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

4356 4357 4358 4359 4360 4361 4362 4363 4364
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

4365
	r = -EFAULT;
4366
	if (copy_to_user(log->dirty_bitmap, buf, n))
4367 4368 4369 4370 4371 4372 4373 4374
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

4375 4376
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
4377 4378 4379 4380
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
4381
	}
4382 4383
}

4384 4385
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
4386
{
4387
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4388 4389
	if (!slot->arch.rmap)
		return -ENOMEM;
4390

4391 4392
	return 0;
}
4393

4394 4395
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
4396
					const struct kvm_userspace_memory_region *mem)
4397
{
4398
	return 0;
4399 4400
}

4401
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4402
				const struct kvm_userspace_memory_region *mem,
4403
				const struct kvm_memory_slot *old,
4404 4405
				const struct kvm_memory_slot *new,
				enum kvm_mr_change change)
4406
{
4407 4408
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

4409 4410 4411 4412 4413 4414 4415 4416
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433

	/*
	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
	 * have already called kvm_arch_flush_shadow_memslot() to
	 * flush shadow mappings.  For KVM_MR_CREATE we have no
	 * previous mappings.  So the only case to handle is
	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
	 * has been changed.
	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
	 * to get rid of any THP PTEs in the partition-scoped page tables
	 * so we can track dirtiness at the page level; we flush when
	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
	 * using THP PTEs.
	 */
	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
		kvmppc_radix_flush_memslot(kvm, old);
4434 4435
}

4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

4462 4463 4464 4465 4466
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

4467
void kvmppc_setup_partition_table(struct kvm *kvm)
4468 4469 4470
{
	unsigned long dw0, dw1;

4471 4472 4473 4474 4475 4476
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
4477

4478 4479 4480 4481 4482 4483 4484
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
4485
	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4486 4487
}

4488 4489 4490 4491
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
 * Must be called with kvm->lock held.
 */
4492
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4493 4494 4495 4496 4497 4498
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
4499
	unsigned long lpcr = 0, senc;
4500
	unsigned long psize, porder;
4501
	int srcu_idx;
4502

4503
	/* Allocate hashed page table (if not done already) and reset it */
4504
	if (!kvm->arch.hpt.virt) {
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
4516 4517 4518
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
4519 4520

		kvmppc_set_hpt(kvm, &info);
4521 4522
	}

4523
	/* Look up the memslot for guest physical address 0 */
4524
	srcu_idx = srcu_read_lock(&kvm->srcu);
4525
	memslot = gfn_to_memslot(kvm, 0);
4526

4527 4528 4529
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4530
		goto out_srcu;
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);

	up_read(&current->mm->mmap_sem);

4543
	/* We can handle 4k, 64k or 16M pages in the VRMA */
4544 4545 4546 4547 4548 4549 4550
	if (psize >= 0x1000000)
		psize = 0x1000000;
	else if (psize >= 0x10000)
		psize = 0x10000;
	else
		psize = 0x1000;
	porder = __ilog2(psize);
4551

4552 4553 4554 4555 4556
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
4557

4558 4559 4560 4561 4562 4563
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
4564

4565
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4566 4567
	smp_wmb();
	err = 0;
4568 4569
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
4570 4571
 out:
	return err;
4572

4573 4574
 up_out:
	up_read(&current->mm->mmap_sem);
4575
	goto out_srcu;
4576 4577
}

4578 4579 4580
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
4581
	if (nesting_enabled(kvm))
4582
		kvmhv_release_all_nested(kvm);
4583 4584 4585 4586 4587 4588
	kvmppc_rmap_reset(kvm);
	kvm->arch.process_table = 0;
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 0;
	spin_unlock(&kvm->mmu_lock);
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;
4603 4604 4605 4606 4607
	kvmppc_rmap_reset(kvm);
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 1;
	spin_unlock(&kvm->mmu_lock);
4608 4609 4610 4611 4612 4613
	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

4648
	cpus_read_lock();
4649

4650 4651 4652 4653 4654 4655 4656 4657
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

4658 4659
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4670
		cpus_read_unlock();
4671 4672
		kfree(ops->rm_core);
		kfree(ops);
4673
		return;
4674
	}
4675

4676 4677 4678 4679 4680
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
4681 4682 4683 4684 4685
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
4686
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4687 4688 4689 4690 4691 4692 4693
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

4694
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4695
{
4696
	unsigned long lpcr, lpid;
4697
	char buf[32];
4698
	int ret;
4699

4700 4701 4702
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
4703
	if ((long)lpid < 0)
4704 4705
		return -ENOMEM;
	kvm->arch.lpid = lpid;
4706

4707 4708
	kvmppc_alloc_host_rm_ops();

4709 4710
	kvmhv_vm_nested_init(kvm);

4711 4712 4713 4714
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
4715 4716
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
4717
	 */
4718 4719
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
4720

4721 4722 4723 4724
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

4725 4726
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4727

4728
	/* Init LPCR for virtual RMA mode */
4729 4730 4731 4732 4733 4734 4735
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
	} else {
		lpcr = 0;
	}
4736 4737 4738 4739 4740 4741 4742
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
4743 4744 4745
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4746 4747 4748
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
4749 4750
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4751
		lpcr &= ~LPCR_VPM0;
4752 4753 4754 4755 4756 4757
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
4758
		if (xics_on_xive())
4759
			lpcr |= LPCR_LPES;
4760 4761
	}

4762
	/*
4763
	 * If the host uses radix, the guest starts out as radix.
4764 4765 4766
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
4767
		kvm->arch.mmu_ready = 1;
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

4778
	kvm->arch.lpcr = lpcr;
4779

4780 4781 4782
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

4783 4784 4785 4786
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
4787
	if (radix_enabled())
4788 4789
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4790 4791 4792 4793 4794 4795
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

4796
	/*
4797 4798
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
4799 4800
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
4801
	 */
4802 4803 4804 4805 4806 4807 4808 4809
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
			kvm->arch.threads_indep = true;
		} else {
			kvm->arch.threads_indep = indep_threads_mode;
		}
	}
4810
	if (!kvm->arch.threads_indep)
4811
		kvm_hv_vm_activated();
4812

4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
4824
	kvm->arch.emul_smt_mode = 1;
4825

4826 4827 4828 4829 4830
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4831
	kvmppc_mmu_debugfs_init(kvm);
4832 4833
	if (radix_enabled())
		kvmhv_radix_debugfs_init(kvm);
4834

4835
	return 0;
4836 4837
}

4838 4839 4840 4841
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

4842
	for (i = 0; i < KVM_MAX_VCORES; ++i)
4843 4844 4845 4846
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

4847
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4848
{
4849 4850
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

4851
	if (!kvm->arch.threads_indep)
4852
		kvm_hv_vm_deactivated();
4853

4854
	kvmppc_free_vcores(kvm);
4855

4856

4857 4858 4859
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
4860
		kvmppc_free_hpt(&kvm->arch.hpt);
4861

4862 4863
	/* Perform global invalidation and return lpid to the pool */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4864
		if (nesting_enabled(kvm))
4865
			kvmhv_release_all_nested(kvm);
4866
		kvm->arch.process_table = 0;
4867
		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4868 4869 4870
	}
	kvmppc_free_lpid(kvm->arch.lpid);

4871
	kvmppc_free_pimap(kvm);
4872 4873
}

4874 4875 4876
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
4877
{
4878
	return EMULATE_FAIL;
4879 4880
}

4881 4882
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
4883 4884 4885 4886
{
	return EMULATE_FAIL;
}

4887 4888
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
4889 4890 4891 4892
{
	return EMULATE_FAIL;
}

4893
static int kvmppc_core_check_processor_compat_hv(void)
4894
{
4895 4896 4897
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_206))
		return 0;
4898

4899 4900 4901 4902 4903
	/* POWER9 in radix mode is capable of being a nested hypervisor. */
	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
		return 0;

	return -EIO;
4904 4905
}

4906 4907 4908 4909 4910 4911 4912
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

4913
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4914 4915 4916
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
4917 4918 4919 4920 4921 4922 4923

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
4924
	int i, rc = 0;
4925

4926 4927 4928
	if (!kvm_irq_bypass)
		return 1;

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
4949
	 * what our real-mode EOI code does, or a XIVE interrupt
4950 4951
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
4952
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

4984 4985 4986 4987 4988 4989 4990
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

4991 4992 4993
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

4994
	if (xics_on_xive())
4995 4996 4997 4998 4999
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
5000

5001 5002 5003 5004 5005 5006 5007 5008 5009
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
5010
	int i, rc = 0;
5011

5012 5013 5014
	if (!kvm_irq_bypass)
		return 0;

5015 5016 5017 5018 5019
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
5020 5021
	if (!kvm->arch.pimap)
		goto unlock;
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

5035
	if (xics_on_xive())
5036 5037 5038
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5039

5040
	/* invalidate the entry (what do do on error from the above ?) */
5041 5042 5043 5044 5045 5046
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
5047
 unlock:
5048
	mutex_unlock(&kvm->lock);
5049
	return rc;
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
5088 5089
#endif

5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
5105
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

5144 5145 5146 5147 5148 5149 5150
	default:
		r = -ENOTTY;
	}

	return r;
}

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
5185
	unsigned int hcall;
5186

5187 5188 5189 5190 5191
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
5192 5193
}

5194 5195
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
5196
	unsigned long lpcr;
5197
	int radix;
5198
	int err;
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
5209
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5210
	if (!!(cfg->process_table & PATB_GR) != radix)
5211 5212 5213 5214 5215 5216
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

5217 5218 5219 5220
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

5221 5222 5223 5224
	/* If we're a nested hypervisor, we currently only support radix */
	if (kvmhv_on_pseries() && !radix)
		return -EINVAL;

5225
	mutex_lock(&kvm->lock);
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

5245 5246 5247 5248 5249
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5250
	err = 0;
5251

5252 5253 5254
 out_unlock:
	mutex_unlock(&kvm->lock);
	return err;
5255 5256
}

5257 5258 5259 5260
static int kvmhv_enable_nested(struct kvm *kvm)
{
	if (!nested)
		return -EPERM;
5261
	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5262 5263 5264 5265 5266 5267 5268 5269
		return -ENODEV;

	/* kvm == NULL means the caller is testing if the capability exists */
	if (kvm)
		kvm->arch.nested_enable = true;
	return 0;
}

5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
				 int size)
{
	int rc = -EINVAL;

	if (kvmhv_vcpu_is_radix(vcpu)) {
		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);

		if (rc > 0)
			rc = -EINVAL;
	}

	/* For now quadrants are the only way to access nested guest memory */
	if (rc && vcpu->arch.nested)
		rc = -EAGAIN;

	return rc;
}

static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
				int size)
{
	int rc = -EINVAL;

	if (kvmhv_vcpu_is_radix(vcpu)) {
		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);

		if (rc > 0)
			rc = -EINVAL;
	}

	/* For now quadrants are the only way to access nested guest memory */
	if (rc && vcpu->arch.nested)
		rc = -EAGAIN;

	return rc;
}

5308
static struct kvmppc_ops kvm_ops_hv = {
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5339
	.hcall_implemented = kvmppc_hcall_impl_hv,
5340 5341 5342 5343
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
5344 5345
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
5346
	.set_smt_mode = kvmhv_set_smt_mode,
5347
	.enable_nested = kvmhv_enable_nested,
5348 5349
	.load_from_eaddr = kvmhv_load_from_eaddr,
	.store_to_eaddr = kvmhv_store_to_eaddr,
5350 5351
};

5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
5363
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5364 5365 5366
			continue;

		sibling_subcore_state =
5367
			kzalloc_node(sizeof(struct sibling_subcore_state),
5368 5369 5370 5371 5372 5373 5374 5375
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;


		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

5376 5377
			paca_ptrs[cpu]->sibling_subcore_state =
						sibling_subcore_state;
5378 5379 5380 5381 5382
		}
	}
	return 0;
}

5383 5384 5385 5386 5387
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

5388
static int kvmppc_book3s_init_hv(void)
5389 5390
{
	int r;
5391 5392 5393 5394 5395
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
5396
		return -ENODEV;
5397

5398 5399 5400 5401
	r = kvmhv_nested_init();
	if (r)
		return r;

5402 5403 5404 5405
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

5406 5407
	/*
	 * We need a way of accessing the XICS interrupt controller,
5408
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5409 5410 5411
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
5412
	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5413
	    !local_paca->kvm_hstate.xics_phys) {
5414 5415 5416 5417 5418 5419 5420
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
5421 5422
		/* presence of intc confirmed - node can be dropped again */
		of_node_put(np);
5423 5424 5425
	}
#endif

5426 5427
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
5428

5429 5430
	init_default_hcalls();

5431 5432
	init_vcore_lists();

5433
	r = kvmppc_mmu_hv_init();
5434 5435 5436 5437 5438
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451

	/*
	 * POWER9 chips before version 2.02 can't have some threads in
	 * HPT mode and some in radix mode on the same core.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		unsigned int pvr = mfspr(SPRN_PVR);
		if ((pvr >> 16) == PVR_POWER9 &&
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
			no_mixing_hpt_and_radix = true;
	}

5452 5453 5454
	return r;
}

5455
static void kvmppc_book3s_exit_hv(void)
5456
{
5457
	kvmppc_free_host_rm_ops();
5458 5459
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
5460
	kvmppc_hv_ops = NULL;
5461
	kvmhv_nested_exit();
5462 5463
}

5464 5465
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
5466
MODULE_LICENSE("GPL");
5467 5468
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");