book3s_hv.c 93.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29
#include <linux/fs.h>
#include <linux/anon_inodes.h>
30
#include <linux/cpu.h>
31
#include <linux/cpumask.h>
32 33
#include <linux/spinlock.h>
#include <linux/page-flags.h>
34
#include <linux/srcu.h>
35
#include <linux/miscdevice.h>
36
#include <linux/debugfs.h>
37 38 39 40 41 42 43 44 45 46 47 48

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
49
#include <asm/cputhreads.h>
50
#include <asm/page.h>
51
#include <asm/hvcall.h>
52
#include <asm/switch_to.h>
53
#include <asm/smp.h>
54
#include <asm/dbell.h>
55
#include <asm/hmi.h>
56
#include <asm/pnv-pci.h>
57
#include <asm/mmu.h>
58 59 60
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
61
#include <linux/hugetlb.h>
62 63
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
64
#include <linux/module.h>
65
#include <linux/compiler.h>
66

67 68
#include "book3s.h"

69 70 71
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

72 73 74 75
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

76 77
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
78 79
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
80

81 82 83
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

84 85
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

86 87 88
static int dynamic_mt_modes = 6;
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
89 90 91
static int target_smt_mode;
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
92

93 94 95 96 97 98
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

99 100 101 102
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

103 104 105 106 107
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/* Maximum halt poll interval defaults to KVM_HALT_POLL_NS_DEFAULT */
static unsigned int halt_poll_max_ns = KVM_HALT_POLL_NS_DEFAULT;
module_param(halt_poll_max_ns, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(halt_poll_max_ns, "Maximum halt poll time in ns");

/* Factor by which the vcore halt poll interval is grown, default is to double
 */
static unsigned int halt_poll_ns_grow = 2;
module_param(halt_poll_ns_grow, int, S_IRUGO);
MODULE_PARM_DESC(halt_poll_ns_grow, "Factor halt poll time is grown by");

/* Factor by which the vcore halt poll interval is shrunk, default is to reset
 */
static unsigned int halt_poll_ns_shrink;
module_param(halt_poll_ns_shrink, int, S_IRUGO);
MODULE_PARM_DESC(halt_poll_ns_shrink, "Factor halt poll time is shrunk by");

125
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
126
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static bool kvmppc_ipi_thread(int cpu)
{
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
	if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
		xics_wake_cpu(cpu);
		return true;
	}
#endif

	return false;
}

175
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
176
{
177
	int cpu;
178
	struct swait_queue_head *wqp;
179 180

	wqp = kvm_arch_vcpu_wq(vcpu);
181 182
	if (swait_active(wqp)) {
		swake_up(wqp);
183 184 185
		++vcpu->stat.halt_wakeup;
	}

186
	if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
187
		return;
188 189

	/* CPU points to the first thread of the core */
190
	cpu = vcpu->cpu;
191 192
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
193 194
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
222 223 224 225
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
226 227
 */

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

249
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
250
{
251
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
252
	unsigned long flags;
253

254 255 256 257 258 259
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
260 261 262
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

263
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
264 265 266 267 268
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
269
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
270 271
}

272
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
273
{
274
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
275
	unsigned long flags;
276

277 278 279
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

280
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
281 282
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
283
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
284 285
}

286
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
287
{
288 289 290 291 292 293
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
294
	vcpu->arch.shregs.msr = msr;
295
	kvmppc_end_cede(vcpu);
296 297
}

T
Thomas Huth 已提交
298
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
299 300 301 302
{
	vcpu->arch.pvr = pvr;
}

T
Thomas Huth 已提交
303
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
304 305 306 307 308 309 310
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
311 312 313 314 315
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
316 317 318
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
319 320 321
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
322 323 324 325
			break;
		default:
			return -EINVAL;
		}
326 327 328 329 330 331 332

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
333 334 335 336 337 338 339 340 341 342
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
343
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
372
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
373 374 375
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
376
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
377
{
378
	struct kvm_vcpu *ret;
379 380

	mutex_lock(&kvm->lock);
381
	ret = kvm_get_vcpu_by_id(kvm, id);
382 383 384 385 386 387
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
388
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
389
	vpa->yield_count = cpu_to_be32(1);
390 391
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

408 409 410 411
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
412 413
		__be16 hword;
		__be32 word;
414 415 416 417 418 419 420 421 422 423
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

424 425 426 427 428
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
429
	unsigned long len, nb;
430 431
	void *va;
	struct kvm_vcpu *tvcpu;
432 433 434
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
435 436 437 438 439

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

440 441 442 443 444
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
445
			return H_PARAMETER;
446 447

		/* convert logical addr to kernel addr and read length */
448 449
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
450
			return H_PARAMETER;
451
		if (subfunc == H_VPA_REG_VPA)
452
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
453
		else
454
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
455
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
472
			break;
473 474 475 476 477 478
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
479
			break;
480 481 482 483 484
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
485
			break;
486 487 488 489 490 491 492 493 494

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
495
			break;
496 497 498 499 500 501 502 503 504 505

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
506
			break;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
527
	}
528

529 530
	spin_unlock(&tvcpu->arch.vpa_update_lock);

531
	return err;
532 533
}

534
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
535
{
536
	struct kvm *kvm = vcpu->kvm;
537 538
	void *va;
	unsigned long nb;
539
	unsigned long gpa;
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
555
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
556 557 558 559 560
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
561
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
562 563 564 565 566 567 568 569 570
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
571
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
572
		va = NULL;
573 574
	}
	if (vpap->pinned_addr)
575 576 577
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
578
	vpap->pinned_addr = va;
579
	vpap->dirty = false;
580 581 582 583 584 585
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
586 587 588 589 590
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

591 592
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
593
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
594 595
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
596 597
	}
	if (vcpu->arch.dtl.update_pending) {
598
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
599 600 601 602
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
603
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
604 605 606
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

607 608 609 610 611 612 613
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
614
	unsigned long flags;
615

616 617
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
618
	if (vc->vcore_state != VCORE_INACTIVE &&
619 620 621
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
622 623 624
	return p;
}

625 626 627 628 629
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
630 631 632
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
633 634 635

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
636 637 638 639
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
640
	spin_lock_irq(&vcpu->arch.tbacct_lock);
641 642
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
643
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
644 645 646 647
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
648 649 650 651 652
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
653 654 655 656 657 658
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
659
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
660
	vcpu->arch.dtl.dirty = true;
661 662
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
719 720
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
721 722 723 724 725 726 727 728 729 730 731 732 733 734
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
735
		yield_count = be32_to_cpu(lppaca->yield_count);
736 737 738 739
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

740 741 742 743
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
744
	int yield_count;
745
	struct kvm_vcpu *tvcpu;
746
	int idx, rc;
747

748 749 750 751
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

752 753 754 755 756 757 758 759 760 761 762 763 764
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
765 766
			if (swait_active(&vcpu->wq)) {
				swake_up(&vcpu->wq);
767 768 769 770 771
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
772 773 774 775 776 777 778 779
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
780 781 782 783
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
784 785 786 787 788 789
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
790 791 792 793
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

794
		idx = srcu_read_lock(&vcpu->kvm->srcu);
795
		rc = kvmppc_rtas_hcall(vcpu);
796
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
797 798 799 800 801 802 803 804

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
805 806 807 808 809 810 811 812 813 814
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
815 816 817 818 819 820 821 822
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
823 824 825 826
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
827 828
	case H_IPOLL:
	case H_XIRR_X:
829 830 831
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
857 858 859 860 861 862 863 864
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

865 866 867 868 869 870 871
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
872
	case H_SET_MODE:
873 874
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

914 915
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
916 917 918 919 920
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
939 940 941 942 943 944 945 946 947
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
948
	case BOOK3S_INTERRUPT_H_DOORBELL:
949 950 951
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
952 953
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
954 955 956
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
957 958 959 960 961 962 963 964 965 966 967
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

987 988 989 990
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

991 992 993 994 995 996 997 998 999
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1000 1001 1002 1003 1004
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1005 1006
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1007
		r = RESUME_PAGE_FAULT;
1008 1009
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1010 1011 1012
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
1013 1014 1015
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1016 1017 1018 1019
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1020 1021
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1022 1023 1024 1025
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1026 1027 1028 1029 1030 1031
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1032 1033 1034 1035 1036 1037 1038 1039
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1040 1041
		r = RESUME_GUEST;
		break;
1042 1043 1044
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1045 1046 1047 1048 1049
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1050
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1051 1052 1053 1054 1055 1056 1057
		r = RESUME_HOST;
		break;
	}

	return r;
}

1058 1059
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1060 1061 1062 1063
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1064
	sregs->pvr = vcpu->arch.pvr;
1065 1066 1067 1068 1069 1070 1071 1072
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1073 1074
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1075 1076 1077
{
	int i, j;

1078 1079 1080
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1095 1096
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1097
{
1098
	struct kvm *kvm = vcpu->kvm;
1099 1100 1101
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1102
	mutex_lock(&kvm->lock);
1103
	spin_lock(&vc->lock);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1122 1123 1124
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1125
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1126 1127
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1128 1129
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1130 1131 1132 1133

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1134 1135
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1136
	mutex_unlock(&kvm->lock);
1137 1138
}

1139 1140
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1141
{
1142 1143
	int r = 0;
	long int i;
1144

1145
	switch (id) {
1146 1147 1148
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1149
	case KVM_REG_PPC_HIOR:
1150 1151 1152 1153 1154
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1155 1156 1157
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1173
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1174 1175 1176 1177 1178 1179
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1180
		break;
1181 1182 1183 1184
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1185 1186 1187 1188 1189 1190
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1191 1192
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1193
		break;
1194 1195 1196 1197 1198 1199 1200 1201 1202
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1203 1204 1205
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1232
		break;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1250 1251 1252
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1253
	case KVM_REG_PPC_LPCR:
1254
	case KVM_REG_PPC_LPCR_64:
1255 1256
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1257 1258 1259
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1292 1293 1294
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1326 1327 1328
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1329
	default:
1330
		r = -EINVAL;
1331 1332 1333 1334 1335 1336
		break;
	}

	return r;
}

1337 1338
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1339
{
1340 1341
	int r = 0;
	long int i;
1342
	unsigned long addr, len;
1343

1344
	switch (id) {
1345 1346
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1347
		if (set_reg_val(id, *val))
1348 1349
			r = -EINVAL;
		break;
1350 1351 1352
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1353 1354 1355
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1371
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1372 1373 1374 1375 1376 1377 1378
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1379 1380 1381 1382
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1383 1384 1385 1386 1387 1388
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1389 1390
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1391
		break;
1392 1393 1394 1395 1396 1397 1398 1399 1400
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1401 1402 1403
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1433
		break;
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1454 1455
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1456 1457 1458 1459
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1460 1461 1462 1463 1464
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1465
	case KVM_REG_PPC_LPCR:
1466 1467 1468 1469
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1470
		break;
1471 1472 1473
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1505 1506 1507
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1539 1540 1541
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1542
	default:
1543
		r = -EINVAL;
1544 1545 1546 1547 1548 1549
		break;
	}

	return r;
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1560
	spin_lock_init(&vcore->stoltb_lock);
1561
	init_swait_queue_head(&vcore->wq);
1562 1563 1564 1565
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
	vcore->first_vcpuid = core * threads_per_subcore;
	vcore->kvm = kvm;
1566
	INIT_LIST_HEAD(&vcore->preempt_list);
1567 1568 1569 1570

	return vcore;
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

#define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1719 1720
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1721 1722
{
	struct kvm_vcpu *vcpu;
1723 1724 1725
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1726

1727
	core = id / threads_per_subcore;
1728 1729 1730 1731
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1732
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1733 1734 1735 1736 1737 1738 1739 1740
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1752 1753 1754
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1755
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1756
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1757 1758
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1759
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1760 1761 1762

	kvmppc_mmu_book3s_hv_init(vcpu);

1763
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1764 1765 1766 1767 1768 1769

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
1770
		vcore = kvmppc_vcore_create(kvm, core);
1771
		kvm->arch.vcores[core] = vcore;
1772
		kvm->arch.online_vcores++;
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1783
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1784
	vcpu->arch.thread_cpu = -1;
1785

1786 1787 1788
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1789 1790
	debugfs_vcpu_init(vcpu, id);

1791 1792 1793
	return vcpu;

free_vcpu:
1794
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1795 1796 1797 1798
out:
	return ERR_PTR(err);
}

1799 1800 1801 1802 1803 1804 1805
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1806
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1807
{
1808
	spin_lock(&vcpu->arch.vpa_update_lock);
1809 1810 1811
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1812
	spin_unlock(&vcpu->arch.vpa_update_lock);
1813
	kvm_vcpu_uninit(vcpu);
1814
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1815 1816
}

1817 1818 1819 1820 1821 1822
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1823
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1824
{
1825
	unsigned long dec_nsec, now;
1826

1827 1828 1829 1830
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1831
		kvmppc_core_prepare_to_enter(vcpu);
1832
		return;
1833
	}
1834 1835 1836 1837 1838
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1839 1840
}

1841
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1842
{
1843 1844 1845 1846 1847
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1848 1849
}

1850
extern void __kvmppc_vcore_entry(void);
1851

1852 1853
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1854
{
1855 1856
	u64 now;

1857 1858
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1859
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1860 1861 1862 1863 1864
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1865
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1866
	--vc->n_runnable;
1867
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1868 1869
}

1870 1871 1872
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
1873
	long timeout = 10000;
1874 1875 1876 1877

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
1878
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1879
	tpaca->kvm_hstate.kvm_vcore = NULL;
1880 1881 1882
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1911 1912
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
1913 1914
}

1915
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1916 1917 1918
{
	int cpu;
	struct paca_struct *tpaca;
1919
	struct kvmppc_vcore *mvc = vc->master_vcore;
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
		vcpu->cpu = mvc->pcpu;
		vcpu->arch.thread_cpu = cpu;
1930
	}
1931
	tpaca = &paca[cpu];
1932
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1933 1934
	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1935
	smp_wmb();
1936
	tpaca->kvm_hstate.kvm_vcore = mvc;
1937
	if (cpu != smp_processor_id())
1938
		kvmppc_ipi_thread(cpu);
1939
}
1940

1941
static void kvmppc_wait_for_nap(void)
1942
{
1943 1944
	int cpu = smp_processor_id();
	int i, loops;
1945

1946 1947 1948
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
1949
		 * We set the vcore pointer when starting a thread
1950
		 * and the thread clears it when finished, so we look
1951
		 * for any threads that still have a non-NULL vcore ptr.
1952 1953
		 */
		for (i = 1; i < threads_per_subcore; ++i)
1954
			if (paca[cpu + i].kvm_hstate.kvm_vcore)
1955 1956 1957 1958
				break;
		if (i == threads_per_subcore) {
			HMT_medium();
			return;
1959
		}
1960
		HMT_low();
1961 1962
	}
	HMT_medium();
1963
	for (i = 1; i < threads_per_subcore; ++i)
1964
		if (paca[cpu + i].kvm_hstate.kvm_vcore)
1965
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1966 1967 1968 1969
}

/*
 * Check that we are on thread 0 and that any other threads in
1970 1971
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1972 1973 1974 1975
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
1976
	int thr;
1977

1978 1979
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
1980
		return 0;
1981 1982 1983

	thr = 0;
	while (++thr < threads_per_subcore)
1984 1985
		if (cpu_online(cpu + thr))
			return 0;
1986 1987

	/* Grab all hw threads so they can't go into the kernel */
1988
	for (thr = 1; thr < threads_per_subcore; ++thr) {
1989 1990 1991 1992 1993 1994 1995 1996
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1997 1998 1999
	return 1;
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
	if (vc->num_threads < threads_per_subcore) {
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2041
	struct preempted_vcore_list *lp;
2042 2043 2044

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2045
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2046 2047 2048 2049 2050 2051 2052
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2053 2054 2055 2056
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2057
struct core_info {
2058 2059
	int		n_subcores;
	int		max_subcore_threads;
2060
	int		total_threads;
2061 2062 2063
	int		subcore_threads[MAX_SUBCORES];
	struct kvm	*subcore_vm[MAX_SUBCORES];
	struct list_head vcs[MAX_SUBCORES];
2064 2065
};

2066 2067 2068 2069 2070 2071
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
 * respectively in 2-way micro-threading (split-core) mode.
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2072 2073
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
2074 2075
	int sub;

2076
	memset(cip, 0, sizeof(*cip));
2077 2078
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2079
	cip->total_threads = vc->num_threads;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	cip->subcore_threads[0] = vc->num_threads;
	cip->subcore_vm[0] = vc->kvm;
	for (sub = 0; sub < MAX_SUBCORES; ++sub)
		INIT_LIST_HEAD(&cip->vcs[sub]);
	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
	/* Can only dynamically split if unsplit to begin with */
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
}

static void init_master_vcore(struct kvmppc_vcore *vc)
{
	vc->master_vcore = vc;
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2123
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2124
		return false;
2125
	cip->max_subcore_threads = n_threads;
2126 2127 2128 2129 2130 2131 2132

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
	cip->subcore_vm[sub] = vc->kvm;
	init_master_vcore(vc);
2133
	list_move_tail(&vc->preempt_list, &cip->vcs[sub]);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2148
	return can_dynamic_split(pvc, cip);
2149 2150
}

2151 2152
static void prepare_threads(struct kvmppc_vcore *vc)
{
2153 2154
	int i;
	struct kvm_vcpu *vcpu;
2155

2156
	for_each_runnable_thread(i, vcpu, vc) {
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2202
{
2203
	int still_running = 0, i;
2204 2205
	u64 now;
	long ret;
2206
	struct kvm_vcpu *vcpu;
2207

2208
	spin_lock(&vc->lock);
2209
	now = get_tb();
2210
	for_each_runnable_thread(i, vcpu, vc) {
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2226 2227 2228 2229
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2230
				kvmppc_set_timer(vcpu);
2231 2232 2233
			else
				++still_running;
		} else {
2234 2235 2236 2237
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2238 2239
	list_del_init(&vc->preempt_list);
	if (!is_master) {
2240
		if (still_running > 0) {
2241
			kvmppc_vcore_preempt(vc);
2242 2243 2244 2245 2246 2247
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2248 2249
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2250 2251
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2252 2253 2254 2255
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2256 2257
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
static inline void kvmppc_clear_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
static inline void kvmppc_set_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
}

2298 2299 2300 2301
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2302
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2303
{
2304
	struct kvm_vcpu *vcpu;
2305
	int i;
2306
	int srcu_idx;
2307 2308
	struct core_info core_info;
	struct kvmppc_vcore *pvc, *vcnext;
2309 2310 2311 2312 2313
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2314 2315
	int pcpu, thr;
	int target_threads;
2316

2317 2318 2319 2320 2321 2322 2323 2324 2325
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2326 2327

	/*
2328
	 * Initialize *vc.
2329
	 */
2330
	init_master_vcore(vc);
2331
	vc->preempt_tb = TB_NIL;
2332

2333
	/*
2334 2335 2336
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2337
	 */
2338 2339
	if ((threads_per_core > 1) &&
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2340
		for_each_runnable_thread(i, vcpu, vc) {
2341
			vcpu->arch.ret = -EBUSY;
2342 2343 2344
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2345 2346 2347
		goto out;
	}

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
	target_threads = threads_per_subcore;
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2359

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
	if (split > 1) {
		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
		if (split == 2 && (dynamic_mt_modes & 2)) {
			cmd_bit = HID0_POWER8_1TO2LPAR;
			stat_bit = HID0_POWER8_2LPARMODE;
		} else {
			split = 4;
			cmd_bit = HID0_POWER8_1TO4LPAR;
			stat_bit = HID0_POWER8_4LPARMODE;
		}
		subcore_size = MAX_SMT_THREADS / split;
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		split_info.rpr = mfspr(SPRN_RPR);
		split_info.pmmar = mfspr(SPRN_PMMAR);
		split_info.ldbar = mfspr(SPRN_LDBAR);
		split_info.subcore_size = subcore_size;
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			split_info.master_vcs[sub] =
				list_first_entry(&core_info.vcs[sub],
					struct kvmppc_vcore, preempt_list);
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
	pcpu = smp_processor_id();
	for (thr = 0; thr < threads_per_subcore; ++thr)
		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;

	/* Initiate micro-threading (split-core) if required */
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2406
		}
2407
	}
2408

2409 2410
	kvmppc_clear_host_core(pcpu);

2411 2412 2413 2414 2415 2416 2417 2418
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		thr = subcore_thread_map[sub];
		thr0_done = false;
		active |= 1 << thr;
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
			pvc->pcpu = pcpu + thr;
2419
			for_each_runnable_thread(i, vcpu, pvc) {
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
				kvmppc_start_thread(vcpu, pvc);
				kvmppc_create_dtl_entry(vcpu, pvc);
				trace_kvm_guest_enter(vcpu);
				if (!vcpu->arch.ptid)
					thr0_done = true;
				active |= 1 << (thr + vcpu->arch.ptid);
			}
			/*
			 * We need to start the first thread of each subcore
			 * even if it doesn't have a vcpu.
			 */
			if (pvc->master_vcore == pvc && !thr0_done)
				kvmppc_start_thread(NULL, pvc);
			thr += pvc->num_threads;
		}
2435
	}
2436

2437 2438 2439 2440 2441 2442 2443 2444
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();
	if (cmd_bit)
		split_info.do_nap = 1;	/* ask secondaries to nap when done */

2445 2446 2447 2448 2449 2450 2451 2452 2453
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
	 */
	if (split > 1)
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2454

2455
	vc->vcore_state = VCORE_RUNNING;
2456
	preempt_disable();
2457 2458 2459

	trace_kvmppc_run_core(vc, 0);

2460 2461 2462
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
			spin_unlock(&pvc->lock);
2463

2464
	guest_enter();
2465

2466
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2467

2468
	__kvmppc_vcore_entry();
2469

2470 2471 2472
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

	spin_lock(&vc->lock);
2473
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2474
	vc->vcore_state = VCORE_EXITING;
2475

2476
	/* wait for secondary threads to finish writing their state to memory */
2477
	kvmppc_wait_for_nap();
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

	/* Return to whole-core mode if we split the core earlier */
	if (split > 1) {
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
		split_info.do_nap = 0;
	}

	/* Let secondaries go back to the offline loop */
	for (i = 0; i < threads_per_subcore; ++i) {
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
	}

2506 2507
	kvmppc_set_host_core(pcpu);

2508
	spin_unlock(&vc->lock);
2509

2510 2511
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2512
	guest_exit();
2513

2514 2515 2516 2517
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
					 preempt_list)
			post_guest_process(pvc, pvc == vc);
2518

2519
	spin_lock(&vc->lock);
2520
	preempt_enable();
2521 2522

 out:
2523
	vc->vcore_state = VCORE_INACTIVE;
2524
	trace_kvmppc_run_core(vc, 1);
2525 2526
}

2527 2528 2529 2530
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
2531 2532
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
2533 2534 2535
{
	DEFINE_WAIT(wait);

2536
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2537 2538
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
2539
		schedule();
2540 2541
		spin_lock(&vc->lock);
	}
2542 2543 2544
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;

	if (vc->halt_poll_ns > halt_poll_max_ns)
		vc->halt_poll_ns = halt_poll_max_ns;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

/* Check to see if any of the runnable vcpus on the vcore have pending
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded)
			return 1;
	}

	return 0;
}

2581 2582 2583 2584 2585 2586
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2587
	ktime_t cur, start_poll, start_wait;
2588 2589
	int do_sleep = 1;
	u64 block_ns;
2590
	DECLARE_SWAITQUEUE(wait);
2591

2592
	/* Poll for pending exceptions and ceded state */
2593
	cur = start_poll = ktime_get();
2594
	if (vc->halt_poll_ns) {
2595 2596
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
2597

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

2612 2613
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
2614
			goto out;
2615
		}
2616 2617
	}

2618 2619 2620
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);

	if (kvmppc_vcore_check_block(vc)) {
2621
		finish_swait(&vc->wq, &wait);
2622
		do_sleep = 0;
2623 2624 2625
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
2626
		goto out;
2627 2628
	}

2629 2630
	start_wait = ktime_get();

2631
	vc->vcore_state = VCORE_SLEEPING;
2632
	trace_kvmppc_vcore_blocked(vc, 0);
2633
	spin_unlock(&vc->lock);
2634
	schedule();
2635
	finish_swait(&vc->wq, &wait);
2636 2637
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
2638
	trace_kvmppc_vcore_blocked(vc, 1);
2639
	++vc->runner->stat.halt_successful_wait;
2640 2641 2642 2643

	cur = ktime_get();

out:
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

	/* Adjust poll time */
	if (halt_poll_max_ns) {
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
		else if (vc->halt_poll_ns && block_ns > halt_poll_max_ns)
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
		else if (vc->halt_poll_ns < halt_poll_max_ns &&
				block_ns < halt_poll_max_ns)
			grow_halt_poll_ns(vc);
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
2678
}
2679

2680 2681
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
2682
	int n_ceded, i;
2683
	struct kvmppc_vcore *vc;
2684
	struct kvm_vcpu *v;
2685

2686 2687
	trace_kvmppc_run_vcpu_enter(vcpu);

2688 2689 2690
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
2691
	kvmppc_update_vpas(vcpu);
2692 2693 2694 2695 2696 2697

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
2698
	vcpu->arch.ceded = 0;
2699 2700
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
2701
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2702
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2703
	vcpu->arch.busy_preempt = TB_NIL;
2704
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2705 2706
	++vc->n_runnable;

2707 2708 2709 2710 2711
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
2712
	if (!signal_pending(current)) {
2713 2714 2715 2716 2717 2718
		if (vc->vcore_state == VCORE_PIGGYBACK) {
			struct kvmppc_vcore *mvc = vc->master_vcore;
			if (spin_trylock(&mvc->lock)) {
				if (mvc->vcore_state == VCORE_RUNNING &&
				    !VCORE_IS_EXITING(mvc)) {
					kvmppc_create_dtl_entry(vcpu, vc);
2719
					kvmppc_start_thread(vcpu, vc);
2720 2721 2722 2723 2724 2725
					trace_kvm_guest_enter(vcpu);
				}
				spin_unlock(&mvc->lock);
			}
		} else if (vc->vcore_state == VCORE_RUNNING &&
			   !VCORE_IS_EXITING(vc)) {
2726
			kvmppc_create_dtl_entry(vcpu, vc);
2727
			kvmppc_start_thread(vcpu, vc);
2728
			trace_kvm_guest_enter(vcpu);
2729
		} else if (vc->vcore_state == VCORE_SLEEPING) {
2730
			swake_up(&vc->wq);
2731 2732
		}

2733
	}
2734

2735 2736
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
2737 2738 2739
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

2740
		if (vc->vcore_state != VCORE_INACTIVE) {
2741
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2742 2743
			continue;
		}
2744
		for_each_runnable_thread(i, v, vc) {
2745
			kvmppc_core_prepare_to_enter(v);
2746 2747 2748 2749 2750 2751 2752 2753
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
2754 2755 2756
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
2757
		for_each_runnable_thread(i, v, vc) {
2758 2759
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
2760 2761 2762
			else
				v->arch.ceded = 0;
		}
2763 2764
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
2765
			kvmppc_vcore_blocked(vc);
2766
		} else if (need_resched()) {
2767
			kvmppc_vcore_preempt(vc);
2768 2769
			/* Let something else run */
			cond_resched_lock(&vc->lock);
2770 2771
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
2772
		} else {
2773
			kvmppc_run_core(vc);
2774
		}
2775
		vc->runner = NULL;
2776
	}
2777

2778 2779
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
2780 2781
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
2782
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2783

2784 2785 2786
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

2787 2788 2789 2790 2791 2792 2793 2794 2795
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
2796 2797
		i = -1;
		v = next_runnable_thread(vc, &i);
2798
		wake_up(&v->arch.cpu_run);
2799 2800
	}

2801
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2802 2803
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
2804 2805
}

2806
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2807 2808
{
	int r;
2809
	int srcu_idx;
2810

2811 2812 2813 2814 2815
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

2816 2817
	kvmppc_core_prepare_to_enter(vcpu);

2818 2819 2820 2821 2822 2823
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

2824
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2825
	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2826 2827
	smp_mb();

2828
	/* On the first time here, set up HTAB and VRMA */
2829
	if (!vcpu->kvm->arch.hpte_setup_done) {
2830
		r = kvmppc_hv_setup_htab_rma(vcpu);
2831
		if (r)
2832
			goto out;
2833
	}
2834

2835 2836
	flush_all_to_thread(current);

2837
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2838
	vcpu->arch.pgdir = current->mm->pgd;
2839
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2840

2841 2842 2843 2844 2845
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2846
			trace_kvm_hcall_enter(vcpu);
2847
			r = kvmppc_pseries_do_hcall(vcpu);
2848
			trace_kvm_hcall_exit(vcpu, r);
2849
			kvmppc_core_prepare_to_enter(vcpu);
2850 2851 2852 2853 2854
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2855 2856
		} else if (r == RESUME_PASSTHROUGH)
			r = kvmppc_xics_rm_complete(vcpu, 0);
2857
	} while (is_kvmppc_resume_guest(r));
2858 2859

 out:
2860
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2861
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2862 2863 2864
	return r;
}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
2875
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2876 2877 2878 2879 2880 2881 2882
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
2883 2884 2885
	(*sps)++;
}

2886 2887
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

2905 2906 2907
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
2908 2909
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
2910
{
2911
	struct kvm_memslots *slots;
2912 2913 2914 2915 2916 2917 2918
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
2919
	if (log->slot >= KVM_USER_MEM_SLOTS)
2920 2921
		goto out;

2922 2923
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
2924 2925 2926 2927 2928 2929 2930
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

2931
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

2945 2946
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
2947 2948 2949 2950
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
2951
	}
2952 2953
}

2954 2955
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
2956 2957 2958 2959
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
2960

2961 2962
	return 0;
}
2963

2964 2965
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
2966
					const struct kvm_userspace_memory_region *mem)
2967
{
2968
	return 0;
2969 2970
}

2971
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2972
				const struct kvm_userspace_memory_region *mem,
2973 2974
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
2975
{
2976
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2977
	struct kvm_memslots *slots;
2978 2979
	struct kvm_memory_slot *memslot;

2980 2981 2982 2983 2984 2985 2986 2987 2988
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);

2989
	if (npages && old->npages) {
2990 2991 2992 2993 2994 2995
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
2996 2997
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, mem->slot);
2998 2999
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
3000 3001
}

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3028 3029 3030 3031 3032
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
static void kvmppc_setup_partition_table(struct kvm *kvm)
{
	unsigned long dw0, dw1;

	/* PS field - page size for VRMA */
	dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
		((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
	/* HTABSIZE and HTABORG fields */
	dw0 |= kvm->arch.sdr1;

	/* Second dword has GR=0; other fields are unused since UPRT=0 */
	dw1 = 0;

	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}

3049
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3050 3051 3052 3053 3054 3055
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3056
	unsigned long lpcr = 0, senc;
3057
	unsigned long psize, porder;
3058
	int srcu_idx;
3059 3060

	mutex_lock(&kvm->lock);
3061
	if (kvm->arch.hpte_setup_done)
3062
		goto out;	/* another vcpu beat us to it */
3063

3064 3065 3066 3067 3068 3069 3070 3071 3072
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

3073
	/* Look up the memslot for guest physical address 0 */
3074
	srcu_idx = srcu_read_lock(&kvm->srcu);
3075
	memslot = gfn_to_memslot(kvm, 0);
3076

3077 3078 3079
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3080
		goto out_srcu;
3081 3082 3083 3084 3085 3086 3087 3088 3089

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
3090
	porder = __ilog2(psize);
3091 3092 3093

	up_read(&current->mm->mmap_sem);

3094 3095 3096 3097 3098
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
3099

3100 3101 3102 3103 3104
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3105

3106 3107 3108 3109 3110 3111 3112 3113
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	} else {
		kvmppc_setup_partition_table(kvm);
	}
3114

3115
	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3116
	smp_wmb();
3117
	kvm->arch.hpte_setup_done = 1;
3118
	err = 0;
3119 3120
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3121 3122 3123
 out:
	mutex_unlock(&kvm->lock);
	return err;
3124

3125 3126
 up_out:
	up_read(&current->mm->mmap_sem);
3127
	goto out_srcu;
3128 3129
}

3130
#ifdef CONFIG_KVM_XICS
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
			void *hcpu)
{
	unsigned long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		kvmppc_set_host_core(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		kvmppc_clear_host_core(cpu);
		break;
#endif
	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block kvmppc_cpu_notifier = {
	    .notifier_call = kvmppc_cpu_notify,
};

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3194 3195
	get_online_cpus();

3196 3197 3198 3199 3200 3201 3202 3203
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3204 3205
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3216
		put_online_cpus();
3217 3218
		kfree(ops->rm_core);
		kfree(ops);
3219
		return;
3220
	}
3221 3222 3223 3224

	register_cpu_notifier(&kvmppc_cpu_notifier);

	put_online_cpus();
3225 3226 3227 3228 3229
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3230
		unregister_cpu_notifier(&kvmppc_cpu_notifier);
3231 3232 3233 3234 3235 3236 3237
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3238
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3239
{
3240
	unsigned long lpcr, lpid;
3241
	char buf[32];
3242

3243 3244 3245
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3246
	if ((long)lpid < 0)
3247 3248
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3249

3250 3251
	kvmppc_alloc_host_rm_ops();

3252 3253 3254 3255 3256 3257 3258
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

3259 3260 3261 3262
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3263 3264
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3265

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3277 3278 3279
	/* On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		lpcr &= ~LPCR_VPM0;
3280
	kvm->arch.lpcr = lpcr;
3281

3282
	/*
3283 3284
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
3285
	 */
3286
	kvm_hv_vm_activated();
3287

3288 3289 3290 3291 3292 3293 3294 3295
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

3296
	return 0;
3297 3298
}

3299 3300 3301 3302
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

3303
	for (i = 0; i < KVM_MAX_VCORES; ++i)
3304 3305 3306 3307
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

3308
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3309
{
3310 3311
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

3312
	kvm_hv_vm_deactivated();
3313

3314
	kvmppc_free_vcores(kvm);
3315

3316
	kvmppc_free_hpt(kvm);
3317 3318

	kvmppc_free_pimap(kvm);
3319 3320
}

3321 3322 3323
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
3324
{
3325
	return EMULATE_FAIL;
3326 3327
}

3328 3329
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
3330 3331 3332 3333
{
	return EMULATE_FAIL;
}

3334 3335
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
3336 3337 3338 3339
{
	return EMULATE_FAIL;
}

3340
static int kvmppc_core_check_processor_compat_hv(void)
3341
{
3342 3343
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
3344
		return -EIO;
3345 3346 3347 3348 3349 3350
	/*
	 * Disable KVM for Power9, untill the required bits merged.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return -EIO;

3351
	return 0;
3352 3353
}

3354 3355 3356 3357 3358 3359 3360
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

3361
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3362 3363 3364
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
3365 3366 3367 3368 3369 3370 3371 3372 3373

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
	int i;

3374 3375 3376
	if (!kvm_irq_bypass)
		return 1;

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
	 * what our real-mode EOI code does.
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
	if (!chip || !is_pnv_opal_msi(chip)) {
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

3432 3433 3434 3435 3436 3437 3438
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

3439 3440 3441
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

3442 3443
	kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
	int i;

3455 3456 3457
	if (!kvm_irq_bypass)
		return 0;

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	if (kvm->arch.pimap == NULL) {
		mutex_unlock(&kvm->lock);
		return 0;
	}
	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

3480 3481
	kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	/* invalidate the entry */
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */

	mutex_unlock(&kvm->lock);
	return 0;
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
3530 3531
#endif

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
3608
	unsigned int hcall;
3609

3610 3611 3612 3613 3614
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
3615 3616
}

3617
static struct kvmppc_ops kvm_ops_hv = {
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3649
	.hcall_implemented = kvmppc_hcall_impl_hv,
3650 3651 3652 3653
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
3654 3655
};

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
		if (paca[first_cpu].sibling_subcore_state)
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

			paca[cpu].sibling_subcore_state = sibling_subcore_state;
		}
	}
	return 0;
}

3688
static int kvmppc_book3s_init_hv(void)
3689 3690
{
	int r;
3691 3692 3693 3694 3695
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
3696
		return -ENODEV;
3697

3698 3699 3700 3701
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

3702 3703
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
3704

3705 3706
	init_default_hcalls();

3707 3708
	init_vcore_lists();

3709
	r = kvmppc_mmu_hv_init();
3710 3711 3712
	return r;
}

3713
static void kvmppc_book3s_exit_hv(void)
3714
{
3715
	kvmppc_free_host_rm_ops();
3716
	kvmppc_hv_ops = NULL;
3717 3718
}

3719 3720
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
3721
MODULE_LICENSE("GPL");
3722 3723
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");