book3s_hv.c 88.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29
#include <linux/fs.h>
#include <linux/anon_inodes.h>
30
#include <linux/cpu.h>
31
#include <linux/cpumask.h>
32 33
#include <linux/spinlock.h>
#include <linux/page-flags.h>
34
#include <linux/srcu.h>
35
#include <linux/miscdevice.h>
36
#include <linux/debugfs.h>
37 38 39 40 41 42 43 44 45 46 47 48

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
49
#include <asm/cputhreads.h>
50
#include <asm/page.h>
51
#include <asm/hvcall.h>
52
#include <asm/switch_to.h>
53
#include <asm/smp.h>
54
#include <asm/dbell.h>
55
#include <asm/hmi.h>
56 57 58
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
59
#include <linux/hugetlb.h>
60
#include <linux/module.h>
61
#include <linux/compiler.h>
62

63 64
#include "book3s.h"

65 66 67
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

68 69 70 71
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

72 73 74
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

75 76 77
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

78 79
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

80 81 82
static int dynamic_mt_modes = 6;
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
83 84 85
static int target_smt_mode;
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
86

87 88 89 90 91 92 93 94 95 96 97
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

98
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
99
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static bool kvmppc_ipi_thread(int cpu)
{
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
	if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
		xics_wake_cpu(cpu);
		return true;
	}
#endif

	return false;
}

148
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
149
{
150
	int cpu;
151
	struct swait_queue_head *wqp;
152 153

	wqp = kvm_arch_vcpu_wq(vcpu);
154 155
	if (swait_active(wqp)) {
		swake_up(wqp);
156 157 158
		++vcpu->stat.halt_wakeup;
	}

159
	if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
160
		return;
161 162

	/* CPU points to the first thread of the core */
163
	cpu = vcpu->cpu;
164 165
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
166 167
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
195 196 197 198
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
199 200
 */

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

222
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
223
{
224
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
225
	unsigned long flags;
226

227 228 229 230 231 232
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
233 234 235
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

236
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
237 238 239 240 241
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
242
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
243 244
}

245
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
246
{
247
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
248
	unsigned long flags;
249

250 251 252
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

253
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
254 255
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
256
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
257 258
}

259
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
260
{
261 262 263 264 265 266
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
267
	vcpu->arch.shregs.msr = msr;
268
	kvmppc_end_cede(vcpu);
269 270
}

T
Thomas Huth 已提交
271
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
272 273 274 275
{
	vcpu->arch.pvr = pvr;
}

T
Thomas Huth 已提交
276
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
277 278 279 280 281 282 283
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
284 285 286 287 288
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
289 290 291
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
292 293 294
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
295 296 297 298
			break;
		default:
			return -EINVAL;
		}
299 300 301 302 303 304 305

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
306 307 308 309 310 311 312 313 314 315
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
316
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
345
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
346 347 348
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
349
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
350
{
351
	struct kvm_vcpu *ret;
352 353

	mutex_lock(&kvm->lock);
354
	ret = kvm_get_vcpu_by_id(kvm, id);
355 356 357 358 359 360
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
361
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
362
	vpa->yield_count = cpu_to_be32(1);
363 364
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

381 382 383 384
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
385 386
		__be16 hword;
		__be32 word;
387 388 389 390 391 392 393 394 395 396
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

397 398 399 400 401
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
402
	unsigned long len, nb;
403 404
	void *va;
	struct kvm_vcpu *tvcpu;
405 406 407
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
408 409 410 411 412

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

413 414 415 416 417
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
418
			return H_PARAMETER;
419 420

		/* convert logical addr to kernel addr and read length */
421 422
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
423
			return H_PARAMETER;
424
		if (subfunc == H_VPA_REG_VPA)
425
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
426
		else
427
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
428
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
445
			break;
446 447 448 449 450 451
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
452
			break;
453 454 455 456 457
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
458
			break;
459 460 461 462 463 464 465 466 467

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
468
			break;
469 470 471 472 473 474 475 476 477 478

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
479
			break;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
500
	}
501

502 503
	spin_unlock(&tvcpu->arch.vpa_update_lock);

504
	return err;
505 506
}

507
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
508
{
509
	struct kvm *kvm = vcpu->kvm;
510 511
	void *va;
	unsigned long nb;
512
	unsigned long gpa;
513

514 515 516 517 518 519 520 521 522 523 524 525 526 527
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
528
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
529 530 531 532 533
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
534
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
535 536 537 538 539 540 541 542 543
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
544
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
545
		va = NULL;
546 547
	}
	if (vpap->pinned_addr)
548 549 550
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
551
	vpap->pinned_addr = va;
552
	vpap->dirty = false;
553 554 555 556 557 558
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
559 560 561 562 563
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

564 565
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
566
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
567 568
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
569 570
	}
	if (vcpu->arch.dtl.update_pending) {
571
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
572 573 574 575
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
576
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
577 578 579
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

580 581 582 583 584 585 586
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
587
	unsigned long flags;
588

589 590
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
591
	if (vc->vcore_state != VCORE_INACTIVE &&
592 593 594
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
595 596 597
	return p;
}

598 599 600 601 602
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
603 604 605
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
606 607 608

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
609 610 611 612
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
613
	spin_lock_irq(&vcpu->arch.tbacct_lock);
614 615
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
616
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
617 618 619 620
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
621 622 623 624 625
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
626 627 628 629 630 631
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
632
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
633
	vcpu->arch.dtl.dirty = true;
634 635
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
692 693
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
694 695 696 697 698 699 700 701 702 703 704 705 706 707
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
708
		yield_count = be32_to_cpu(lppaca->yield_count);
709 710 711 712
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

713 714 715 716
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
717
	int yield_count;
718
	struct kvm_vcpu *tvcpu;
719
	int idx, rc;
720

721 722 723 724
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

725 726 727 728 729 730 731 732 733 734 735 736 737
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
738 739
			if (swait_active(&vcpu->wq)) {
				swake_up(&vcpu->wq);
740 741 742 743 744
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
745 746 747 748 749 750 751 752
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
753 754 755 756
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
757 758 759 760 761 762
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
763 764 765 766
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

767
		idx = srcu_read_lock(&vcpu->kvm->srcu);
768
		rc = kvmppc_rtas_hcall(vcpu);
769
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
770 771 772 773 774 775 776 777

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
778 779 780 781 782 783 784 785 786 787
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
788 789 790 791 792 793 794 795
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
796 797 798 799
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
800 801
	case H_IPOLL:
	case H_XIRR_X:
802 803 804
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
830 831 832 833 834 835 836 837
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

838 839 840 841 842 843 844
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
845
	case H_SET_MODE:
846 847
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

887 888
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
889 890 891 892 893
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
912 913 914 915 916 917 918 919 920
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
921
	case BOOK3S_INTERRUPT_H_DOORBELL:
922 923 924
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
925 926
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
927 928 929
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
930 931 932 933 934 935 936 937 938 939 940
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

960 961 962 963
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

964 965 966 967 968 969 970 971 972
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
973 974 975 976 977
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
978 979
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
980
		r = RESUME_PAGE_FAULT;
981 982
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
983 984 985
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
986 987 988
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
989 990 991 992
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
993 994
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
995 996 997 998
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
999 1000 1001 1002 1003 1004
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1005 1006 1007 1008 1009 1010 1011 1012
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1013 1014 1015 1016 1017 1018 1019
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1020
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1021 1022 1023 1024 1025 1026 1027
		r = RESUME_HOST;
		break;
	}

	return r;
}

1028 1029
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1030 1031 1032 1033
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1034
	sregs->pvr = vcpu->arch.pvr;
1035 1036 1037 1038 1039 1040 1041 1042
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1043 1044
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1045 1046 1047
{
	int i, j;

1048 1049 1050
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1065 1066
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1067
{
1068
	struct kvm *kvm = vcpu->kvm;
1069 1070 1071
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1072
	mutex_lock(&kvm->lock);
1073
	spin_lock(&vc->lock);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1092 1093 1094
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1095
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1096 1097
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1098 1099
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1100 1101 1102 1103

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1104 1105
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1106
	mutex_unlock(&kvm->lock);
1107 1108
}

1109 1110
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1111
{
1112 1113
	int r = 0;
	long int i;
1114

1115
	switch (id) {
1116 1117 1118
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1119
	case KVM_REG_PPC_HIOR:
1120 1121 1122 1123 1124
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1125 1126 1127
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1143
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1144 1145 1146 1147 1148 1149
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1150
		break;
1151 1152 1153 1154
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1155 1156 1157 1158 1159 1160
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1161 1162
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1163
		break;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1199
		break;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1217 1218 1219
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1220
	case KVM_REG_PPC_LPCR:
1221
	case KVM_REG_PPC_LPCR_64:
1222 1223
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1224 1225 1226
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1290 1291 1292
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1293
	default:
1294
		r = -EINVAL;
1295 1296 1297 1298 1299 1300
		break;
	}

	return r;
}

1301 1302
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1303
{
1304 1305
	int r = 0;
	long int i;
1306
	unsigned long addr, len;
1307

1308
	switch (id) {
1309 1310
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1311
		if (set_reg_val(id, *val))
1312 1313
			r = -EINVAL;
		break;
1314 1315 1316
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1317 1318 1319
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1335
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1336 1337 1338 1339 1340 1341 1342
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1343 1344 1345 1346
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1347 1348 1349 1350 1351 1352
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1353 1354
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1355
		break;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1394
		break;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1415 1416
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1417 1418 1419 1420
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1421 1422 1423 1424 1425
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1426
	case KVM_REG_PPC_LPCR:
1427 1428 1429 1430
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1431
		break;
1432 1433 1434
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1497 1498 1499
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1500
	default:
1501
		r = -EINVAL;
1502 1503 1504 1505 1506 1507
		break;
	}

	return r;
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1518
	spin_lock_init(&vcore->stoltb_lock);
1519
	init_swait_queue_head(&vcore->wq);
1520 1521 1522 1523
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
	vcore->first_vcpuid = core * threads_per_subcore;
	vcore->kvm = kvm;
1524
	INIT_LIST_HEAD(&vcore->preempt_list);
1525 1526 1527 1528

	return vcore;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

#define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1677 1678
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1679 1680
{
	struct kvm_vcpu *vcpu;
1681 1682 1683
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1684

1685
	core = id / threads_per_subcore;
1686 1687 1688 1689
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1690
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1691 1692 1693 1694 1695 1696 1697 1698
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1710 1711 1712
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1713
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1714
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1715 1716
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1717
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1718 1719 1720

	kvmppc_mmu_book3s_hv_init(vcpu);

1721
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1722 1723 1724 1725 1726 1727

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
1728
		vcore = kvmppc_vcore_create(kvm, core);
1729
		kvm->arch.vcores[core] = vcore;
1730
		kvm->arch.online_vcores++;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1741
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1742
	vcpu->arch.thread_cpu = -1;
1743

1744 1745 1746
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1747 1748
	debugfs_vcpu_init(vcpu, id);

1749 1750 1751
	return vcpu;

free_vcpu:
1752
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1753 1754 1755 1756
out:
	return ERR_PTR(err);
}

1757 1758 1759 1760 1761 1762 1763
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1764
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1765
{
1766
	spin_lock(&vcpu->arch.vpa_update_lock);
1767 1768 1769
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1770
	spin_unlock(&vcpu->arch.vpa_update_lock);
1771
	kvm_vcpu_uninit(vcpu);
1772
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1773 1774
}

1775 1776 1777 1778 1779 1780
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1781
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1782
{
1783
	unsigned long dec_nsec, now;
1784

1785 1786 1787 1788
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1789
		kvmppc_core_prepare_to_enter(vcpu);
1790
		return;
1791
	}
1792 1793 1794 1795 1796
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1797 1798
}

1799
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1800
{
1801 1802 1803 1804 1805
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1806 1807
}

1808
extern void __kvmppc_vcore_entry(void);
1809

1810 1811
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1812
{
1813 1814
	u64 now;

1815 1816
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1817
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1818 1819 1820 1821 1822
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1823
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1824
	--vc->n_runnable;
1825
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1826 1827
}

1828 1829 1830
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
1831
	long timeout = 10000;
1832 1833 1834 1835

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
1836
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1837
	tpaca->kvm_hstate.kvm_vcore = NULL;
1838 1839 1840
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1869 1870
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
1871 1872
}

1873
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1874 1875 1876
{
	int cpu;
	struct paca_struct *tpaca;
1877
	struct kvmppc_vcore *mvc = vc->master_vcore;
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
		vcpu->cpu = mvc->pcpu;
		vcpu->arch.thread_cpu = cpu;
1888
	}
1889
	tpaca = &paca[cpu];
1890
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1891 1892
	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1893
	smp_wmb();
1894
	tpaca->kvm_hstate.kvm_vcore = mvc;
1895
	if (cpu != smp_processor_id())
1896
		kvmppc_ipi_thread(cpu);
1897
}
1898

1899
static void kvmppc_wait_for_nap(void)
1900
{
1901 1902
	int cpu = smp_processor_id();
	int i, loops;
1903

1904 1905 1906
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
1907
		 * We set the vcore pointer when starting a thread
1908
		 * and the thread clears it when finished, so we look
1909
		 * for any threads that still have a non-NULL vcore ptr.
1910 1911
		 */
		for (i = 1; i < threads_per_subcore; ++i)
1912
			if (paca[cpu + i].kvm_hstate.kvm_vcore)
1913 1914 1915 1916
				break;
		if (i == threads_per_subcore) {
			HMT_medium();
			return;
1917
		}
1918
		HMT_low();
1919 1920
	}
	HMT_medium();
1921
	for (i = 1; i < threads_per_subcore; ++i)
1922
		if (paca[cpu + i].kvm_hstate.kvm_vcore)
1923
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1924 1925 1926 1927
}

/*
 * Check that we are on thread 0 and that any other threads in
1928 1929
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1930 1931 1932 1933
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
1934
	int thr;
1935

1936 1937
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
1938
		return 0;
1939 1940 1941

	thr = 0;
	while (++thr < threads_per_subcore)
1942 1943
		if (cpu_online(cpu + thr))
			return 0;
1944 1945

	/* Grab all hw threads so they can't go into the kernel */
1946
	for (thr = 1; thr < threads_per_subcore; ++thr) {
1947 1948 1949 1950 1951 1952 1953 1954
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1955 1956 1957
	return 1;
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
	if (vc->num_threads < threads_per_subcore) {
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
1999
	struct preempted_vcore_list *lp;
2000 2001 2002

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2003
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2004 2005 2006 2007 2008 2009 2010
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2011 2012 2013 2014
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2015
struct core_info {
2016 2017
	int		n_subcores;
	int		max_subcore_threads;
2018
	int		total_threads;
2019 2020 2021
	int		subcore_threads[MAX_SUBCORES];
	struct kvm	*subcore_vm[MAX_SUBCORES];
	struct list_head vcs[MAX_SUBCORES];
2022 2023
};

2024 2025 2026 2027 2028 2029
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
 * respectively in 2-way micro-threading (split-core) mode.
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2030 2031
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
2032 2033
	int sub;

2034
	memset(cip, 0, sizeof(*cip));
2035 2036
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2037
	cip->total_threads = vc->num_threads;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	cip->subcore_threads[0] = vc->num_threads;
	cip->subcore_vm[0] = vc->kvm;
	for (sub = 0; sub < MAX_SUBCORES; ++sub)
		INIT_LIST_HEAD(&cip->vcs[sub]);
	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
	/* Can only dynamically split if unsplit to begin with */
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
}

static void init_master_vcore(struct kvmppc_vcore *vc)
{
	vc->master_vcore = vc;
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
}

/*
2072 2073 2074
 * See if the existing subcores can be split into 3 (or fewer) subcores
 * of at most two threads each, so we can fit in another vcore.  This
 * assumes there are at most two subcores and at most 6 threads in total.
2075
 */
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
static bool can_split_piggybacked_subcores(struct core_info *cip)
{
	int sub, new_sub;
	int large_sub = -1;
	int thr;
	int n_subcores = cip->n_subcores;
	struct kvmppc_vcore *vc, *vcnext;
	struct kvmppc_vcore *master_vc = NULL;

	for (sub = 0; sub < cip->n_subcores; ++sub) {
		if (cip->subcore_threads[sub] <= 2)
			continue;
		if (large_sub >= 0)
			return false;
		large_sub = sub;
		vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
				      preempt_list);
		if (vc->num_threads > 2)
			return false;
		n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
	}
2097
	if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		return false;

	/*
	 * Seems feasible, so go through and move vcores to new subcores.
	 * Note that when we have two or more vcores in one subcore,
	 * all those vcores must have only one thread each.
	 */
	new_sub = cip->n_subcores;
	thr = 0;
	sub = large_sub;
	list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
		if (thr >= 2) {
			list_del(&vc->preempt_list);
			list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
			/* vc->num_threads must be 1 */
			if (++cip->subcore_threads[new_sub] == 1) {
				cip->subcore_vm[new_sub] = vc->kvm;
				init_master_vcore(vc);
				master_vc = vc;
				++cip->n_subcores;
			} else {
				vc->master_vcore = master_vc;
				++new_sub;
			}
		}
		thr += vc->num_threads;
	}
	cip->subcore_threads[large_sub] = 2;
	cip->max_subcore_threads = 2;

	return true;
}

static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
	if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
		cip->max_subcore_threads = n_threads;
	} else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
		   vc->num_threads <= 2) {
		/*
		 * We may be able to fit another subcore in by
		 * splitting an existing subcore with 3 or 4
		 * threads into two 2-thread subcores, or one
		 * with 5 or 6 threads into three subcores.
		 * We can only do this if those subcores have
		 * piggybacked virtual cores.
		 */
		if (!can_split_piggybacked_subcores(cip))
			return false;
	} else {
		return false;
	}

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
	cip->subcore_vm[sub] = vc->kvm;
	init_master_vcore(vc);
	list_del(&vc->preempt_list);
	list_add_tail(&vc->preempt_list, &cip->vcs[sub]);

	return true;
}

static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
				  struct core_info *cip, int sub)
2173 2174
{
	struct kvmppc_vcore *vc;
2175
	int n_thr;
2176

2177 2178
	vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
			      preempt_list);
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

	/* require same VM and same per-core reg values */
	if (pvc->kvm != vc->kvm ||
	    pvc->tb_offset != vc->tb_offset ||
	    pvc->pcr != vc->pcr ||
	    pvc->lpcr != vc->lpcr)
		return false;

	/* P8 guest with > 1 thread per core would see wrong TIR value */
	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
	    (vc->num_threads > 1 || pvc->num_threads > 1))
		return false;

2192 2193 2194 2195 2196 2197
	n_thr = cip->subcore_threads[sub] + pvc->num_threads;
	if (n_thr > cip->max_subcore_threads) {
		if (!subcore_config_ok(cip->n_subcores, n_thr))
			return false;
		cip->max_subcore_threads = n_thr;
	}
2198 2199

	cip->total_threads += pvc->num_threads;
2200
	cip->subcore_threads[sub] = n_thr;
2201 2202
	pvc->master_vcore = vc;
	list_del(&pvc->preempt_list);
2203
	list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2204 2205 2206 2207

	return true;
}

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	int sub;

	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;
	for (sub = 0; sub < cip->n_subcores; ++sub)
		if (cip->subcore_threads[sub] &&
		    can_piggyback_subcore(pvc, cip, sub))
			return true;

	if (can_dynamic_split(pvc, cip))
		return true;

	return false;
}

2230 2231
static void prepare_threads(struct kvmppc_vcore *vc)
{
2232 2233
	int i;
	struct kvm_vcpu *vcpu;
2234

2235
	for_each_runnable_thread(i, vcpu, vc) {
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2281
{
2282
	int still_running = 0, i;
2283 2284
	u64 now;
	long ret;
2285
	struct kvm_vcpu *vcpu;
2286

2287
	spin_lock(&vc->lock);
2288
	now = get_tb();
2289
	for_each_runnable_thread(i, vcpu, vc) {
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2305 2306 2307 2308
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2309
				kvmppc_set_timer(vcpu);
2310 2311 2312
			else
				++still_running;
		} else {
2313 2314 2315 2316
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2317 2318
	list_del_init(&vc->preempt_list);
	if (!is_master) {
2319
		if (still_running > 0) {
2320
			kvmppc_vcore_preempt(vc);
2321 2322 2323 2324 2325 2326
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2327 2328
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2329 2330
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2331 2332 2333 2334
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2335 2336
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
static inline void kvmppc_clear_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
static inline void kvmppc_set_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
}

2377 2378 2379 2380
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2381
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2382
{
2383
	struct kvm_vcpu *vcpu;
2384
	int i;
2385
	int srcu_idx;
2386 2387
	struct core_info core_info;
	struct kvmppc_vcore *pvc, *vcnext;
2388 2389 2390 2391 2392
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2393 2394
	int pcpu, thr;
	int target_threads;
2395

2396 2397 2398 2399 2400 2401 2402 2403 2404
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2405 2406

	/*
2407
	 * Initialize *vc.
2408
	 */
2409
	init_master_vcore(vc);
2410
	vc->preempt_tb = TB_NIL;
2411

2412
	/*
2413 2414 2415
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2416
	 */
2417 2418
	if ((threads_per_core > 1) &&
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2419
		for_each_runnable_thread(i, vcpu, vc) {
2420
			vcpu->arch.ret = -EBUSY;
2421 2422 2423
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2424 2425 2426
		goto out;
	}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
	target_threads = threads_per_subcore;
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2438

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
	if (split > 1) {
		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
		if (split == 2 && (dynamic_mt_modes & 2)) {
			cmd_bit = HID0_POWER8_1TO2LPAR;
			stat_bit = HID0_POWER8_2LPARMODE;
		} else {
			split = 4;
			cmd_bit = HID0_POWER8_1TO4LPAR;
			stat_bit = HID0_POWER8_4LPARMODE;
		}
		subcore_size = MAX_SMT_THREADS / split;
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		split_info.rpr = mfspr(SPRN_RPR);
		split_info.pmmar = mfspr(SPRN_PMMAR);
		split_info.ldbar = mfspr(SPRN_LDBAR);
		split_info.subcore_size = subcore_size;
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			split_info.master_vcs[sub] =
				list_first_entry(&core_info.vcs[sub],
					struct kvmppc_vcore, preempt_list);
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
	pcpu = smp_processor_id();
	for (thr = 0; thr < threads_per_subcore; ++thr)
		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;

	/* Initiate micro-threading (split-core) if required */
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2485
		}
2486
	}
2487

2488 2489
	kvmppc_clear_host_core(pcpu);

2490 2491 2492 2493 2494 2495 2496 2497
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		thr = subcore_thread_map[sub];
		thr0_done = false;
		active |= 1 << thr;
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
			pvc->pcpu = pcpu + thr;
2498
			for_each_runnable_thread(i, vcpu, pvc) {
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
				kvmppc_start_thread(vcpu, pvc);
				kvmppc_create_dtl_entry(vcpu, pvc);
				trace_kvm_guest_enter(vcpu);
				if (!vcpu->arch.ptid)
					thr0_done = true;
				active |= 1 << (thr + vcpu->arch.ptid);
			}
			/*
			 * We need to start the first thread of each subcore
			 * even if it doesn't have a vcpu.
			 */
			if (pvc->master_vcore == pvc && !thr0_done)
				kvmppc_start_thread(NULL, pvc);
			thr += pvc->num_threads;
		}
2514
	}
2515

2516 2517 2518 2519 2520 2521 2522 2523
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();
	if (cmd_bit)
		split_info.do_nap = 1;	/* ask secondaries to nap when done */

2524 2525 2526 2527 2528 2529 2530 2531 2532
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
	 */
	if (split > 1)
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2533

2534
	vc->vcore_state = VCORE_RUNNING;
2535
	preempt_disable();
2536 2537 2538

	trace_kvmppc_run_core(vc, 0);

2539 2540 2541
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
			spin_unlock(&pvc->lock);
2542

2543
	guest_enter();
2544

2545
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2546

2547
	__kvmppc_vcore_entry();
2548

2549 2550 2551
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

	spin_lock(&vc->lock);
2552
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2553
	vc->vcore_state = VCORE_EXITING;
2554

2555
	/* wait for secondary threads to finish writing their state to memory */
2556
	kvmppc_wait_for_nap();
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

	/* Return to whole-core mode if we split the core earlier */
	if (split > 1) {
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
		split_info.do_nap = 0;
	}

	/* Let secondaries go back to the offline loop */
	for (i = 0; i < threads_per_subcore; ++i) {
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
	}

2585 2586
	kvmppc_set_host_core(pcpu);

2587
	spin_unlock(&vc->lock);
2588

2589 2590
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2591
	guest_exit();
2592

2593 2594 2595 2596
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
					 preempt_list)
			post_guest_process(pvc, pvc == vc);
2597

2598
	spin_lock(&vc->lock);
2599
	preempt_enable();
2600 2601

 out:
2602
	vc->vcore_state = VCORE_INACTIVE;
2603
	trace_kvmppc_run_core(vc, 1);
2604 2605
}

2606 2607 2608 2609
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
2610 2611
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
2612 2613 2614
{
	DEFINE_WAIT(wait);

2615
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2616 2617
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
2618
		schedule();
2619 2620
		spin_lock(&vc->lock);
	}
2621 2622 2623 2624 2625 2626 2627 2628 2629
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2630
	struct kvm_vcpu *vcpu;
2631
	int do_sleep = 1, i;
2632
	DECLARE_SWAITQUEUE(wait);
2633

2634
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2635 2636 2637 2638 2639

	/*
	 * Check one last time for pending exceptions and ceded state after
	 * we put ourselves on the wait queue
	 */
2640
	for_each_runnable_thread(i, vcpu, vc) {
2641 2642 2643 2644 2645 2646 2647
		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
			do_sleep = 0;
			break;
		}
	}

	if (!do_sleep) {
2648
		finish_swait(&vc->wq, &wait);
2649 2650 2651
		return;
	}

2652
	vc->vcore_state = VCORE_SLEEPING;
2653
	trace_kvmppc_vcore_blocked(vc, 0);
2654
	spin_unlock(&vc->lock);
2655
	schedule();
2656
	finish_swait(&vc->wq, &wait);
2657 2658
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
2659
	trace_kvmppc_vcore_blocked(vc, 1);
2660
}
2661

2662 2663
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
2664
	int n_ceded, i;
2665
	struct kvmppc_vcore *vc;
2666
	struct kvm_vcpu *v;
2667

2668 2669
	trace_kvmppc_run_vcpu_enter(vcpu);

2670 2671 2672
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
2673
	kvmppc_update_vpas(vcpu);
2674 2675 2676 2677 2678 2679

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
2680
	vcpu->arch.ceded = 0;
2681 2682
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
2683
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2684
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2685
	vcpu->arch.busy_preempt = TB_NIL;
2686
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2687 2688
	++vc->n_runnable;

2689 2690 2691 2692 2693
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
2694
	if (!signal_pending(current)) {
2695 2696 2697 2698 2699 2700
		if (vc->vcore_state == VCORE_PIGGYBACK) {
			struct kvmppc_vcore *mvc = vc->master_vcore;
			if (spin_trylock(&mvc->lock)) {
				if (mvc->vcore_state == VCORE_RUNNING &&
				    !VCORE_IS_EXITING(mvc)) {
					kvmppc_create_dtl_entry(vcpu, vc);
2701
					kvmppc_start_thread(vcpu, vc);
2702 2703 2704 2705 2706 2707
					trace_kvm_guest_enter(vcpu);
				}
				spin_unlock(&mvc->lock);
			}
		} else if (vc->vcore_state == VCORE_RUNNING &&
			   !VCORE_IS_EXITING(vc)) {
2708
			kvmppc_create_dtl_entry(vcpu, vc);
2709
			kvmppc_start_thread(vcpu, vc);
2710
			trace_kvm_guest_enter(vcpu);
2711
		} else if (vc->vcore_state == VCORE_SLEEPING) {
2712
			swake_up(&vc->wq);
2713 2714
		}

2715
	}
2716

2717 2718
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
2719 2720 2721
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

2722
		if (vc->vcore_state != VCORE_INACTIVE) {
2723
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2724 2725
			continue;
		}
2726
		for_each_runnable_thread(i, v, vc) {
2727
			kvmppc_core_prepare_to_enter(v);
2728 2729 2730 2731 2732 2733 2734 2735
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
2736 2737 2738
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
2739
		for_each_runnable_thread(i, v, vc) {
2740 2741
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
2742 2743 2744
			else
				v->arch.ceded = 0;
		}
2745 2746
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
2747
			kvmppc_vcore_blocked(vc);
2748
		} else if (need_resched()) {
2749
			kvmppc_vcore_preempt(vc);
2750 2751
			/* Let something else run */
			cond_resched_lock(&vc->lock);
2752 2753
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
2754
		} else {
2755
			kvmppc_run_core(vc);
2756
		}
2757
		vc->runner = NULL;
2758
	}
2759

2760 2761
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
2762 2763
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
2764
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2765

2766 2767 2768
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

2769 2770 2771 2772 2773 2774 2775 2776 2777
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
2778 2779
		i = -1;
		v = next_runnable_thread(vc, &i);
2780
		wake_up(&v->arch.cpu_run);
2781 2782
	}

2783
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2784 2785
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
2786 2787
}

2788
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2789 2790
{
	int r;
2791
	int srcu_idx;
2792

2793 2794 2795 2796 2797
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

2798 2799
	kvmppc_core_prepare_to_enter(vcpu);

2800 2801 2802 2803 2804 2805
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

2806
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2807
	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2808 2809
	smp_mb();

2810
	/* On the first time here, set up HTAB and VRMA */
2811
	if (!vcpu->kvm->arch.hpte_setup_done) {
2812
		r = kvmppc_hv_setup_htab_rma(vcpu);
2813
		if (r)
2814
			goto out;
2815
	}
2816

2817 2818
	flush_all_to_thread(current);

2819
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2820
	vcpu->arch.pgdir = current->mm->pgd;
2821
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2822

2823 2824 2825 2826 2827
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2828
			trace_kvm_hcall_enter(vcpu);
2829
			r = kvmppc_pseries_do_hcall(vcpu);
2830
			trace_kvm_hcall_exit(vcpu, r);
2831
			kvmppc_core_prepare_to_enter(vcpu);
2832 2833 2834 2835 2836
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2837
		}
2838
	} while (is_kvmppc_resume_guest(r));
2839 2840

 out:
2841
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2842
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2843 2844 2845
	return r;
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
2856
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2857 2858 2859 2860 2861 2862 2863
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
2864 2865 2866
	(*sps)++;
}

2867 2868
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

2886 2887 2888
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
2889 2890
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
2891
{
2892
	struct kvm_memslots *slots;
2893 2894 2895 2896 2897 2898 2899
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
2900
	if (log->slot >= KVM_USER_MEM_SLOTS)
2901 2902
		goto out;

2903 2904
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
2905 2906 2907 2908 2909 2910 2911
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

2912
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

2926 2927
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
2928 2929 2930 2931
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
2932
	}
2933 2934
}

2935 2936
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
2937 2938 2939 2940
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
2941

2942 2943
	return 0;
}
2944

2945 2946
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
2947
					const struct kvm_userspace_memory_region *mem)
2948
{
2949
	return 0;
2950 2951
}

2952
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2953
				const struct kvm_userspace_memory_region *mem,
2954 2955
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
2956
{
2957
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2958
	struct kvm_memslots *slots;
2959 2960
	struct kvm_memory_slot *memslot;

2961
	if (npages && old->npages) {
2962 2963 2964 2965 2966 2967
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
2968 2969
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, mem->slot);
2970 2971
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
2972 2973
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3000 3001 3002 3003 3004
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3005
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3006 3007 3008 3009 3010 3011
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3012
	unsigned long lpcr = 0, senc;
3013
	unsigned long psize, porder;
3014
	int srcu_idx;
3015 3016

	mutex_lock(&kvm->lock);
3017
	if (kvm->arch.hpte_setup_done)
3018
		goto out;	/* another vcpu beat us to it */
3019

3020 3021 3022 3023 3024 3025 3026 3027 3028
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

3029
	/* Look up the memslot for guest physical address 0 */
3030
	srcu_idx = srcu_read_lock(&kvm->srcu);
3031
	memslot = gfn_to_memslot(kvm, 0);
3032

3033 3034 3035
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3036
		goto out_srcu;
3037 3038 3039 3040 3041 3042 3043 3044 3045

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
3046
	porder = __ilog2(psize);
3047 3048 3049

	up_read(&current->mm->mmap_sem);

3050 3051 3052 3053 3054
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
3055

3056 3057 3058 3059 3060 3061
	/* Update VRMASD field in the LPCR */
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* the -4 is to account for senc values starting at 0x10 */
	lpcr = senc << (LPCR_VRMASD_SH - 4);
3062

3063 3064
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3065

3066
	kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3067

3068
	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3069
	smp_wmb();
3070
	kvm->arch.hpte_setup_done = 1;
3071
	err = 0;
3072 3073
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3074 3075 3076
 out:
	mutex_unlock(&kvm->lock);
	return err;
3077

3078 3079
 up_out:
	up_read(&current->mm->mmap_sem);
3080
	goto out_srcu;
3081 3082
}

3083
#ifdef CONFIG_KVM_XICS
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
			void *hcpu)
{
	unsigned long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		kvmppc_set_host_core(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		kvmppc_clear_host_core(cpu);
		break;
#endif
	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block kvmppc_cpu_notifier = {
	    .notifier_call = kvmppc_cpu_notify,
};

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3147 3148
	get_online_cpus();

3149 3150 3151 3152 3153 3154 3155 3156
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3157 3158
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3169
		put_online_cpus();
3170 3171
		kfree(ops->rm_core);
		kfree(ops);
3172
		return;
3173
	}
3174 3175 3176 3177

	register_cpu_notifier(&kvmppc_cpu_notifier);

	put_online_cpus();
3178 3179 3180 3181 3182
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3183
		unregister_cpu_notifier(&kvmppc_cpu_notifier);
3184 3185 3186 3187 3188 3189 3190
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3191
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3192
{
3193
	unsigned long lpcr, lpid;
3194
	char buf[32];
3195

3196 3197 3198
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3199
	if ((long)lpid < 0)
3200 3201
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3202

3203 3204
	kvmppc_alloc_host_rm_ops();

3205 3206 3207 3208 3209 3210 3211
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

3212 3213 3214 3215
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3216
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3217

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3229
	kvm->arch.lpcr = lpcr;
3230

3231
	/*
3232 3233
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
3234
	 */
3235
	kvm_hv_vm_activated();
3236

3237 3238 3239 3240 3241 3242 3243 3244
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

3245
	return 0;
3246 3247
}

3248 3249 3250 3251
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

3252
	for (i = 0; i < KVM_MAX_VCORES; ++i)
3253 3254 3255 3256
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

3257
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3258
{
3259 3260
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

3261
	kvm_hv_vm_deactivated();
3262

3263
	kvmppc_free_vcores(kvm);
3264

3265 3266 3267
	kvmppc_free_hpt(kvm);
}

3268 3269 3270
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
3271
{
3272
	return EMULATE_FAIL;
3273 3274
}

3275 3276
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
3277 3278 3279 3280
{
	return EMULATE_FAIL;
}

3281 3282
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
3283 3284 3285 3286
{
	return EMULATE_FAIL;
}

3287
static int kvmppc_core_check_processor_compat_hv(void)
3288
{
3289 3290
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
3291
		return -EIO;
3292 3293 3294 3295 3296 3297
	/*
	 * Disable KVM for Power9, untill the required bits merged.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return -EIO;

3298
	return 0;
3299 3300
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
3377
	unsigned int hcall;
3378

3379 3380 3381 3382 3383
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
3384 3385
}

3386
static struct kvmppc_ops kvm_ops_hv = {
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3418
	.hcall_implemented = kvmppc_hcall_impl_hv,
3419 3420
};

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
		if (paca[first_cpu].sibling_subcore_state)
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

			paca[cpu].sibling_subcore_state = sibling_subcore_state;
		}
	}
	return 0;
}

3453
static int kvmppc_book3s_init_hv(void)
3454 3455
{
	int r;
3456 3457 3458 3459 3460
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
3461
		return -ENODEV;
3462

3463 3464 3465 3466
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

3467 3468
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
3469

3470 3471
	init_default_hcalls();

3472 3473
	init_vcore_lists();

3474
	r = kvmppc_mmu_hv_init();
3475 3476 3477
	return r;
}

3478
static void kvmppc_book3s_exit_hv(void)
3479
{
3480
	kvmppc_free_host_rm_ops();
3481
	kvmppc_hv_ops = NULL;
3482 3483
}

3484 3485
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
3486
MODULE_LICENSE("GPL");
3487 3488
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");