book3s_hv.c 118.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48 49

#include <asm/reg.h>
50
#include <asm/ppc-opcode.h>
51
#include <asm/asm-prototypes.h>
52
#include <asm/debug.h>
53
#include <asm/disassemble.h>
54 55
#include <asm/cputable.h>
#include <asm/cacheflush.h>
56
#include <linux/uaccess.h>
57 58 59 60 61 62
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
63
#include <asm/cputhreads.h>
64
#include <asm/page.h>
65
#include <asm/hvcall.h>
66
#include <asm/switch_to.h>
67
#include <asm/smp.h>
68
#include <asm/dbell.h>
69
#include <asm/hmi.h>
70
#include <asm/pnv-pci.h>
71
#include <asm/mmu.h>
72 73
#include <asm/opal.h>
#include <asm/xics.h>
74
#include <asm/xive.h>
75

76 77
#include "book3s.h"

78 79 80
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

81 82 83 84
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

85 86
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
87 88
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
89

90 91 92
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

93 94
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

95
static int dynamic_mt_modes = 6;
96
module_param(dynamic_mt_modes, int, 0644);
97
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98
static int target_smt_mode;
99
module_param(target_smt_mode, int, 0644);
100
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101

102 103 104 105
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

106 107 108 109 110 111
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

112
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
113 114
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

115
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
116 117 118
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

119 120 121
/* If set, the threads on each CPU core have to be in the same MMU mode */
static bool no_mixing_hpt_and_radix;

122
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
123
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * RWMR values for POWER8.  These control the rate at which PURR
 * and SPURR count and should be set according to the number of
 * online threads in the vcore being run.
 */
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECA
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECA
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECA
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECA
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECA
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECA

static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_2THREAD,
	RWMR_RPA_P8_3THREAD,
	RWMR_RPA_P8_4THREAD,
	RWMR_RPA_P8_5THREAD,
	RWMR_RPA_P8_6THREAD,
	RWMR_RPA_P8_7THREAD,
	RWMR_RPA_P8_8THREAD,
};

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

171 172
static bool kvmppc_ipi_thread(int cpu)
{
173 174 175 176 177 178 179 180 181 182
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
198
	if (cpu >= 0 && cpu < nr_cpu_ids) {
199
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
200 201 202 203
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
204 205 206 207 208 209 210
		return true;
	}
#endif

	return false;
}

211
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
212
{
213
	int cpu;
214
	struct swait_queue_head *wqp;
215 216

	wqp = kvm_arch_vcpu_wq(vcpu);
217
	if (swq_has_sleeper(wqp)) {
218
		swake_up(wqp);
219 220 221
		++vcpu->stat.halt_wakeup;
	}

222 223
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
224
		return;
225 226

	/* CPU points to the first thread of the core */
227
	cpu = vcpu->cpu;
228 229
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
230 231
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
259 260 261 262
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
263 264
 */

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

286
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
287
{
288
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
289
	unsigned long flags;
290

291 292 293 294 295 296
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
297 298 299
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

300
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
301 302 303 304 305
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
306
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
307 308
}

309
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
310
{
311
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
312
	unsigned long flags;
313

314 315 316
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

317
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
318 319
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
320
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
321 322
}

323
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
324
{
325 326 327 328 329 330
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
331
	vcpu->arch.shregs.msr = msr;
332
	kvmppc_end_cede(vcpu);
333 334
}

T
Thomas Huth 已提交
335
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
336 337 338 339
{
	vcpu->arch.pvr = pvr;
}

340 341 342
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
343
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
344
{
345
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
346 347
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

348 349 350 351 352 353 354 355 356 357 358 359
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
360 361 362
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
363
			guest_pcr_bit = PCR_ARCH_205;
364 365 366
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
367
			guest_pcr_bit = PCR_ARCH_206;
368 369
			break;
		case PVR_ARCH_207:
370 371 372 373
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
374 375 376 377 378 379
			break;
		default:
			return -EINVAL;
		}
	}

380 381 382 383
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

384 385
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
386 387
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
388 389 390 391 392
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
393
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
394 395 396 397 398
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
399
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
400 401 402 403 404
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
405
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
406 407 408 409 410 411 412
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
413
	       vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
414 415 416 417 418 419 420 421
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
422
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
423 424 425
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
426
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
427
{
428
	struct kvm_vcpu *ret;
429 430

	mutex_lock(&kvm->lock);
431
	ret = kvm_get_vcpu_by_id(kvm, id);
432 433 434 435 436 437
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
438
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
439
	vpa->yield_count = cpu_to_be32(1);
440 441
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

458 459 460 461
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
462 463
		__be16 hword;
		__be32 word;
464 465 466 467 468 469 470 471 472 473
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

474 475 476 477 478
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
479
	unsigned long len, nb;
480 481
	void *va;
	struct kvm_vcpu *tvcpu;
482 483 484
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
485 486 487 488 489

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

490 491 492 493 494
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
495
			return H_PARAMETER;
496 497

		/* convert logical addr to kernel addr and read length */
498 499
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
500
			return H_PARAMETER;
501
		if (subfunc == H_VPA_REG_VPA)
502
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
503
		else
504
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
505
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
521 522 523 524 525 526
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
527 528
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
		if (len < sizeof(struct lppaca))
529
			break;
530 531 532 533 534 535
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
536
			break;
537 538 539 540 541
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
542
			break;
543 544 545 546 547 548 549 550 551

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
552
			break;
553 554 555 556 557 558 559 560 561 562

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
563
			break;
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
584
	}
585

586 587
	spin_unlock(&tvcpu->arch.vpa_update_lock);

588
	return err;
589 590
}

591
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
592
{
593
	struct kvm *kvm = vcpu->kvm;
594 595
	void *va;
	unsigned long nb;
596
	unsigned long gpa;
597

598 599 600 601 602 603 604 605 606 607 608 609 610 611
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
612
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
613 614 615 616 617
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
618
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
619 620 621 622 623 624 625 626 627
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
628
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
629
		va = NULL;
630 631
	}
	if (vpap->pinned_addr)
632 633 634
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
635
	vpap->pinned_addr = va;
636
	vpap->dirty = false;
637 638 639 640 641 642
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
643 644 645 646 647
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

648 649
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
650
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
651 652
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
653 654
	}
	if (vcpu->arch.dtl.update_pending) {
655
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
656 657 658 659
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
660
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
661 662 663
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

664 665 666 667 668 669 670
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
671
	unsigned long flags;
672

673 674
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
675
	if (vc->vcore_state != VCORE_INACTIVE &&
676 677 678
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
679 680 681
	return p;
}

682 683 684 685 686
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
687 688 689
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
690
	unsigned long flags;
691 692 693

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
694 695 696 697
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
698
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
699 700
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
701
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
702 703 704 705
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
706 707 708 709 710
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
711 712 713 714 715 716
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
717
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
718
	vcpu->arch.dtl.dirty = true;
719 720
}

721 722 723 724 725 726
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

727 728 729 730 731 732 733 734 735
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
	 * lwsync in book3s_hv_rmhandlers.S just before the
	 * fast_guest_return label.
	 */
	smp_rmb();
736 737 738 739 740
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
771 772
		if (!ppc_breakpoint_available())
			return H_P2;
773 774 775 776 777 778 779 780 781 782 783 784
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
799 800
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
801 802 803 804 805 806 807 808 809 810 811 812 813 814
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
815
		yield_count = be32_to_cpu(lppaca->yield_count);
816 817 818 819
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

820 821 822 823
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
824
	int yield_count;
825
	struct kvm_vcpu *tvcpu;
826
	int idx, rc;
827

828 829 830 831
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

832 833 834 835 836 837 838 839 840 841 842 843
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
844 845
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
846 847
		break;
	case H_CONFER:
848 849 850 851 852 853 854 855
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
856 857 858 859
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
860 861 862 863 864 865
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
866 867 868 869
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

870
		idx = srcu_read_lock(&vcpu->kvm->srcu);
871
		rc = kvmppc_rtas_hcall(vcpu);
872
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
873 874 875 876 877 878 879 880

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
881 882 883 884 885 886 887 888 889 890
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
891 892 893 894 895 896 897 898
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
899 900 901 902
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
903 904
	case H_IPOLL:
	case H_XIRR_X:
905
		if (kvmppc_xics_enabled(vcpu)) {
906 907 908 909
			if (xive_enabled()) {
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
910 911
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
937 938 939 940 941 942 943 944
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

945 946 947 948 949 950 951
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
952
	case H_SET_MODE:
953 954
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1087
/* Called with vcpu->arch.vcore->lock held */
1088 1089
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1090 1091 1092 1093 1094
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1113 1114 1115 1116 1117 1118 1119 1120 1121
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1122
	case BOOK3S_INTERRUPT_H_DOORBELL:
1123
	case BOOK3S_INTERRUPT_H_VIRT:
1124 1125 1126
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1127
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1128
	case BOOK3S_INTERRUPT_HMI:
1129
	case BOOK3S_INTERRUPT_PERFMON:
1130
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1131 1132
		r = RESUME_GUEST;
		break;
1133
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1148
		break;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1168 1169 1170 1171
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1172 1173 1174 1175 1176 1177 1178 1179 1180
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1181 1182 1183 1184 1185
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1186 1187
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1188
		r = RESUME_PAGE_FAULT;
1189 1190
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1191 1192 1193
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
1194 1195 1196
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1197 1198 1199 1200
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1201 1202
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1203 1204 1205 1206
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1207
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1208 1209
			/* Need vcore unlocked to call kvmppc_get_last_inst */
			spin_unlock(&vcpu->arch.vcore->lock);
1210
			r = kvmppc_emulate_debug_inst(run, vcpu);
1211
			spin_lock(&vcpu->arch.vcore->lock);
1212 1213 1214 1215
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1216 1217 1218
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1219 1220 1221 1222
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1223 1224
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1225
		r = EMULATE_FAIL;
1226 1227 1228 1229
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
		    cpu_has_feature(CPU_FTR_ARCH_300)) {
			/* Need vcore unlocked to call kvmppc_get_last_inst */
			spin_unlock(&vcpu->arch.vcore->lock);
1230
			r = kvmppc_emulate_doorbell_instr(vcpu);
1231 1232
			spin_lock(&vcpu->arch.vcore->lock);
		}
1233 1234 1235 1236
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1237
		break;
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

1251 1252 1253
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1254 1255 1256 1257 1258
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1259
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1260 1261 1262 1263 1264 1265 1266
		r = RESUME_HOST;
		break;
	}

	return r;
}

1267 1268
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1269 1270 1271 1272
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1273
	sregs->pvr = vcpu->arch.pvr;
1274 1275 1276 1277 1278 1279 1280 1281
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1282 1283
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1284 1285 1286
{
	int i, j;

1287 1288 1289
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1304 1305
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1306
{
1307
	struct kvm *kvm = vcpu->kvm;
1308 1309 1310
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1311
	mutex_lock(&kvm->lock);
1312
	spin_lock(&vc->lock);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1331 1332 1333
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1334
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1335 1336
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1337 1338
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1339 1340 1341 1342 1343 1344
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1345 1346 1347 1348

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1349 1350
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1351
	mutex_unlock(&kvm->lock);
1352 1353
}

1354 1355
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1356
{
1357 1358
	int r = 0;
	long int i;
1359

1360
	switch (id) {
1361 1362 1363
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1364
	case KVM_REG_PPC_HIOR:
1365 1366 1367 1368 1369
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1370 1371 1372
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1388
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1389 1390 1391 1392 1393 1394
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1395
		break;
1396 1397 1398 1399
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1400 1401 1402 1403 1404 1405
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1406 1407
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1408
		break;
1409 1410 1411 1412 1413 1414 1415 1416 1417
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1418 1419 1420
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1447
		break;
1448 1449 1450 1451 1452 1453
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1471 1472 1473
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1474
	case KVM_REG_PPC_LPCR:
1475
	case KVM_REG_PPC_LPCR_64:
1476 1477
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1478 1479 1480
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1513 1514 1515
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1547 1548 1549
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1550 1551 1552 1553
	case KVM_REG_PPC_DEC_EXPIRY:
		*val = get_reg_val(id, vcpu->arch.dec_expires +
				   vcpu->arch.vcore->tb_offset);
		break;
1554 1555 1556
	case KVM_REG_PPC_ONLINE:
		*val = get_reg_val(id, vcpu->arch.online);
		break;
1557
	default:
1558
		r = -EINVAL;
1559 1560 1561 1562 1563 1564
		break;
	}

	return r;
}

1565 1566
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1567
{
1568 1569
	int r = 0;
	long int i;
1570
	unsigned long addr, len;
1571

1572
	switch (id) {
1573 1574
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1575
		if (set_reg_val(id, *val))
1576 1577
			r = -EINVAL;
		break;
1578 1579 1580
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1581 1582 1583
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1599
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1600 1601 1602 1603 1604 1605 1606
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1607 1608 1609 1610
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1611 1612 1613 1614 1615 1616
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1617 1618
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1619
		break;
1620 1621 1622 1623 1624 1625 1626 1627 1628
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1629 1630 1631
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1661
		break;
1662 1663 1664 1665 1666 1667
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1688 1689
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1690 1691 1692 1693
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1694 1695 1696 1697 1698
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1699
	case KVM_REG_PPC_LPCR:
1700 1701 1702 1703
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1704
		break;
1705 1706 1707
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1739 1740 1741
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1773 1774 1775
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1776 1777 1778 1779
	case KVM_REG_PPC_DEC_EXPIRY:
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
			vcpu->arch.vcore->tb_offset;
		break;
1780
	case KVM_REG_PPC_ONLINE:
1781 1782 1783 1784 1785 1786
		i = set_reg_val(id, *val);
		if (i && !vcpu->arch.online)
			atomic_inc(&vcpu->arch.vcore->online_count);
		else if (!i && vcpu->arch.online)
			atomic_dec(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = i;
1787
		break;
1788
	default:
1789
		r = -EINVAL;
1790 1791 1792 1793 1794 1795
		break;
	}

	return r;
}

1796 1797 1798 1799 1800 1801 1802
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
1803
static int threads_per_vcore(struct kvm *kvm)
1804
{
1805
	if (kvm->arch.threads_indep)
1806 1807 1808 1809
		return 1;
	return threads_per_subcore;
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1820
	spin_lock_init(&vcore->stoltb_lock);
1821
	init_swait_queue_head(&vcore->wq);
1822 1823
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1824
	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1825
	vcore->kvm = kvm;
1826
	INIT_LIST_HEAD(&vcore->preempt_list);
1827 1828 1829 1830

	return vcore;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

1843
#define N_TIMINGS	(ARRAY_SIZE(timings))
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1979 1980
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1981 1982
{
	struct kvm_vcpu *vcpu;
1983
	int err;
1984 1985
	int core;
	struct kvmppc_vcore *vcore;
1986

1987
	err = -ENOMEM;
1988
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1989 1990 1991 1992 1993 1994 1995 1996
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
2008 2009 2010
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
2011
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2012
	spin_lock_init(&vcpu->arch.vpa_update_lock);
2013 2014
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
2015
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2016

2017 2018 2019
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
2020 2021
	 * On POWER9, we want to virtualize the doorbell facility, so we
	 * turn off the HFSCR bit, which causes those instructions to trap.
2022 2023
	 */
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2024 2025 2026
	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		vcpu->arch.hfscr |= HFSCR_TM;
	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2027
		vcpu->arch.hfscr &= ~HFSCR_TM;
2028 2029
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
2030

2031 2032
	kvmppc_mmu_book3s_hv_init(vcpu);

2033
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2034 2035 2036 2037

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	vcore = NULL;
	err = -EINVAL;
	core = id / kvm->arch.smt_mode;
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
		if (!vcore) {
			err = -ENOMEM;
			vcore = kvmppc_vcore_create(kvm, core);
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
2059
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2060
	vcpu->arch.thread_cpu = -1;
2061
	vcpu->arch.prev_cpu = -1;
2062

2063 2064 2065
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2066 2067
	debugfs_vcpu_init(vcpu, id);

2068 2069 2070
	return vcpu;

free_vcpu:
2071
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2072 2073 2074 2075
out:
	return ERR_PTR(err);
}

2076 2077 2078 2079
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2080
	int esmt = 0;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2098
		esmt = smt_mode;
2099 2100 2101 2102 2103 2104
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2105
		kvm->arch.emul_smt_mode = esmt;
2106 2107 2108 2109 2110 2111 2112
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2113 2114 2115 2116 2117 2118 2119
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2120
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2121
{
2122
	spin_lock(&vcpu->arch.vpa_update_lock);
2123 2124 2125
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2126
	spin_unlock(&vcpu->arch.vpa_update_lock);
2127
	kvm_vcpu_uninit(vcpu);
2128
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2129 2130
}

2131 2132 2133 2134 2135 2136
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2137
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2138
{
2139
	unsigned long dec_nsec, now;
2140

2141 2142 2143 2144
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2145
		kvmppc_core_prepare_to_enter(vcpu);
2146
		return;
2147
	}
2148 2149
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
T
Thomas Gleixner 已提交
2150
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2151
	vcpu->arch.timer_running = 1;
2152 2153
}

2154
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2155
{
2156 2157 2158 2159 2160
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2161 2162
}

2163
extern int __kvmppc_vcore_entry(void);
2164

2165 2166
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2167
{
2168 2169
	u64 now;

2170 2171
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2172
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2173 2174 2175 2176 2177
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2178
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2179
	--vc->n_runnable;
2180
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2181 2182
}

2183 2184 2185
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2186
	long timeout = 10000;
2187

2188
	tpaca = paca_ptrs[cpu];
2189 2190

	/* Ensure the thread won't go into the kernel if it wakes */
2191
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2192
	tpaca->kvm_hstate.kvm_vcore = NULL;
2193 2194 2195
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

2221
	tpaca = paca_ptrs[cpu];
2222
	tpaca->kvm_hstate.hwthread_req = 0;
2223
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2224 2225
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
	int i;

	cpu = cpu_first_thread_sibling(cpu);
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
	struct kvm *kvm = vcpu->kvm;

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
	if (vcpu->arch.prev_cpu != pcpu) {
		if (vcpu->arch.prev_cpu >= 0 &&
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
		    cpu_first_thread_sibling(pcpu))
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
		vcpu->arch.prev_cpu = pcpu;
	}
}

2270
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2271 2272 2273
{
	int cpu;
	struct paca_struct *tpaca;
2274
	struct kvm *kvm = vc->kvm;
2275

2276 2277 2278 2279 2280 2281 2282
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2283
		vcpu->cpu = vc->pcpu;
2284
		vcpu->arch.thread_cpu = cpu;
2285
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2286
	}
2287
	tpaca = paca_ptrs[cpu];
2288
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2289
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2290
	tpaca->kvm_hstate.fake_suspend = 0;
2291
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2292
	smp_wmb();
2293
	tpaca->kvm_hstate.kvm_vcore = vc;
2294
	if (cpu != smp_processor_id())
2295
		kvmppc_ipi_thread(cpu);
2296
}
2297

2298
static void kvmppc_wait_for_nap(int n_threads)
2299
{
2300 2301
	int cpu = smp_processor_id();
	int i, loops;
2302

2303 2304
	if (n_threads <= 1)
		return;
2305 2306 2307
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2308
		 * We set the vcore pointer when starting a thread
2309
		 * and the thread clears it when finished, so we look
2310
		 * for any threads that still have a non-NULL vcore ptr.
2311
		 */
2312
		for (i = 1; i < n_threads; ++i)
2313
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2314
				break;
2315
		if (i == n_threads) {
2316 2317
			HMT_medium();
			return;
2318
		}
2319
		HMT_low();
2320 2321
	}
	HMT_medium();
2322
	for (i = 1; i < n_threads; ++i)
2323
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2324
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2325 2326 2327 2328
}

/*
 * Check that we are on thread 0 and that any other threads in
2329 2330
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2331 2332 2333 2334
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2335
	int thr;
2336

2337 2338
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2339
		return 0;
2340 2341 2342

	thr = 0;
	while (++thr < threads_per_subcore)
2343 2344
		if (cpu_online(cpu + thr))
			return 0;
2345 2346

	/* Grab all hw threads so they can't go into the kernel */
2347
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2348 2349 2350 2351 2352 2353 2354 2355
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2356 2357 2358
	return 1;
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2388
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2400
	struct preempted_vcore_list *lp;
2401 2402 2403

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2404
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2405 2406 2407 2408 2409 2410 2411
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2412 2413 2414 2415
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2416
struct core_info {
2417 2418
	int		n_subcores;
	int		max_subcore_threads;
2419
	int		total_threads;
2420
	int		subcore_threads[MAX_SUBCORES];
2421
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2422 2423
};

2424 2425
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2426
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2427 2428 2429
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2430 2431 2432
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2433 2434
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2435
	cip->total_threads = vc->num_threads;
2436
	cip->subcore_threads[0] = vc->num_threads;
2437
	cip->vc[0] = vc;
2438 2439 2440 2441
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2442
	/*
2443 2444
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
	 * split-core mode, with one thread per subcore.
2445 2446 2447 2448 2449
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2462 2463
}

2464
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2465 2466 2467 2468 2469
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
2470
	vc->tb_offset_applied = 0;
2471 2472
}

2473 2474 2475 2476 2477 2478 2479 2480
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2481 2482
	/* Some POWER9 chips require all threads to be in the same MMU mode */
	if (no_mixing_hpt_and_radix &&
2483 2484 2485
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2486 2487
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2488
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2489
		return false;
2490
	cip->max_subcore_threads = n_threads;
2491 2492 2493 2494 2495

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2496 2497 2498
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2513
	return can_dynamic_split(pvc, cip);
2514 2515
}

2516 2517
static void prepare_threads(struct kvmppc_vcore *vc)
{
2518 2519
	int i;
	struct kvm_vcpu *vcpu;
2520

2521
	for_each_runnable_thread(i, vcpu, vc) {
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2578
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2579
{
2580
	int still_running = 0, i;
2581 2582
	u64 now;
	long ret;
2583
	struct kvm_vcpu *vcpu;
2584

2585
	spin_lock(&vc->lock);
2586
	now = get_tb();
2587
	for_each_runnable_thread(i, vcpu, vc) {
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2603 2604 2605 2606
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2607
				kvmppc_set_timer(vcpu);
2608 2609 2610
			else
				++still_running;
		} else {
2611 2612 2613 2614
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2615
	if (!is_master) {
2616
		if (still_running > 0) {
2617
			kvmppc_vcore_preempt(vc);
2618 2619 2620 2621 2622 2623
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2624 2625
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2626 2627
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2628 2629 2630 2631
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2632 2633
}

2634 2635 2636 2637 2638
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2639
static inline int kvmppc_clear_host_core(unsigned int cpu)
2640 2641 2642 2643
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2644
		return 0;
2645 2646 2647 2648 2649 2650 2651
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2652
	return 0;
2653 2654 2655 2656 2657 2658 2659
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2660
static inline int kvmppc_set_host_core(unsigned int cpu)
2661 2662 2663 2664
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2665
		return 0;
2666 2667 2668 2669 2670 2671 2672

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2673
	return 0;
2674 2675
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
2688 2689 2690
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
2691 2692 2693
	}
}

2694 2695 2696 2697
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2698
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2699
{
2700
	struct kvm_vcpu *vcpu;
2701
	int i;
2702
	int srcu_idx;
2703
	struct core_info core_info;
2704
	struct kvmppc_vcore *pvc;
2705 2706 2707 2708 2709
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2710 2711
	int pcpu, thr;
	int target_threads;
2712
	int controlled_threads;
2713
	int trap;
2714
	bool is_power8;
2715
	bool hpt_on_radix;
2716

2717 2718 2719 2720 2721 2722 2723 2724 2725
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2726 2727

	/*
2728
	 * Initialize *vc.
2729
	 */
2730
	init_vcore_to_run(vc);
2731
	vc->preempt_tb = TB_NIL;
2732

2733 2734 2735 2736 2737
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
2738
	controlled_threads = threads_per_vcore(vc->kvm);
2739

2740
	/*
2741 2742 2743
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2744
	 * On POWER9, we need to be not in independent-threads mode if
2745 2746
	 * this is a HPT guest on a radix host machine where the
	 * CPU threads may not be in different MMU modes.
2747
	 */
2748 2749
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
		!kvm_is_radix(vc->kvm);
2750 2751 2752
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2753
		for_each_runnable_thread(i, vcpu, vc) {
2754
			vcpu->arch.ret = -EBUSY;
2755 2756 2757
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2758 2759 2760
		goto out;
	}

2761 2762 2763 2764 2765 2766
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2767
	target_threads = controlled_threads;
2768 2769 2770 2771
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2772

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
2789
	 * If the mmu_ready flag has been cleared, don't go into the
2790
	 * guest because that means a HPT resize operation is in progress.
2791 2792 2793 2794
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
2795
	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

2812 2813 2814 2815 2816
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
2817 2818 2819
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

2820
	if (split > 1 || hpt_on_radix) {
2821 2822 2823
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
2824
			split_info.vc[sub] = core_info.vc[sub];
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
2842 2843 2844 2845 2846 2847 2848
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
2849 2850
		}

2851 2852 2853
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
2854 2855

	for (thr = 0; thr < controlled_threads; ++thr) {
2856 2857 2858 2859 2860
		struct paca_struct *paca = paca_ptrs[pcpu + thr];

		paca->kvm_hstate.tid = thr;
		paca->kvm_hstate.napping = 0;
		paca->kvm_hstate.kvm_split_mode = sip;
2861
	}
2862

2863
	/* Initiate micro-threading (split-core) on POWER8 if required */
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2876
		}
2877
	}
2878

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	/*
	 * On POWER8, set RWMR register.
	 * Since it only affects PURR and SPURR, it doesn't affect
	 * the host, so we don't save/restore the host value.
	 */
	if (is_power8) {
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
		int n_online = atomic_read(&vc->online_count);

		/*
		 * Use the 8-thread value if we're doing split-core
		 * or if the vcore's online count looks bogus.
		 */
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
			rwmr_val = p8_rwmr_values[n_online];
		mtspr(SPRN_RWMR, rwmr_val);
	}

2898 2899 2900
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2901
		thr = is_power8 ? subcore_thread_map[sub] : sub;
2902 2903
		thr0_done = false;
		active |= 1 << thr;
2904 2905 2906 2907 2908 2909 2910 2911 2912
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
2913
		}
2914 2915 2916 2917 2918 2919
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
2920
	}
2921

2922 2923 2924 2925 2926 2927
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

2928 2929 2930 2931
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
2932 2933
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
2934
	 */
2935
	if (cmd_bit || hpt_on_radix) {
2936
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2937 2938 2939
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2940
	}
2941

2942
	vc->vcore_state = VCORE_RUNNING;
2943
	preempt_disable();
2944 2945 2946

	trace_kvmppc_run_core(vc, 0);

2947
	for (sub = 0; sub < core_info.n_subcores; ++sub)
2948
		spin_unlock(&core_info.vc[sub]->lock);
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
	if (kvm_is_radix(vc->kvm)) {
		int tmp = pcpu;

		/*
		 * Do we need to flush the process scoped TLB for the LPAR?
		 *
		 * On POWER9, individual threads can come in here, but the
		 * TLB is shared between the 4 threads in a core, hence
		 * invalidating on one thread invalidates for all.
		 * Thus we make all 4 threads use the same bit here.
		 *
		 * Hash must be flushed in realmode in order to use tlbiel.
		 */
		mtspr(SPRN_LPID, vc->kvm->arch.lpid);
		isync();

		if (cpu_has_feature(CPU_FTR_ARCH_300))
			tmp &= ~0x3UL;

		if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
			radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
			/* Clear the bit after the TLB flush */
			cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
		}
	}

2976 2977 2978 2979 2980
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
2981

2982
	guest_enter_irqoff();
2983

2984
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2985

2986 2987
	this_cpu_disable_ftrace();

2988
	trap = __kvmppc_vcore_entry();
2989

2990 2991
	this_cpu_enable_ftrace();

2992 2993
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

2994 2995 2996
	trace_hardirqs_off();
	set_irq_happened(trap);

2997
	spin_lock(&vc->lock);
2998
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2999
	vc->vcore_state = VCORE_EXITING;
3000

3001
	/* wait for secondary threads to finish writing their state to memory */
3002
	kvmppc_wait_for_nap(controlled_threads);
3003 3004

	/* Return to whole-core mode if we split the core earlier */
3005
	if (cmd_bit) {
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
3021 3022 3023
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
3024 3025 3026
			struct paca_struct *paca = paca_ptrs[pcpu + thr];

			while (paca->kvm_hstate.kvm_split_mode) {
3027 3028 3029 3030 3031
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
3032
	}
3033
	split_info.do_nap = 0;
3034

3035 3036 3037
	kvmppc_set_host_core(pcpu);

	local_irq_enable();
3038
	guest_exit();
3039

3040
	/* Let secondaries go back to the offline loop */
3041
	for (i = 0; i < controlled_threads; ++i) {
3042 3043 3044
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
3045
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3046 3047
	}

3048
	spin_unlock(&vc->lock);
3049

3050 3051
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
3052

3053 3054
	preempt_enable();

3055 3056 3057 3058
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
3059

3060
	spin_lock(&vc->lock);
3061 3062

 out:
3063
	vc->vcore_state = VCORE_INACTIVE;
3064
	trace_kvmppc_run_core(vc, 1);
3065 3066
}

3067 3068 3069 3070
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
3071 3072
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
3073 3074 3075
{
	DEFINE_WAIT(wait);

3076
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3077 3078
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
3079
		schedule();
3080 3081
		spin_lock(&vc->lock);
	}
3082 3083 3084
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

3102 3103 3104 3105 3106
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	if (!xive_enabled())
		return false;
3107
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3108 3109 3110 3111 3112 3113 3114 3115 3116
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

3117 3118 3119
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3120
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3121 3122 3123 3124 3125
		return true;

	return false;
}

3126 3127
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3128 3129 3130 3131 3132 3133 3134 3135
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3136
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3137 3138 3139 3140 3141 3142
			return 1;
	}

	return 0;
}

3143 3144 3145 3146 3147 3148
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3149
	ktime_t cur, start_poll, start_wait;
3150 3151
	int do_sleep = 1;
	u64 block_ns;
3152
	DECLARE_SWAITQUEUE(wait);
3153

3154
	/* Poll for pending exceptions and ceded state */
3155
	cur = start_poll = ktime_get();
3156
	if (vc->halt_poll_ns) {
3157 3158
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3174 3175
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3176
			goto out;
3177
		}
3178 3179
	}

3180 3181 3182
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);

	if (kvmppc_vcore_check_block(vc)) {
3183
		finish_swait(&vc->wq, &wait);
3184
		do_sleep = 0;
3185 3186 3187
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3188
		goto out;
3189 3190
	}

3191 3192
	start_wait = ktime_get();

3193
	vc->vcore_state = VCORE_SLEEPING;
3194
	trace_kvmppc_vcore_blocked(vc, 0);
3195
	spin_unlock(&vc->lock);
3196
	schedule();
3197
	finish_swait(&vc->wq, &wait);
3198 3199
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3200
	trace_kvmppc_vcore_blocked(vc, 1);
3201
	++vc->runner->stat.halt_successful_wait;
3202 3203 3204 3205

	cur = ktime_get();

out:
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3224 3225

	/* Adjust poll time */
3226
	if (halt_poll_ns) {
3227 3228 3229
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3230
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3231 3232
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3233 3234
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3235
			grow_halt_poll_ns(vc);
3236 3237
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3238 3239 3240 3241
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3242
}
3243

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&kvm->lock);
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
	mutex_unlock(&kvm->lock);
	return r;
}

3263 3264
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3265
	int n_ceded, i, r;
3266
	struct kvmppc_vcore *vc;
3267
	struct kvm_vcpu *v;
3268

3269 3270
	trace_kvmppc_run_vcpu_enter(vcpu);

3271 3272 3273
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3274
	kvmppc_update_vpas(vcpu);
3275 3276 3277 3278 3279 3280

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3281
	vcpu->arch.ceded = 0;
3282 3283
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3284
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3285
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3286
	vcpu->arch.busy_preempt = TB_NIL;
3287
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3288 3289
	++vc->n_runnable;

3290 3291 3292 3293 3294
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3295
	if (!signal_pending(current)) {
3296 3297
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
		     vc->vcore_state == VCORE_RUNNING) &&
3298
			   !VCORE_IS_EXITING(vc)) {
3299
			kvmppc_create_dtl_entry(vcpu, vc);
3300
			kvmppc_start_thread(vcpu, vc);
3301
			trace_kvm_guest_enter(vcpu);
3302
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3303
			swake_up(&vc->wq);
3304 3305
		}

3306
	}
3307

3308 3309
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3310 3311
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3312
			spin_unlock(&vc->lock);
3313
			r = kvmhv_setup_mmu(vcpu);
3314 3315 3316
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3317 3318
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3319 3320 3321 3322 3323
				vcpu->arch.ret = r;
				break;
			}
		}

3324 3325 3326
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3327
		if (vc->vcore_state != VCORE_INACTIVE) {
3328
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3329 3330
			continue;
		}
3331
		for_each_runnable_thread(i, v, vc) {
3332
			kvmppc_core_prepare_to_enter(v);
3333 3334 3335 3336 3337 3338 3339 3340
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3341 3342 3343
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3344
		for_each_runnable_thread(i, v, vc) {
3345
			if (!kvmppc_vcpu_woken(v))
3346
				n_ceded += v->arch.ceded;
3347 3348 3349
			else
				v->arch.ceded = 0;
		}
3350 3351
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3352
			kvmppc_vcore_blocked(vc);
3353
		} else if (need_resched()) {
3354
			kvmppc_vcore_preempt(vc);
3355 3356
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3357 3358
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3359
		} else {
3360
			kvmppc_run_core(vc);
3361
		}
3362
		vc->runner = NULL;
3363
	}
3364

3365 3366
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3367 3368
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3369
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3370

3371 3372 3373
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3374 3375 3376 3377 3378 3379 3380 3381 3382
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3383 3384
		i = -1;
		v = next_runnable_thread(vc, &i);
3385
		wake_up(&v->arch.cpu_run);
3386 3387
	}

3388
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3389 3390
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3391 3392
}

3393
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3394 3395
{
	int r;
3396
	int srcu_idx;
3397
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3398 3399
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
3400
	struct kvm *kvm;
3401

3402 3403 3404 3405 3406
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
3421 3422
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
3423 3424 3425 3426 3427 3428 3429
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

3430 3431 3432 3433 3434 3435 3436 3437 3438
	/*
	 * Force online to 1 for the sake of old userspace which doesn't
	 * set it.
	 */
	if (!vcpu->arch.online) {
		atomic_inc(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = 1;
	}

3439 3440
	kvmppc_core_prepare_to_enter(vcpu);

3441 3442 3443 3444 3445 3446
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

3447 3448 3449
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3450 3451
	smp_mb();

3452 3453
	flush_all_to_thread(current);

3454
	/* Save userspace EBB and other register values */
3455 3456 3457 3458
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
3459
		user_tar = mfspr(SPRN_TAR);
3460
	}
3461
	user_vrsave = mfspr(SPRN_VRSAVE);
3462

3463
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3464
	vcpu->arch.pgdir = current->mm->pgd;
3465
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3466

3467 3468 3469 3470 3471
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3472
			trace_kvm_hcall_enter(vcpu);
3473
			r = kvmppc_pseries_do_hcall(vcpu);
3474
			trace_kvm_hcall_exit(vcpu, r);
3475
			kvmppc_core_prepare_to_enter(vcpu);
3476
		} else if (r == RESUME_PAGE_FAULT) {
3477
			srcu_idx = srcu_read_lock(&kvm->srcu);
3478 3479
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3480
			srcu_read_unlock(&kvm->srcu, srcu_idx);
3481 3482 3483 3484 3485 3486
		} else if (r == RESUME_PASSTHROUGH) {
			if (WARN_ON(xive_enabled()))
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
3487
	} while (is_kvmppc_resume_guest(r));
3488

3489
	/* Restore userspace EBB and other register values */
3490 3491 3492 3493
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
3494 3495
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
3496
	}
3497
	mtspr(SPRN_VRSAVE, user_vrsave);
3498

3499
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3500
	atomic_dec(&kvm->arch.vcpus_running);
3501 3502 3503
	return r;
}

3504
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3505
				     int shift, int sllp)
3506
{
3507 3508 3509 3510
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3511
	/*
3512
	 * Add 16MB MPSS support (may get filtered out by userspace)
3513
	 */
3514 3515 3516 3517 3518 3519
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
3520
	}
3521 3522 3523
	(*sps)++;
}

3524 3525
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
3526 3527 3528
{
	struct kvm_ppc_one_seg_page_size *sps;

3529 3530 3531 3532 3533 3534 3535 3536
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

3537 3538 3539
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
3540 3541 3542

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
3543 3544 3545
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3546 3547 3548 3549

	return 0;
}

3550 3551 3552
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
3553 3554
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
3555
{
3556
	struct kvm_memslots *slots;
3557
	struct kvm_memory_slot *memslot;
3558
	int i, r;
3559
	unsigned long n;
3560
	unsigned long *buf, *p;
3561
	struct kvm_vcpu *vcpu;
3562 3563 3564 3565

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
3566
	if (log->slot >= KVM_USER_MEM_SLOTS)
3567 3568
		goto out;

3569 3570
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
3571 3572 3573 3574
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

3575
	/*
3576 3577
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
3578
	 */
3579
	n = kvm_dirty_bitmap_bytes(memslot);
3580 3581
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
3582

3583 3584 3585 3586
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3587 3588 3589
	if (r)
		goto out;

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

3600 3601 3602 3603 3604 3605 3606 3607 3608
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

3609
	r = -EFAULT;
3610
	if (copy_to_user(log->dirty_bitmap, buf, n))
3611 3612 3613 3614 3615 3616 3617 3618
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

3619 3620
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
3621 3622 3623 3624
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
3625
	}
3626 3627
}

3628 3629
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
3630
{
3631
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
3632 3633
	if (!slot->arch.rmap)
		return -ENOMEM;
3634

3635 3636
	return 0;
}
3637

3638 3639
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
3640
					const struct kvm_userspace_memory_region *mem)
3641
{
3642
	return 0;
3643 3644
}

3645
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3646
				const struct kvm_userspace_memory_region *mem,
3647 3648
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
3649
{
3650 3651
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

3652 3653 3654 3655 3656 3657 3658 3659
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
3660 3661
}

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3688 3689 3690 3691 3692
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3693
void kvmppc_setup_partition_table(struct kvm *kvm)
3694 3695 3696
{
	unsigned long dw0, dw1;

3697 3698 3699 3700 3701 3702
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
3703

3704 3705 3706 3707 3708 3709 3710
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
3711 3712 3713 3714

	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}

3715 3716 3717 3718
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
 * Must be called with kvm->lock held.
 */
3719
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3720 3721 3722 3723 3724 3725
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3726
	unsigned long lpcr = 0, senc;
3727
	unsigned long psize, porder;
3728
	int srcu_idx;
3729

3730
	/* Allocate hashed page table (if not done already) and reset it */
3731
	if (!kvm->arch.hpt.virt) {
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
3743 3744 3745
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
3746 3747

		kvmppc_set_hpt(kvm, &info);
3748 3749
	}

3750
	/* Look up the memslot for guest physical address 0 */
3751
	srcu_idx = srcu_read_lock(&kvm->srcu);
3752
	memslot = gfn_to_memslot(kvm, 0);
3753

3754 3755 3756
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3757
		goto out_srcu;
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);

	up_read(&current->mm->mmap_sem);

3770
	/* We can handle 4k, 64k or 16M pages in the VRMA */
3771 3772 3773 3774 3775 3776 3777
	if (psize >= 0x1000000)
		psize = 0x1000000;
	else if (psize >= 0x10000)
		psize = 0x10000;
	else
		psize = 0x1000;
	porder = __ilog2(psize);
3778

3779 3780 3781 3782 3783
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3784

3785 3786 3787 3788 3789 3790
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
3791

3792
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3793 3794
	smp_wmb();
	err = 0;
3795 3796
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3797 3798
 out:
	return err;
3799

3800 3801
 up_out:
	up_read(&current->mm->mmap_sem);
3802
	goto out_srcu;
3803 3804
}

3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvmppc_rmap_reset(kvm);
	kvm->arch.radix = 0;
	kvm->arch.process_table = 0;
	return 0;
}

/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;

	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvm->arch.radix = 1;
	return 0;
}

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3867
	cpus_read_lock();
3868

3869 3870 3871 3872 3873 3874 3875 3876
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3877 3878
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3889
		cpus_read_unlock();
3890 3891
		kfree(ops->rm_core);
		kfree(ops);
3892
		return;
3893
	}
3894

3895 3896 3897 3898 3899
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
3900 3901 3902 3903 3904
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3905
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3906 3907 3908 3909 3910 3911 3912
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3913
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3914
{
3915
	unsigned long lpcr, lpid;
3916
	char buf[32];
3917
	int ret;
3918

3919 3920 3921
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3922
	if ((long)lpid < 0)
3923 3924
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3925

3926 3927
	kvmppc_alloc_host_rm_ops();

3928 3929 3930 3931
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
3932 3933
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
3934
	 */
3935 3936
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
3937

3938 3939 3940 3941
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3942 3943
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3944

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3956 3957 3958
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3959 3960 3961
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
3962 3963
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3964
		lpcr &= ~LPCR_VPM0;
3965 3966 3967 3968 3969 3970 3971 3972
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
		if (xive_enabled())
			lpcr |= LPCR_LPES;
3973 3974
	}

3975
	/*
3976
	 * If the host uses radix, the guest starts out as radix.
3977 3978 3979
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
3980
		kvm->arch.mmu_ready = 1;
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

3991
	kvm->arch.lpcr = lpcr;
3992

3993 3994 3995
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

3996 3997 3998 3999
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
4000
	if (radix_enabled())
4001 4002
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4003 4004 4005 4006 4007 4008
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

4009
	/*
4010 4011
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
4012 4013
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
4014
	 */
4015 4016 4017
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.threads_indep = indep_threads_mode;
	if (!kvm->arch.threads_indep)
4018
		kvm_hv_vm_activated();
4019

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
4031
	kvm->arch.emul_smt_mode = 1;
4032

4033 4034 4035 4036 4037
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4038
	kvmppc_mmu_debugfs_init(kvm);
4039

4040
	return 0;
4041 4042
}

4043 4044 4045 4046
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

4047
	for (i = 0; i < KVM_MAX_VCORES; ++i)
4048 4049 4050 4051
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

4052
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4053
{
4054 4055
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

4056
	if (!kvm->arch.threads_indep)
4057
		kvm_hv_vm_deactivated();
4058

4059
	kvmppc_free_vcores(kvm);
4060

4061 4062
	kvmppc_free_lpid(kvm->arch.lpid);

4063 4064 4065
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
4066
		kvmppc_free_hpt(&kvm->arch.hpt);
4067 4068

	kvmppc_free_pimap(kvm);
4069 4070
}

4071 4072 4073
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
4074
{
4075
	return EMULATE_FAIL;
4076 4077
}

4078 4079
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
4080 4081 4082 4083
{
	return EMULATE_FAIL;
}

4084 4085
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
4086 4087 4088 4089
{
	return EMULATE_FAIL;
}

4090
static int kvmppc_core_check_processor_compat_hv(void)
4091
{
4092 4093
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
4094
		return -EIO;
4095

4096
	return 0;
4097 4098
}

4099 4100 4101 4102 4103 4104 4105
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

4106
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4107 4108 4109
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
4110 4111 4112 4113 4114 4115 4116

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
4117
	int i, rc = 0;
4118

4119 4120 4121
	if (!kvm_irq_bypass)
		return 1;

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
4142
	 * what our real-mode EOI code does, or a XIVE interrupt
4143 4144
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
4145
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

4177 4178 4179 4180 4181 4182 4183
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

4184 4185 4186
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

4187 4188 4189 4190 4191 4192
	if (xive_enabled())
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
4193

4194 4195 4196 4197 4198 4199 4200 4201 4202
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
4203
	int i, rc = 0;
4204

4205 4206 4207
	if (!kvm_irq_bypass)
		return 0;

4208 4209 4210 4211 4212
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
4213 4214
	if (!kvm->arch.pimap)
		goto unlock;
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

4228 4229 4230 4231
	if (xive_enabled())
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4232

4233
	/* invalidate the entry (what do do on error from the above ?) */
4234 4235 4236 4237 4238 4239
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
4240
 unlock:
4241
	mutex_unlock(&kvm->lock);
4242
	return rc;
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
4281 4282
#endif

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
4298
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

4337 4338 4339 4340 4341 4342 4343
	default:
		r = -ENOTTY;
	}

	return r;
}

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
4378
	unsigned int hcall;
4379

4380 4381 4382 4383 4384
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
4385 4386
}

4387 4388
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
4389
	unsigned long lpcr;
4390
	int radix;
4391
	int err;
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
4402
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4403
	if (!!(cfg->process_table & PATB_GR) != radix)
4404 4405 4406 4407 4408 4409
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

4410 4411 4412 4413
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

4414
	mutex_lock(&kvm->lock);
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

4434 4435 4436 4437 4438
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4439
	err = 0;
4440

4441 4442 4443
 out_unlock:
	mutex_unlock(&kvm->lock);
	return err;
4444 4445
}

4446
static struct kvmppc_ops kvm_ops_hv = {
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4477
	.hcall_implemented = kvmppc_hcall_impl_hv,
4478 4479 4480 4481
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
4482 4483
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
4484
	.set_smt_mode = kvmhv_set_smt_mode,
4485 4486
};

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
4498
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

4513 4514
			paca_ptrs[cpu]->sibling_subcore_state =
						sibling_subcore_state;
4515 4516 4517 4518 4519
		}
	}
	return 0;
}

4520 4521 4522 4523 4524
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

4525
static int kvmppc_book3s_init_hv(void)
4526 4527
{
	int r;
4528 4529 4530 4531 4532
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
4533
		return -ENODEV;
4534

4535 4536 4537 4538
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

4539 4540
	/*
	 * We need a way of accessing the XICS interrupt controller,
4541
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4542 4543 4544
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
4545
	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
	}
#endif

4556 4557
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
4558

4559 4560
	init_default_hcalls();

4561 4562
	init_vcore_lists();

4563
	r = kvmppc_mmu_hv_init();
4564 4565 4566 4567 4568
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581

	/*
	 * POWER9 chips before version 2.02 can't have some threads in
	 * HPT mode and some in radix mode on the same core.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		unsigned int pvr = mfspr(SPRN_PVR);
		if ((pvr >> 16) == PVR_POWER9 &&
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
			no_mixing_hpt_and_radix = true;
	}

4582 4583 4584
	return r;
}

4585
static void kvmppc_book3s_exit_hv(void)
4586
{
4587
	kvmppc_free_host_rm_ops();
4588 4589
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
4590
	kvmppc_hv_ops = NULL;
4591 4592
}

4593 4594
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
4595
MODULE_LICENSE("GPL");
4596 4597
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");