book3s_hv.c 142.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48

49
#include <asm/ftrace.h>
50
#include <asm/reg.h>
51
#include <asm/ppc-opcode.h>
52
#include <asm/asm-prototypes.h>
53
#include <asm/archrandom.h>
54
#include <asm/debug.h>
55
#include <asm/disassemble.h>
56 57
#include <asm/cputable.h>
#include <asm/cacheflush.h>
58
#include <linux/uaccess.h>
59 60 61 62 63 64
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
65
#include <asm/cputhreads.h>
66
#include <asm/page.h>
67
#include <asm/hvcall.h>
68
#include <asm/switch_to.h>
69
#include <asm/smp.h>
70
#include <asm/dbell.h>
71
#include <asm/hmi.h>
72
#include <asm/pnv-pci.h>
73
#include <asm/mmu.h>
74 75
#include <asm/opal.h>
#include <asm/xics.h>
76
#include <asm/xive.h>
77
#include <asm/hw_breakpoint.h>
78

79 80
#include "book3s.h"

81 82 83
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

84 85 86 87
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

88 89
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
90 91
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
92

93 94 95
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

96 97
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

98
static int dynamic_mt_modes = 6;
99
module_param(dynamic_mt_modes, int, 0644);
100
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101
static int target_smt_mode;
102
module_param(target_smt_mode, int, 0644);
103
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104

105 106 107 108
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

109 110 111 112
static bool one_vm_per_core;
module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");

113 114 115 116 117 118
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

119
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 121
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

122
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 124 125
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

126 127 128 129 130 131 132 133 134 135
/* If set, guests are allowed to create and control nested guests */
static bool nested = true;
module_param(nested, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");

static inline bool nesting_enabled(struct kvm *kvm)
{
	return kvm->arch.nested_enable && kvm_is_radix(kvm);
}

136 137 138
/* If set, the threads on each CPU core have to be in the same MMU mode */
static bool no_mixing_hpt_and_radix;

139
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
140
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
141

142 143 144 145 146
/*
 * RWMR values for POWER8.  These control the rate at which PURR
 * and SPURR count and should be set according to the number of
 * online threads in the vcore being run.
 */
147 148 149 150 151 152 153 154
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
155 156 157 158 159 160 161 162 163 164 165 166 167

static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_2THREAD,
	RWMR_RPA_P8_3THREAD,
	RWMR_RPA_P8_4THREAD,
	RWMR_RPA_P8_5THREAD,
	RWMR_RPA_P8_6THREAD,
	RWMR_RPA_P8_7THREAD,
	RWMR_RPA_P8_8THREAD,
};

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

188 189
static bool kvmppc_ipi_thread(int cpu)
{
190 191
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

192 193 194 195
	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
	if (kvmhv_on_pseries())
		return false;

196 197 198 199 200 201 202 203
	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
219
	if (cpu >= 0 && cpu < nr_cpu_ids) {
220
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
221 222 223 224
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
225 226 227 228 229 230 231
		return true;
	}
#endif

	return false;
}

232
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
233
{
234
	int cpu;
235
	struct swait_queue_head *wqp;
236 237

	wqp = kvm_arch_vcpu_wq(vcpu);
238
	if (swq_has_sleeper(wqp)) {
239
		swake_up_one(wqp);
240 241 242
		++vcpu->stat.halt_wakeup;
	}

243 244
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245
		return;
246 247

	/* CPU points to the first thread of the core */
248
	cpu = vcpu->cpu;
249 250
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
251 252
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
280 281 282 283
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
284 285
 */

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

307
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
308
{
309
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
310
	unsigned long flags;
311

312 313 314 315 316 317
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
318 319 320
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

321
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
322 323 324 325 326
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
327
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
328 329
}

330
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
331
{
332
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
333
	unsigned long flags;
334

335 336 337
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

338
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
339 340
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
341
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
342 343
}

344
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
345
{
346 347 348 349 350 351
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
352
	vcpu->arch.shregs.msr = msr;
353
	kvmppc_end_cede(vcpu);
354 355
}

T
Thomas Huth 已提交
356
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
357 358 359 360
{
	vcpu->arch.pvr = pvr;
}

361 362 363
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
364
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
365
{
366
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
367 368
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

369 370 371 372 373 374 375 376 377 378 379 380
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
381 382 383
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
384
			guest_pcr_bit = PCR_ARCH_205;
385 386 387
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
388
			guest_pcr_bit = PCR_ARCH_206;
389 390
			break;
		case PVR_ARCH_207:
391 392 393 394
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
395 396 397 398 399 400
			break;
		default:
			return -EINVAL;
		}
	}

401 402 403 404
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

405 406
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
407 408
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
409 410 411 412 413
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
414
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
415 416 417 418 419
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
420
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
421 422 423 424 425
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
426
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
427 428 429 430 431 432
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
433 434
	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
435 436 437 438 439 440 441 442
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
443
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
444 445 446
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
447
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
448
{
449
	struct kvm_vcpu *ret;
450 451

	mutex_lock(&kvm->lock);
452
	ret = kvm_get_vcpu_by_id(kvm, id);
453 454 455 456 457 458
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
459
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
460
	vpa->yield_count = cpu_to_be32(1);
461 462
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

479 480 481 482
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
483 484
		__be16 hword;
		__be32 word;
485 486 487 488 489 490 491 492 493 494
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

495 496 497 498 499
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
500
	unsigned long len, nb;
501 502
	void *va;
	struct kvm_vcpu *tvcpu;
503 504 505
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
506 507 508 509 510

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

511 512 513 514 515
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
516
			return H_PARAMETER;
517 518

		/* convert logical addr to kernel addr and read length */
519 520
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
521
			return H_PARAMETER;
522
		if (subfunc == H_VPA_REG_VPA)
523
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
524
		else
525
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
526
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
542 543 544 545 546 547
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
548 549
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
		if (len < sizeof(struct lppaca))
550
			break;
551 552 553 554 555 556
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
557
			break;
558 559 560 561 562
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
563
			break;
564 565 566 567 568 569 570 571 572

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
573
			break;
574 575 576 577 578 579 580 581 582 583

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
584
			break;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
605
	}
606

607 608
	spin_unlock(&tvcpu->arch.vpa_update_lock);

609
	return err;
610 611
}

612
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
613
{
614
	struct kvm *kvm = vcpu->kvm;
615 616
	void *va;
	unsigned long nb;
617
	unsigned long gpa;
618

619 620 621 622 623 624 625 626 627 628 629 630 631 632
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
633
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
634 635 636 637 638
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
639
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
640 641 642 643 644 645 646 647 648
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
649
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
650
		va = NULL;
651 652
	}
	if (vpap->pinned_addr)
653 654 655
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
656
	vpap->pinned_addr = va;
657
	vpap->dirty = false;
658 659 660 661 662 663
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
664 665 666 667 668
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

669 670
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
671
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
672 673
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
674 675
	}
	if (vcpu->arch.dtl.update_pending) {
676
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
677 678 679 680
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
681
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
682 683 684
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

685 686 687 688 689 690 691
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
692
	unsigned long flags;
693

694 695
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
696
	if (vc->vcore_state != VCORE_INACTIVE &&
697 698 699
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
700 701 702
	return p;
}

703 704 705 706 707
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
708 709 710
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
711
	unsigned long flags;
712 713 714

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
715 716 717 718
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
719
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
720 721
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
722
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
723 724 725 726
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
727 728 729 730 731
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
732 733 734 735 736 737
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
738
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
739
	vcpu->arch.dtl.dirty = true;
740 741
}

742 743 744 745 746 747
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

748 749 750 751 752
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
753
	 * smp_wmb() in kvmppc_guest_entry_inject().
754 755
	 */
	smp_rmb();
756 757 758 759 760
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
791 792
		if (!ppc_breakpoint_available())
			return H_P2;
793 794 795 796 797 798 799 800 801 802 803 804
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
/* Copy guest memory in place - must reside within a single memslot */
static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
				  unsigned long len)
{
	struct kvm_memory_slot *to_memslot = NULL;
	struct kvm_memory_slot *from_memslot = NULL;
	unsigned long to_addr, from_addr;
	int r;

	/* Get HPA for from address */
	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
	if (!from_memslot)
		return -EFAULT;
	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
			     << PAGE_SHIFT))
		return -EINVAL;
	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
	if (kvm_is_error_hva(from_addr))
		return -EFAULT;
	from_addr |= (from & (PAGE_SIZE - 1));

	/* Get HPA for to address */
	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
	if (!to_memslot)
		return -EFAULT;
	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
			   << PAGE_SHIFT))
		return -EINVAL;
	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
	if (kvm_is_error_hva(to_addr))
		return -EFAULT;
	to_addr |= (to & (PAGE_SIZE - 1));

	/* Perform copy */
	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
			     len);
	if (r)
		return -EFAULT;
	mark_page_dirty(kvm, to >> PAGE_SHIFT);
	return 0;
}

static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
			       unsigned long dest, unsigned long src)
{
	u64 pg_sz = SZ_4K;		/* 4K page size */
	u64 pg_mask = SZ_4K - 1;
	int ret;

	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
		return H_PARAMETER;

	/* dest (and src if copy_page flag set) must be page aligned */
	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
		return H_PARAMETER;

	/* zero and/or copy the page as determined by the flags */
	if (flags & H_COPY_PAGE) {
		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
		if (ret < 0)
			return H_PARAMETER;
	} else if (flags & H_ZERO_PAGE) {
		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
		if (ret < 0)
			return H_PARAMETER;
	}

	/* We can ignore the remaining flags */

	return H_SUCCESS;
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
893 894
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
895 896 897 898 899 900 901 902 903 904 905 906 907 908
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
909
		yield_count = be32_to_cpu(lppaca->yield_count);
910 911 912 913
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

914 915 916 917
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
918
	int yield_count;
919
	struct kvm_vcpu *tvcpu;
920
	int idx, rc;
921

922 923 924 925
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

926 927 928 929 930 931 932 933 934 935 936 937
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
938 939
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
940 941
		break;
	case H_CONFER:
942 943 944 945 946 947 948 949
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
950 951 952 953
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
954 955 956 957 958 959
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
960 961 962 963
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

964
		idx = srcu_read_lock(&vcpu->kvm->srcu);
965
		rc = kvmppc_rtas_hcall(vcpu);
966
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
967 968 969 970 971 972 973 974

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
975 976 977 978 979 980 981 982 983 984
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
985 986 987 988 989 990 991 992
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
993 994 995 996
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
997 998
	case H_IPOLL:
	case H_XIRR_X:
999
		if (kvmppc_xics_enabled(vcpu)) {
1000
			if (xics_on_xive()) {
1001 1002 1003
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
1004 1005
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
1006 1007
		}
		return RESUME_HOST;
1008 1009 1010 1011 1012 1013 1014
	case H_SET_DABR:
		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
		break;
	case H_SET_XDABR:
		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		break;
1015
#ifdef CONFIG_SPAPR_TCE_IOMMU
1016 1017 1018 1019 1020 1021
	case H_GET_TCE:
		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
1045
#endif
1046 1047 1048 1049
	case H_RANDOM:
		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
			ret = H_HARDWARE;
		break;
1050 1051 1052

	case H_SET_PARTITION_TABLE:
		ret = H_FUNCTION;
1053
		if (nesting_enabled(vcpu->kvm))
1054 1055 1056 1057
			ret = kvmhv_set_partition_table(vcpu);
		break;
	case H_ENTER_NESTED:
		ret = H_FUNCTION;
1058
		if (!nesting_enabled(vcpu->kvm))
1059 1060 1061 1062
			break;
		ret = kvmhv_enter_nested_guest(vcpu);
		if (ret == H_INTERRUPT) {
			kvmppc_set_gpr(vcpu, 3, 0);
1063
			vcpu->arch.hcall_needed = 0;
1064
			return -EINTR;
1065 1066 1067 1068
		} else if (ret == H_TOO_HARD) {
			kvmppc_set_gpr(vcpu, 3, 0);
			vcpu->arch.hcall_needed = 0;
			return RESUME_HOST;
1069
		}
1070 1071 1072
		break;
	case H_TLB_INVALIDATE:
		ret = H_FUNCTION;
1073 1074
		if (nesting_enabled(vcpu->kvm))
			ret = kvmhv_do_nested_tlbie(vcpu);
1075
		break;
1076 1077 1078 1079 1080
	case H_COPY_TOFROM_GUEST:
		ret = H_FUNCTION;
		if (nesting_enabled(vcpu->kvm))
			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
		break;
1081 1082 1083 1084 1085
	case H_PAGE_INIT:
		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
					 kvmppc_get_gpr(vcpu, 5),
					 kvmppc_get_gpr(vcpu, 6));
		break;
1086 1087 1088 1089 1090 1091 1092 1093
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/*
 * Handle H_CEDE in the nested virtualization case where we haven't
 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
 * that the cede logic in kvmppc_run_single_vcpu() works properly.
 */
static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
{
	vcpu->arch.shregs.msr |= MSR_EE;
	vcpu->arch.ceded = 1;
	smp_mb();
	if (vcpu->arch.prodded) {
		vcpu->arch.prodded = 0;
		smp_mb();
		vcpu->arch.ceded = 0;
	}
}

1112 1113 1114 1115 1116 1117 1118
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
1119
	case H_SET_MODE:
1120 1121
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
1122 1123 1124 1125 1126 1127 1128 1129
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
1130
	case H_PAGE_INIT:
1131 1132 1133 1134 1135 1136 1137
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1255 1256
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1257 1258 1259 1260 1261
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1280 1281 1282 1283 1284 1285 1286 1287 1288
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1289
	case BOOK3S_INTERRUPT_H_DOORBELL:
1290
	case BOOK3S_INTERRUPT_H_VIRT:
1291 1292 1293
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1294
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1295
	case BOOK3S_INTERRUPT_HMI:
1296
	case BOOK3S_INTERRUPT_PERFMON:
1297
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1298 1299
		r = RESUME_GUEST;
		break;
1300
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1301
		/* Print the MCE event to host console. */
1302
		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

		/*
		 * If the guest can do FWNMI, exit to userspace so it can
		 * deliver a FWNMI to the guest.
		 * Otherwise we synthesize a machine check for the guest
		 * so that it knows that the machine check occurred.
		 */
		if (!vcpu->kvm->arch.fwnmi_enabled) {
			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
			kvmppc_core_queue_machine_check(vcpu, flags);
			r = RESUME_GUEST;
			break;
		}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
1329
		break;
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1349 1350 1351 1352
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1353 1354 1355 1356 1357 1358 1359 1360 1361
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1362 1363 1364 1365 1366
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1367 1368
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1369
		r = RESUME_PAGE_FAULT;
1370 1371
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1372
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1373 1374 1375 1376
		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
			DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1377
		r = RESUME_PAGE_FAULT;
1378 1379 1380
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1381 1382 1383 1384
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1385 1386
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1387 1388 1389 1390
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1391 1392 1393 1394 1395 1396
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1397 1398 1399
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1400 1401 1402 1403
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1404 1405
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1406
		r = EMULATE_FAIL;
1407
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1408
		    cpu_has_feature(CPU_FTR_ARCH_300))
1409 1410 1411 1412 1413
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1414
		break;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

1428 1429 1430
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1431 1432 1433 1434 1435
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1436
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1437 1438 1439 1440 1441 1442 1443
		r = RESUME_HOST;
		break;
	}

	return r;
}

1444
static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
{
	int r;
	int srcu_idx;

	vcpu->stat.sum_exits++;

	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		pr_emerg("KVM trap in HV mode while nested!\n");
		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
			 vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		return RESUME_HOST;
	}
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_HOST;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
	case BOOK3S_INTERRUPT_H_VIRT:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
	case BOOK3S_INTERRUPT_PERFMON:
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/* Pass the machine check to the L1 guest */
		r = RESUME_HOST;
		/* Print the MCE event to host console. */
1492
		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1493 1494 1495 1496 1497 1498 1499 1500 1501
		break;
	/*
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1502
		r = kvmhv_nested_page_fault(run, vcpu);
1503 1504 1505 1506 1507 1508 1509 1510 1511
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
					 DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1512
		r = kvmhv_nested_page_fault(run, vcpu);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

	case BOOK3S_INTERRUPT_HV_RM_HARD:
		vcpu->arch.trap = 0;
		r = RESUME_GUEST;
1531
		if (!xics_on_xive())
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
			kvmppc_xics_rm_complete(vcpu, 0);
		break;
	default:
		r = RESUME_HOST;
		break;
	}

	return r;
}

1542 1543
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1544 1545 1546 1547
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1548
	sregs->pvr = vcpu->arch.pvr;
1549 1550 1551 1552 1553 1554 1555 1556
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1557 1558
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1559 1560 1561
{
	int i, j;

1562 1563 1564
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1579 1580
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1581
{
1582
	struct kvm *kvm = vcpu->kvm;
1583 1584 1585
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1586
	mutex_lock(&kvm->lock);
1587
	spin_lock(&vc->lock);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1606 1607 1608
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1609
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1610 1611
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1612 1613
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1614 1615 1616 1617 1618 1619
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1620 1621 1622 1623

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1624 1625
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1626
	mutex_unlock(&kvm->lock);
1627 1628
}

1629 1630
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1631
{
1632 1633
	int r = 0;
	long int i;
1634

1635
	switch (id) {
1636 1637 1638
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1639
	case KVM_REG_PPC_HIOR:
1640 1641 1642 1643 1644
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1645 1646 1647
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1663
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1664 1665 1666 1667 1668 1669
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1670
		break;
1671 1672 1673 1674
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1675 1676 1677 1678 1679 1680
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1681 1682
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1683
		break;
1684 1685 1686 1687 1688 1689 1690 1691 1692
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1693 1694 1695
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1722
		break;
1723 1724 1725 1726 1727 1728
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1746 1747 1748
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1749
	case KVM_REG_PPC_LPCR:
1750
	case KVM_REG_PPC_LPCR_64:
1751 1752
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1753 1754 1755
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1788 1789 1790
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1822 1823 1824
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1825 1826 1827 1828
	case KVM_REG_PPC_DEC_EXPIRY:
		*val = get_reg_val(id, vcpu->arch.dec_expires +
				   vcpu->arch.vcore->tb_offset);
		break;
1829 1830 1831
	case KVM_REG_PPC_ONLINE:
		*val = get_reg_val(id, vcpu->arch.online);
		break;
1832 1833 1834
	case KVM_REG_PPC_PTCR:
		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
		break;
1835
	default:
1836
		r = -EINVAL;
1837 1838 1839 1840 1841 1842
		break;
	}

	return r;
}

1843 1844
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1845
{
1846 1847
	int r = 0;
	long int i;
1848
	unsigned long addr, len;
1849

1850
	switch (id) {
1851 1852
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1853
		if (set_reg_val(id, *val))
1854 1855
			r = -EINVAL;
		break;
1856 1857 1858
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1859 1860 1861
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1877
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1878 1879 1880 1881 1882 1883 1884
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1885 1886 1887 1888
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1889 1890 1891 1892 1893 1894
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1895 1896
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1897
		break;
1898 1899 1900 1901 1902 1903 1904 1905 1906
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1907 1908 1909
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1939
		break;
1940 1941 1942 1943 1944 1945
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1966 1967
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1968 1969 1970 1971
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1972 1973 1974 1975 1976
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1977
	case KVM_REG_PPC_LPCR:
1978 1979 1980 1981
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1982
		break;
1983 1984 1985
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
2017 2018 2019
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
2051 2052 2053
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
2054 2055 2056 2057
	case KVM_REG_PPC_DEC_EXPIRY:
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
			vcpu->arch.vcore->tb_offset;
		break;
2058
	case KVM_REG_PPC_ONLINE:
2059 2060 2061 2062 2063 2064
		i = set_reg_val(id, *val);
		if (i && !vcpu->arch.online)
			atomic_inc(&vcpu->arch.vcore->online_count);
		else if (!i && vcpu->arch.online)
			atomic_dec(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = i;
2065
		break;
2066 2067 2068
	case KVM_REG_PPC_PTCR:
		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
		break;
2069
	default:
2070
		r = -EINVAL;
2071 2072 2073 2074 2075 2076
		break;
	}

	return r;
}

2077 2078 2079 2080 2081 2082 2083
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
2084
static int threads_per_vcore(struct kvm *kvm)
2085
{
2086
	if (kvm->arch.threads_indep)
2087 2088 2089 2090
		return 1;
	return threads_per_subcore;
}

2091
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2092 2093 2094 2095 2096 2097 2098 2099 2100
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
2101
	spin_lock_init(&vcore->stoltb_lock);
2102
	init_swait_queue_head(&vcore->wq);
2103 2104
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
2105
	vcore->first_vcpuid = id;
2106
	vcore->kvm = kvm;
2107
	INIT_LIST_HEAD(&vcore->preempt_list);
2108 2109 2110 2111

	return vcore;
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

2124
#define N_TIMINGS	(ARRAY_SIZE(timings))
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

2260 2261
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
2262 2263
{
	struct kvm_vcpu *vcpu;
2264
	int err;
2265 2266
	int core;
	struct kvmppc_vcore *vcore;
2267

2268
	err = -ENOMEM;
2269
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2270 2271 2272 2273 2274 2275 2276 2277
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
2289 2290 2291
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
2292
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2293
	spin_lock_init(&vcpu->arch.vpa_update_lock);
2294 2295
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
2296
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2297

2298 2299 2300
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
2301
	 * On POWER9, we want to virtualize the doorbell facility, so we
2302 2303
	 * don't set the HFSCR_MSGP bit, and that causes those instructions
	 * to trap and then we emulate them.
2304
	 */
2305 2306 2307 2308 2309 2310 2311 2312
	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
			vcpu->arch.hfscr |= HFSCR_TM;
	}
	if (cpu_has_feature(CPU_FTR_TM_COMP))
2313
		vcpu->arch.hfscr |= HFSCR_TM;
2314

2315 2316
	kvmppc_mmu_book3s_hv_init(vcpu);

2317
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2318 2319 2320 2321

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
2322 2323
	vcore = NULL;
	err = -EINVAL;
2324
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2325 2326 2327 2328 2329 2330 2331
		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
			pr_devel("KVM: VCPU ID too high\n");
			core = KVM_MAX_VCORES;
		} else {
			BUG_ON(kvm->arch.smt_mode != 1);
			core = kvmppc_pack_vcpu_id(kvm, id);
		}
2332 2333 2334
	} else {
		core = id / kvm->arch.smt_mode;
	}
2335 2336
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
2337 2338 2339 2340
		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
			pr_devel("KVM: collision on id %u", id);
			vcore = NULL;
		} else if (!vcore) {
2341
			err = -ENOMEM;
2342 2343
			vcore = kvmppc_vcore_create(kvm,
					id & ~(kvm->arch.smt_mode - 1));
2344 2345 2346
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
2357
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2358
	vcpu->arch.thread_cpu = -1;
2359
	vcpu->arch.prev_cpu = -1;
2360

2361 2362 2363
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2364 2365
	debugfs_vcpu_init(vcpu, id);

2366 2367 2368
	return vcpu;

free_vcpu:
2369
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2370 2371 2372 2373
out:
	return ERR_PTR(err);
}

2374 2375 2376 2377
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2378
	int esmt = 0;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2396
		esmt = smt_mode;
2397 2398 2399 2400 2401 2402
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2403
		kvm->arch.emul_smt_mode = esmt;
2404 2405 2406 2407 2408 2409 2410
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2411 2412 2413 2414 2415 2416 2417
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2418
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2419
{
2420
	spin_lock(&vcpu->arch.vpa_update_lock);
2421 2422 2423
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2424
	spin_unlock(&vcpu->arch.vpa_update_lock);
2425
	kvm_vcpu_uninit(vcpu);
2426
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2427 2428
}

2429 2430 2431 2432 2433 2434
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2435
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2436
{
2437
	unsigned long dec_nsec, now;
2438

2439 2440 2441 2442
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2443
		kvmppc_core_prepare_to_enter(vcpu);
2444
		return;
2445
	}
2446
	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
T
Thomas Gleixner 已提交
2447
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2448
	vcpu->arch.timer_running = 1;
2449 2450
}

2451
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2452
{
2453 2454 2455 2456 2457
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2458 2459
}

2460
extern int __kvmppc_vcore_entry(void);
2461

2462 2463
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2464
{
2465 2466
	u64 now;

2467 2468
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2469
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2470 2471 2472 2473 2474
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2475
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2476
	--vc->n_runnable;
2477
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2478 2479
}

2480 2481 2482
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2483
	long timeout = 10000;
2484

2485
	tpaca = paca_ptrs[cpu];
2486 2487

	/* Ensure the thread won't go into the kernel if it wakes */
2488
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2489
	tpaca->kvm_hstate.kvm_vcore = NULL;
2490 2491 2492
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

2518
	tpaca = paca_ptrs[cpu];
2519
	tpaca->kvm_hstate.hwthread_req = 0;
2520
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2521 2522
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2523 2524
}

2525 2526
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
2527 2528
	struct kvm_nested_guest *nested = vcpu->arch.nested;
	cpumask_t *cpu_in_guest;
2529 2530 2531
	int i;

	cpu = cpu_first_thread_sibling(cpu);
2532 2533 2534 2535 2536 2537 2538
	if (nested) {
		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
		cpu_in_guest = &nested->cpu_in_guest;
	} else {
		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
		cpu_in_guest = &kvm->arch.cpu_in_guest;
	}
2539 2540 2541 2542 2543 2544 2545
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
2546
		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2547 2548 2549
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2550 2551
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
2552
	struct kvm_nested_guest *nested = vcpu->arch.nested;
2553
	struct kvm *kvm = vcpu->kvm;
2554 2555 2556 2557 2558 2559 2560 2561 2562
	int prev_cpu;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return;

	if (nested)
		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
	else
		prev_cpu = vcpu->arch.prev_cpu;
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
2576 2577 2578
	if (prev_cpu != pcpu) {
		if (prev_cpu >= 0 &&
		    cpu_first_thread_sibling(prev_cpu) !=
2579
		    cpu_first_thread_sibling(pcpu))
2580 2581 2582 2583 2584 2585 2586 2587
			radix_flush_cpu(kvm, prev_cpu, vcpu);
		if (nested)
			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
		else
			vcpu->arch.prev_cpu = pcpu;
	}
}

2588
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2589 2590 2591
{
	int cpu;
	struct paca_struct *tpaca;
2592
	struct kvm *kvm = vc->kvm;
2593

2594 2595 2596 2597 2598 2599 2600
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2601
		vcpu->cpu = vc->pcpu;
2602
		vcpu->arch.thread_cpu = cpu;
2603
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2604
	}
2605
	tpaca = paca_ptrs[cpu];
2606
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2607
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2608
	tpaca->kvm_hstate.fake_suspend = 0;
2609
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2610
	smp_wmb();
2611
	tpaca->kvm_hstate.kvm_vcore = vc;
2612
	if (cpu != smp_processor_id())
2613
		kvmppc_ipi_thread(cpu);
2614
}
2615

2616
static void kvmppc_wait_for_nap(int n_threads)
2617
{
2618 2619
	int cpu = smp_processor_id();
	int i, loops;
2620

2621 2622
	if (n_threads <= 1)
		return;
2623 2624 2625
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2626
		 * We set the vcore pointer when starting a thread
2627
		 * and the thread clears it when finished, so we look
2628
		 * for any threads that still have a non-NULL vcore ptr.
2629
		 */
2630
		for (i = 1; i < n_threads; ++i)
2631
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2632
				break;
2633
		if (i == n_threads) {
2634 2635
			HMT_medium();
			return;
2636
		}
2637
		HMT_low();
2638 2639
	}
	HMT_medium();
2640
	for (i = 1; i < n_threads; ++i)
2641
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2642
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2643 2644 2645 2646
}

/*
 * Check that we are on thread 0 and that any other threads in
2647 2648
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2649 2650 2651 2652
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2653
	int thr;
2654

2655 2656
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2657
		return 0;
2658 2659 2660

	thr = 0;
	while (++thr < threads_per_subcore)
2661 2662
		if (cpu_online(cpu + thr))
			return 0;
2663 2664

	/* Grab all hw threads so they can't go into the kernel */
2665
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2666 2667 2668 2669 2670 2671 2672 2673
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2674 2675 2676
	return 1;
}

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2706
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2718
	struct preempted_vcore_list *lp;
2719 2720 2721

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2722
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2723 2724 2725 2726 2727 2728 2729
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2730 2731 2732 2733
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2734
struct core_info {
2735 2736
	int		n_subcores;
	int		max_subcore_threads;
2737
	int		total_threads;
2738
	int		subcore_threads[MAX_SUBCORES];
2739
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2740 2741
};

2742 2743
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2744
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2745 2746 2747
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2748 2749 2750
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2751 2752
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2753
	cip->total_threads = vc->num_threads;
2754
	cip->subcore_threads[0] = vc->num_threads;
2755
	cip->vc[0] = vc;
2756 2757 2758 2759
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2760
	/*
2761 2762
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
	 * split-core mode, with one thread per subcore.
2763 2764 2765 2766 2767
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2780 2781
}

2782
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2783 2784 2785 2786 2787
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
2788
	vc->tb_offset_applied = 0;
2789 2790
}

2791 2792 2793 2794 2795 2796 2797 2798
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2799 2800 2801 2802
	/* In one_vm_per_core mode, require all vcores to be from the same vm */
	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
		return false;

2803 2804
	/* Some POWER9 chips require all threads to be in the same MMU mode */
	if (no_mixing_hpt_and_radix &&
2805 2806 2807
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2808 2809
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2810
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2811
		return false;
2812
	cip->max_subcore_threads = n_threads;
2813 2814 2815 2816 2817

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2818 2819 2820
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2835
	return can_dynamic_split(pvc, cip);
2836 2837
}

2838 2839
static void prepare_threads(struct kvmppc_vcore *vc)
{
2840 2841
	int i;
	struct kvm_vcpu *vcpu;
2842

2843
	for_each_runnable_thread(i, vcpu, vc) {
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2900
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2901
{
2902
	int still_running = 0, i;
2903 2904
	u64 now;
	long ret;
2905
	struct kvm_vcpu *vcpu;
2906

2907
	spin_lock(&vc->lock);
2908
	now = get_tb();
2909
	for_each_runnable_thread(i, vcpu, vc) {
2910 2911 2912 2913 2914 2915 2916 2917
		/*
		 * It's safe to unlock the vcore in the loop here, because
		 * for_each_runnable_thread() is safe against removal of
		 * the vcpu, and the vcore state is VCORE_EXITING here,
		 * so any vcpus becoming runnable will have their arch.trap
		 * set to zero and can't actually run in the guest.
		 */
		spin_unlock(&vc->lock);
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2933
		spin_lock(&vc->lock);
2934 2935 2936 2937
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2938
				kvmppc_set_timer(vcpu);
2939 2940 2941
			else
				++still_running;
		} else {
2942 2943 2944 2945
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2946
	if (!is_master) {
2947
		if (still_running > 0) {
2948
			kvmppc_vcore_preempt(vc);
2949 2950 2951 2952 2953 2954
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2955 2956
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2957 2958
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2959 2960 2961 2962
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2963 2964
}

2965 2966 2967 2968 2969
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2970
static inline int kvmppc_clear_host_core(unsigned int cpu)
2971 2972 2973 2974
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2975
		return 0;
2976 2977 2978 2979 2980 2981 2982
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2983
	return 0;
2984 2985 2986 2987 2988 2989 2990
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2991
static inline int kvmppc_set_host_core(unsigned int cpu)
2992 2993 2994 2995
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2996
		return 0;
2997 2998 2999 3000 3001 3002 3003

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3004
	return 0;
3005 3006
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
3019 3020 3021
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
3022 3023 3024
	}
}

3025 3026 3027 3028
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
3029
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3030
{
3031
	struct kvm_vcpu *vcpu;
3032
	int i;
3033
	int srcu_idx;
3034
	struct core_info core_info;
3035
	struct kvmppc_vcore *pvc;
3036 3037 3038 3039 3040
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
3041 3042
	int pcpu, thr;
	int target_threads;
3043
	int controlled_threads;
3044
	int trap;
3045
	bool is_power8;
3046
	bool hpt_on_radix;
3047

3048 3049 3050 3051 3052 3053 3054 3055 3056
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
3057 3058

	/*
3059
	 * Initialize *vc.
3060
	 */
3061
	init_vcore_to_run(vc);
3062
	vc->preempt_tb = TB_NIL;
3063

3064 3065 3066 3067 3068
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
3069
	controlled_threads = threads_per_vcore(vc->kvm);
3070

3071
	/*
3072 3073 3074
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
3075
	 * On POWER9, we need to be not in independent-threads mode if
3076 3077
	 * this is a HPT guest on a radix host machine where the
	 * CPU threads may not be in different MMU modes.
3078
	 */
3079 3080
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
		!kvm_is_radix(vc->kvm);
3081 3082 3083
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3084
		for_each_runnable_thread(i, vcpu, vc) {
3085
			vcpu->arch.ret = -EBUSY;
3086 3087 3088
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
3089 3090 3091
		goto out;
	}

3092 3093 3094 3095 3096 3097
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
3098
	target_threads = controlled_threads;
3099 3100 3101 3102
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
3103

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
3120
	 * If the mmu_ready flag has been cleared, don't go into the
3121
	 * guest because that means a HPT resize operation is in progress.
3122 3123 3124 3125
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
3126
	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

3143 3144 3145 3146 3147
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
3148 3149 3150
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

3151
	if (split > 1 || hpt_on_radix) {
3152 3153 3154
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
3155
			split_info.vc[sub] = core_info.vc[sub];
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
3173 3174 3175 3176 3177 3178 3179
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
3180 3181
		}

3182 3183 3184
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
3185 3186

	for (thr = 0; thr < controlled_threads; ++thr) {
3187 3188 3189 3190 3191
		struct paca_struct *paca = paca_ptrs[pcpu + thr];

		paca->kvm_hstate.tid = thr;
		paca->kvm_hstate.napping = 0;
		paca->kvm_hstate.kvm_split_mode = sip;
3192
	}
3193

3194
	/* Initiate micro-threading (split-core) on POWER8 if required */
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
3207
		}
3208
	}
3209

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	/*
	 * On POWER8, set RWMR register.
	 * Since it only affects PURR and SPURR, it doesn't affect
	 * the host, so we don't save/restore the host value.
	 */
	if (is_power8) {
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
		int n_online = atomic_read(&vc->online_count);

		/*
		 * Use the 8-thread value if we're doing split-core
		 * or if the vcore's online count looks bogus.
		 */
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
			rwmr_val = p8_rwmr_values[n_online];
		mtspr(SPRN_RWMR, rwmr_val);
	}

3229 3230 3231
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3232
		thr = is_power8 ? subcore_thread_map[sub] : sub;
3233 3234
		thr0_done = false;
		active |= 1 << thr;
3235 3236 3237 3238 3239 3240 3241 3242 3243
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
3244
		}
3245 3246 3247 3248 3249 3250
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
3251
	}
3252

3253 3254 3255 3256 3257 3258
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

3259 3260 3261 3262
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
3263 3264
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
3265
	 */
3266
	if (cmd_bit || hpt_on_radix) {
3267
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3268 3269 3270
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
3271
	}
3272

3273
	vc->vcore_state = VCORE_RUNNING;
3274
	preempt_disable();
3275 3276 3277

	trace_kvmppc_run_core(vc, 0);

3278
	for (sub = 0; sub < core_info.n_subcores; ++sub)
3279
		spin_unlock(&core_info.vc[sub]->lock);
3280

3281
	guest_enter_irqoff();
3282

3283
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3284

3285 3286
	this_cpu_disable_ftrace();

3287 3288 3289 3290 3291 3292
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();

3293
	trap = __kvmppc_vcore_entry();
3294

3295 3296
	trace_hardirqs_off();

3297 3298
	this_cpu_enable_ftrace();

3299 3300
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

3301 3302
	set_irq_happened(trap);

3303
	spin_lock(&vc->lock);
3304
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3305
	vc->vcore_state = VCORE_EXITING;
3306

3307
	/* wait for secondary threads to finish writing their state to memory */
3308
	kvmppc_wait_for_nap(controlled_threads);
3309 3310

	/* Return to whole-core mode if we split the core earlier */
3311
	if (cmd_bit) {
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
3327 3328 3329
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
3330 3331 3332
			struct paca_struct *paca = paca_ptrs[pcpu + thr];

			while (paca->kvm_hstate.kvm_split_mode) {
3333 3334 3335 3336 3337
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
3338
	}
3339
	split_info.do_nap = 0;
3340

3341 3342 3343
	kvmppc_set_host_core(pcpu);

	local_irq_enable();
3344
	guest_exit();
3345

3346
	/* Let secondaries go back to the offline loop */
3347
	for (i = 0; i < controlled_threads; ++i) {
3348 3349 3350
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
3351
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3352 3353
	}

3354
	spin_unlock(&vc->lock);
3355

3356 3357
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
3358

3359 3360
	preempt_enable();

3361 3362 3363 3364
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
3365

3366
	spin_lock(&vc->lock);
3367 3368

 out:
3369
	vc->vcore_state = VCORE_INACTIVE;
3370
	trace_kvmppc_run_core(vc, 1);
3371 3372
}

3373 3374 3375
/*
 * Load up hypervisor-mode registers on P9.
 */
3376 3377
static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
				     unsigned long lpcr)
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	s64 hdec;
	u64 tb, purr, spurr;
	int trap;
	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
	unsigned long host_ciabr = mfspr(SPRN_CIABR);
	unsigned long host_dawr = mfspr(SPRN_DAWR);
	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
	unsigned long host_psscr = mfspr(SPRN_PSSCR);
	unsigned long host_pidr = mfspr(SPRN_PID);

	hdec = time_limit - mftb();
	if (hdec < 0)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	mtspr(SPRN_HDEC, hdec);

	if (vc->tb_offset) {
		u64 new_tb = mftb() + vc->tb_offset;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = vc->tb_offset;
	}

	if (vc->pcr)
		mtspr(SPRN_PCR, vc->pcr);
	mtspr(SPRN_DPDES, vc->dpdes);
	mtspr(SPRN_VTB, vc->vtb);

	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, vcpu->arch.purr);
	mtspr(SPRN_SPURR, vcpu->arch.spurr);

3414
	if (dawr_enabled()) {
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
		mtspr(SPRN_DAWR, vcpu->arch.dawr);
		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
	}
	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
	mtspr(SPRN_IC, vcpu->arch.ic);
	mtspr(SPRN_PID, vcpu->arch.pid);

	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));

	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);

	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);

	mtspr(SPRN_AMOR, ~0UL);

3434
	mtspr(SPRN_LPCR, lpcr);
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	isync();

	kvmppc_xive_push_vcpu(vcpu);

	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);

	trap = __kvmhv_vcpu_entry_p9(vcpu);

	/* Advance host PURR/SPURR by the amount used by guest */
	purr = mfspr(SPRN_PURR);
	spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
	      purr - vcpu->arch.purr);
	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
	      spurr - vcpu->arch.spurr);
	vcpu->arch.purr = purr;
	vcpu->arch.spurr = spurr;

	vcpu->arch.ic = mfspr(SPRN_IC);
	vcpu->arch.pid = mfspr(SPRN_PID);
	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;

	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);

3463 3464 3465
	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
	mtspr(SPRN_PSSCR, host_psscr |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	mtspr(SPRN_HFSCR, host_hfscr);
	mtspr(SPRN_CIABR, host_ciabr);
	mtspr(SPRN_DAWR, host_dawr);
	mtspr(SPRN_DAWRX, host_dawrx);
	mtspr(SPRN_PID, host_pidr);

	/*
	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
	 * case we interrupted the guest between a tlbie and a ptesync.
	 */
	asm volatile("eieio; tlbsync; ptesync");

	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
	isync();

	vc->dpdes = mfspr(SPRN_DPDES);
	vc->vtb = mfspr(SPRN_VTB);
	mtspr(SPRN_DPDES, 0);
	if (vc->pcr)
		mtspr(SPRN_PCR, 0);

	if (vc->tb_offset_applied) {
		u64 new_tb = mftb() - vc->tb_offset_applied;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = 0;
	}

	mtspr(SPRN_HDEC, 0x7fffffff);
	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);

	return trap;
}

/*
 * Virtual-mode guest entry for POWER9 and later when the host and
 * guest are both using the radix MMU.  The LPIDR has already been set.
 */
3506 3507
int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
			 unsigned long lpcr)
3508 3509 3510 3511 3512
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	unsigned long host_dscr = mfspr(SPRN_DSCR);
	unsigned long host_tidr = mfspr(SPRN_TIDR);
	unsigned long host_iamr = mfspr(SPRN_IAMR);
3513
	unsigned long host_amr = mfspr(SPRN_AMR);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
	s64 dec;
	u64 tb;
	int trap, save_pmu;

	dec = mfspr(SPRN_DEC);
	tb = mftb();
	if (dec < 512)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	local_paca->kvm_hstate.dec_expires = dec + tb;
	if (local_paca->kvm_hstate.dec_expires < time_limit)
		time_limit = local_paca->kvm_hstate.dec_expires;

	vcpu->arch.ceded = 0;

	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */

	kvmppc_subcore_enter_guest();

	vc->entry_exit_map = 1;
	vc->in_guest = 1;

	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
	}

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	kvmhv_load_guest_pmu(vcpu);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	load_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	load_vr_state(&vcpu->arch.vr);
#endif
3553
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574

	mtspr(SPRN_DSCR, vcpu->arch.dscr);
	mtspr(SPRN_IAMR, vcpu->arch.iamr);
	mtspr(SPRN_PSPB, vcpu->arch.pspb);
	mtspr(SPRN_FSCR, vcpu->arch.fscr);
	mtspr(SPRN_TAR, vcpu->arch.tar);
	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
	mtspr(SPRN_BESCR, vcpu->arch.bescr);
	mtspr(SPRN_WORT, vcpu->arch.wort);
	mtspr(SPRN_TIDR, vcpu->arch.tid);
	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
	mtspr(SPRN_AMR, vcpu->arch.amr);
	mtspr(SPRN_UAMOR, vcpu->arch.uamor);

	if (!(vcpu->arch.ctrl & 1))
		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);

	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
	if (kvmhv_on_pseries()) {
		/* call our hypervisor to load up HV regs and go */
		struct hv_guest_state hvregs;

		kvmhv_save_hv_regs(vcpu, &hvregs);
		hvregs.lpcr = lpcr;
		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
		hvregs.version = HV_GUEST_STATE_VERSION;
		if (vcpu->arch.nested) {
			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
		} else {
			hvregs.lpid = vcpu->kvm->arch.lpid;
			hvregs.vcpu_token = vcpu->vcpu_id;
		}
		hvregs.hdec_expiry = time_limit;
		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
					  __pa(&vcpu->arch.regs));
		kvmhv_restore_hv_return_state(vcpu, &hvregs);
		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3597 3598 3599 3600 3601 3602 3603

		/* H_CEDE has to be handled now, not later */
		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
			kvmppc_nested_cede(vcpu);
			trap = 0;
		}
3604 3605
	} else {
		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	}

	vcpu->arch.slb_max = 0;
	dec = mfspr(SPRN_DEC);
	tb = mftb();
	vcpu->arch.dec_expires = dec + tb;
	vcpu->cpu = -1;
	vcpu->arch.thread_cpu = -1;
	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);

	vcpu->arch.iamr = mfspr(SPRN_IAMR);
	vcpu->arch.pspb = mfspr(SPRN_PSPB);
	vcpu->arch.fscr = mfspr(SPRN_FSCR);
	vcpu->arch.tar = mfspr(SPRN_TAR);
	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
	vcpu->arch.bescr = mfspr(SPRN_BESCR);
	vcpu->arch.wort = mfspr(SPRN_WORT);
	vcpu->arch.tid = mfspr(SPRN_TIDR);
	vcpu->arch.amr = mfspr(SPRN_AMR);
	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
	vcpu->arch.dscr = mfspr(SPRN_DSCR);

	mtspr(SPRN_PSPB, 0);
	mtspr(SPRN_WORT, 0);
	mtspr(SPRN_UAMOR, 0);
	mtspr(SPRN_DSCR, host_dscr);
	mtspr(SPRN_TIDR, host_tidr);
	mtspr(SPRN_IAMR, host_iamr);
	mtspr(SPRN_PSPB, 0);

3637 3638 3639
	if (host_amr != vcpu->arch.amr)
		mtspr(SPRN_AMR, host_amr);

3640 3641 3642 3643 3644
	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	store_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	store_vr_state(&vcpu->arch.vr);
#endif
3645
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	save_pmu = 1;
	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
		save_pmu = lp->pmcregs_in_use;
	}

	kvmhv_save_guest_pmu(vcpu, save_pmu);

	vc->entry_exit_map = 0x101;
	vc->in_guest = 0;

	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());

	kvmhv_load_host_pmu();

	kvmppc_subcore_exit_guest();

	return trap;
}

3674 3675 3676 3677
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
3678 3679
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
3680 3681 3682
{
	DEFINE_WAIT(wait);

3683
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3684 3685
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
3686
		schedule();
3687 3688
		spin_lock(&vc->lock);
	}
3689 3690 3691
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

3692 3693
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
3694 3695 3696
	if (!halt_poll_ns_grow)
		return;

3697 3698
	vc->halt_poll_ns *= halt_poll_ns_grow;
	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3699
		vc->halt_poll_ns = halt_poll_ns_grow_start;
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

3710 3711 3712
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
3713
	if (!xics_on_xive())
3714
		return false;
3715
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3716 3717 3718 3719 3720 3721 3722 3723 3724
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

3725 3726 3727
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3728
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3729 3730 3731 3732 3733
		return true;

	return false;
}

3734 3735
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3736 3737 3738 3739 3740 3741 3742 3743
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3744
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3745 3746 3747 3748 3749 3750
			return 1;
	}

	return 0;
}

3751 3752 3753 3754 3755 3756
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3757
	ktime_t cur, start_poll, start_wait;
3758 3759
	int do_sleep = 1;
	u64 block_ns;
3760
	DECLARE_SWAITQUEUE(wait);
3761

3762
	/* Poll for pending exceptions and ceded state */
3763
	cur = start_poll = ktime_get();
3764
	if (vc->halt_poll_ns) {
3765 3766
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3767

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3782 3783
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3784
			goto out;
3785
		}
3786 3787
	}

3788
	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3789 3790

	if (kvmppc_vcore_check_block(vc)) {
3791
		finish_swait(&vc->wq, &wait);
3792
		do_sleep = 0;
3793 3794 3795
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3796
		goto out;
3797 3798
	}

3799 3800
	start_wait = ktime_get();

3801
	vc->vcore_state = VCORE_SLEEPING;
3802
	trace_kvmppc_vcore_blocked(vc, 0);
3803
	spin_unlock(&vc->lock);
3804
	schedule();
3805
	finish_swait(&vc->wq, &wait);
3806 3807
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3808
	trace_kvmppc_vcore_blocked(vc, 1);
3809
	++vc->runner->stat.halt_successful_wait;
3810 3811 3812 3813

	cur = ktime_get();

out:
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3832 3833

	/* Adjust poll time */
3834
	if (halt_poll_ns) {
3835 3836 3837
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3838
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3839 3840
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3841 3842
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3843
			grow_halt_poll_ns(vc);
3844 3845
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3846 3847 3848 3849
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3850
}
3851

3852 3853 3854 3855 3856
/*
 * This never fails for a radix guest, as none of the operations it does
 * for a radix guest can fail or have a way to report failure.
 * kvmhv_run_single_vcpu() relies on this fact.
 */
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&kvm->lock);
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
	mutex_unlock(&kvm->lock);
	return r;
}

3876 3877
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3878
	int n_ceded, i, r;
3879
	struct kvmppc_vcore *vc;
3880
	struct kvm_vcpu *v;
3881

3882 3883
	trace_kvmppc_run_vcpu_enter(vcpu);

3884 3885 3886
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3887
	kvmppc_update_vpas(vcpu);
3888 3889 3890 3891 3892 3893

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3894
	vcpu->arch.ceded = 0;
3895 3896
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3897
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3898
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3899
	vcpu->arch.busy_preempt = TB_NIL;
3900
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3901 3902
	++vc->n_runnable;

3903 3904 3905 3906 3907
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3908
	if (!signal_pending(current)) {
3909 3910
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
		     vc->vcore_state == VCORE_RUNNING) &&
3911
			   !VCORE_IS_EXITING(vc)) {
3912
			kvmppc_create_dtl_entry(vcpu, vc);
3913
			kvmppc_start_thread(vcpu, vc);
3914
			trace_kvm_guest_enter(vcpu);
3915
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3916
			swake_up_one(&vc->wq);
3917 3918
		}

3919
	}
3920

3921 3922
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3923 3924
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3925
			spin_unlock(&vc->lock);
3926
			r = kvmhv_setup_mmu(vcpu);
3927 3928 3929
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3930 3931
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3932 3933 3934 3935 3936
				vcpu->arch.ret = r;
				break;
			}
		}

3937 3938 3939
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3940
		if (vc->vcore_state != VCORE_INACTIVE) {
3941
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3942 3943
			continue;
		}
3944
		for_each_runnable_thread(i, v, vc) {
3945
			kvmppc_core_prepare_to_enter(v);
3946 3947 3948 3949 3950 3951 3952 3953
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3954 3955 3956
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3957
		for_each_runnable_thread(i, v, vc) {
3958
			if (!kvmppc_vcpu_woken(v))
3959
				n_ceded += v->arch.ceded;
3960 3961 3962
			else
				v->arch.ceded = 0;
		}
3963 3964
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3965
			kvmppc_vcore_blocked(vc);
3966
		} else if (need_resched()) {
3967
			kvmppc_vcore_preempt(vc);
3968 3969
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3970 3971
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3972
		} else {
3973
			kvmppc_run_core(vc);
3974
		}
3975
		vc->runner = NULL;
3976
	}
3977

3978 3979
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3980 3981
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3982
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3983

3984 3985 3986
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3987 3988 3989 3990 3991 3992 3993 3994 3995
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3996 3997
		i = -1;
		v = next_runnable_thread(vc, &i);
3998
		wake_up(&v->arch.cpu_run);
3999 4000
	}

4001
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4002 4003
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
4004 4005
}

4006 4007 4008
int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
			  struct kvm_vcpu *vcpu, u64 time_limit,
			  unsigned long lpcr)
4009
{
4010
	int trap, r, pcpu;
4011
	int srcu_idx, lpid;
4012 4013
	struct kvmppc_vcore *vc;
	struct kvm *kvm = vcpu->kvm;
4014
	struct kvm_nested_guest *nested = vcpu->arch.nested;
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034

	trace_kvmppc_run_vcpu_enter(vcpu);

	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	vc = vcpu->arch.vcore;
	vcpu->arch.ceded = 0;
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
	vcpu->arch.busy_preempt = TB_NIL;
	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
	vc->runnable_threads[0] = vcpu;
	vc->n_runnable = 1;
	vc->runner = vcpu;

	/* See if the MMU is ready to go */
4035 4036
	if (!kvm->arch.mmu_ready)
		kvmhv_setup_mmu(vcpu);
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057

	if (need_resched())
		cond_resched();

	kvmppc_update_vpas(vcpu);

	init_vcore_to_run(vc);
	vc->preempt_tb = TB_NIL;

	preempt_disable();
	pcpu = smp_processor_id();
	vc->pcpu = pcpu;
	kvmppc_prepare_radix_vcpu(vcpu, pcpu);

	local_irq_disable();
	hard_irq_disable();
	if (signal_pending(current))
		goto sigpend;
	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
		goto out;

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	if (!nested) {
		kvmppc_core_prepare_to_enter(vcpu);
		if (vcpu->arch.doorbell_request) {
			vc->dpdes = 1;
			smp_wmb();
			vcpu->arch.doorbell_request = 0;
		}
		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
			     &vcpu->arch.pending_exceptions))
			lpcr |= LPCR_MER;
	} else if (vcpu->arch.pending_exceptions ||
		   vcpu->arch.doorbell_request ||
		   xive_interrupt_pending(vcpu)) {
		vcpu->arch.ret = RESUME_HOST;
		goto out;
	}
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

	kvmppc_clear_host_core(pcpu);

	local_paca->kvm_hstate.tid = 0;
	local_paca->kvm_hstate.napping = 0;
	local_paca->kvm_hstate.kvm_split_mode = NULL;
	kvmppc_start_thread(vcpu, vc);
	kvmppc_create_dtl_entry(vcpu, vc);
	trace_kvm_guest_enter(vcpu);

	vc->vcore_state = VCORE_RUNNING;
	trace_kvmppc_run_core(vc, 0);

4087 4088 4089 4090 4091 4092
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
		mtspr(SPRN_LPID, lpid);
		isync();
		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
	}
4093 4094 4095 4096 4097 4098 4099 4100

	trace_hardirqs_on();
	guest_enter_irqoff();

	srcu_idx = srcu_read_lock(&kvm->srcu);

	this_cpu_disable_ftrace();

4101
	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4102 4103 4104 4105 4106 4107
	vcpu->arch.trap = trap;

	this_cpu_enable_ftrace();

	srcu_read_unlock(&kvm->srcu, srcu_idx);

4108 4109 4110 4111
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		mtspr(SPRN_LPID, kvm->arch.host_lpid);
		isync();
	}
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

	trace_hardirqs_off();
	set_irq_happened(trap);

	kvmppc_set_host_core(pcpu);

	local_irq_enable();
	guest_exit();

	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);

	preempt_enable();

	/* cancel pending decrementer exception if DEC is now positive */
	if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
		kvmppc_core_dequeue_dec(vcpu);

	trace_kvm_guest_exit(vcpu);
	r = RESUME_GUEST;
4131 4132 4133 4134
	if (trap) {
		if (!nested)
			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
		else
4135
			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4136
	}
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	vcpu->arch.ret = r;

	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
	    !kvmppc_vcpu_woken(vcpu)) {
		kvmppc_set_timer(vcpu);
		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
			if (signal_pending(current)) {
				vcpu->stat.signal_exits++;
				kvm_run->exit_reason = KVM_EXIT_INTR;
				vcpu->arch.ret = -EINTR;
				break;
			}
			spin_lock(&vc->lock);
			kvmppc_vcore_blocked(vc);
			spin_unlock(&vc->lock);
		}
	}
	vcpu->arch.ceded = 0;

	vc->vcore_state = VCORE_INACTIVE;
	trace_kvmppc_run_core(vc, 1);

 done:
	kvmppc_remove_runnable(vc, vcpu);
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);

	return vcpu->arch.ret;

 sigpend:
	vcpu->stat.signal_exits++;
	kvm_run->exit_reason = KVM_EXIT_INTR;
	vcpu->arch.ret = -EINTR;
 out:
	local_irq_enable();
	preempt_enable();
	goto done;
}

4175
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4176 4177
{
	int r;
4178
	int srcu_idx;
4179
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4180 4181
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
4182
	struct kvm *kvm;
4183

4184 4185 4186 4187 4188
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
4203 4204
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
4205 4206 4207 4208 4209 4210 4211
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

4212 4213 4214 4215 4216 4217 4218 4219 4220
	/*
	 * Force online to 1 for the sake of old userspace which doesn't
	 * set it.
	 */
	if (!vcpu->arch.online) {
		atomic_inc(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = 1;
	}

4221 4222
	kvmppc_core_prepare_to_enter(vcpu);

4223 4224 4225 4226 4227 4228
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

4229 4230 4231
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4232 4233
	smp_mb();

4234 4235
	flush_all_to_thread(current);

4236
	/* Save userspace EBB and other register values */
4237 4238 4239 4240
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
4241
		user_tar = mfspr(SPRN_TAR);
4242
	}
4243
	user_vrsave = mfspr(SPRN_VRSAVE);
4244

4245
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4246
	vcpu->arch.pgdir = current->mm->pgd;
4247
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4248

4249
	do {
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
		/*
		 * The early POWER9 chips that can't mix radix and HPT threads
		 * on the same core also need the workaround for the problem
		 * where the TLB would prefetch entries in the guest exit path
		 * for radix guests using the guest PIDR value and LPID 0.
		 * The workaround is in the old path (kvmppc_run_vcpu())
		 * but not the new path (kvmhv_run_single_vcpu()).
		 */
		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
		    !no_mixing_hpt_and_radix)
4260 4261
			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
						  vcpu->arch.vcore->lpcr);
4262 4263
		else
			r = kvmppc_run_vcpu(run, vcpu);
4264 4265 4266

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4267
			trace_kvm_hcall_enter(vcpu);
4268
			r = kvmppc_pseries_do_hcall(vcpu);
4269
			trace_kvm_hcall_exit(vcpu, r);
4270
			kvmppc_core_prepare_to_enter(vcpu);
4271
		} else if (r == RESUME_PAGE_FAULT) {
4272
			srcu_idx = srcu_read_lock(&kvm->srcu);
4273 4274
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4275
			srcu_read_unlock(&kvm->srcu, srcu_idx);
4276
		} else if (r == RESUME_PASSTHROUGH) {
4277
			if (WARN_ON(xics_on_xive()))
4278 4279 4280 4281
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
4282
	} while (is_kvmppc_resume_guest(r));
4283

4284
	/* Restore userspace EBB and other register values */
4285 4286 4287 4288
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
4289 4290
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
4291
	}
4292
	mtspr(SPRN_VRSAVE, user_vrsave);
4293

4294
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4295
	atomic_dec(&kvm->arch.vcpus_running);
4296 4297 4298
	return r;
}

4299
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4300
				     int shift, int sllp)
4301
{
4302 4303 4304 4305
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4306
	/*
4307
	 * Add 16MB MPSS support (may get filtered out by userspace)
4308
	 */
4309 4310 4311 4312 4313 4314
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
4315
	}
4316 4317 4318
	(*sps)++;
}

4319 4320
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
4321 4322 4323
{
	struct kvm_ppc_one_seg_page_size *sps;

4324 4325 4326 4327 4328 4329 4330 4331
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

4332 4333 4334
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
4335 4336 4337

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
4338 4339 4340
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4341

4342 4343 4344 4345
	/* If running as a nested hypervisor, we don't support HPT guests */
	if (kvmhv_on_pseries())
		info->flags |= KVM_PPC_NO_HASH;

4346 4347 4348
	return 0;
}

4349 4350 4351
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
4352 4353
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
4354
{
4355
	struct kvm_memslots *slots;
4356
	struct kvm_memory_slot *memslot;
4357
	int i, r;
4358
	unsigned long n;
4359
	unsigned long *buf, *p;
4360
	struct kvm_vcpu *vcpu;
4361 4362 4363 4364

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
4365
	if (log->slot >= KVM_USER_MEM_SLOTS)
4366 4367
		goto out;

4368 4369
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
4370 4371 4372 4373
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

4374
	/*
4375 4376
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
4377
	 */
4378
	n = kvm_dirty_bitmap_bytes(memslot);
4379 4380
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
4381

4382 4383 4384 4385
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4386 4387 4388
	if (r)
		goto out;

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

4399 4400 4401 4402 4403 4404 4405 4406 4407
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

4408
	r = -EFAULT;
4409
	if (copy_to_user(log->dirty_bitmap, buf, n))
4410 4411 4412 4413 4414 4415 4416 4417
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

4418 4419
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
4420 4421 4422 4423
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
4424
	}
4425 4426
}

4427 4428
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
4429
{
4430
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4431 4432
	if (!slot->arch.rmap)
		return -ENOMEM;
4433

4434 4435
	return 0;
}
4436

4437 4438
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
4439
					const struct kvm_userspace_memory_region *mem)
4440
{
4441
	return 0;
4442 4443
}

4444
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4445
				const struct kvm_userspace_memory_region *mem,
4446
				const struct kvm_memory_slot *old,
4447 4448
				const struct kvm_memory_slot *new,
				enum kvm_mr_change change)
4449
{
4450 4451
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

4452 4453 4454 4455 4456 4457 4458 4459
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

	/*
	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
	 * have already called kvm_arch_flush_shadow_memslot() to
	 * flush shadow mappings.  For KVM_MR_CREATE we have no
	 * previous mappings.  So the only case to handle is
	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
	 * has been changed.
	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
	 * to get rid of any THP PTEs in the partition-scoped page tables
	 * so we can track dirtiness at the page level; we flush when
	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
	 * using THP PTEs.
	 */
	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
		kvmppc_radix_flush_memslot(kvm, old);
4477 4478
}

4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

4505 4506 4507 4508 4509
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

4510
void kvmppc_setup_partition_table(struct kvm *kvm)
4511 4512 4513
{
	unsigned long dw0, dw1;

4514 4515 4516 4517 4518 4519
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
4520

4521 4522 4523 4524 4525 4526 4527
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
4528
	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4529 4530
}

4531 4532 4533 4534
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
 * Must be called with kvm->lock held.
 */
4535
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4536 4537 4538 4539 4540 4541
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
4542
	unsigned long lpcr = 0, senc;
4543
	unsigned long psize, porder;
4544
	int srcu_idx;
4545

4546
	/* Allocate hashed page table (if not done already) and reset it */
4547
	if (!kvm->arch.hpt.virt) {
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
4559 4560 4561
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
4562 4563

		kvmppc_set_hpt(kvm, &info);
4564 4565
	}

4566
	/* Look up the memslot for guest physical address 0 */
4567
	srcu_idx = srcu_read_lock(&kvm->srcu);
4568
	memslot = gfn_to_memslot(kvm, 0);
4569

4570 4571 4572
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4573
		goto out_srcu;
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);

	up_read(&current->mm->mmap_sem);

4586
	/* We can handle 4k, 64k or 16M pages in the VRMA */
4587 4588 4589 4590 4591 4592 4593
	if (psize >= 0x1000000)
		psize = 0x1000000;
	else if (psize >= 0x10000)
		psize = 0x10000;
	else
		psize = 0x1000;
	porder = __ilog2(psize);
4594

4595 4596 4597 4598 4599
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
4600

4601 4602 4603 4604 4605 4606
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
4607

4608
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4609 4610
	smp_wmb();
	err = 0;
4611 4612
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
4613 4614
 out:
	return err;
4615

4616 4617
 up_out:
	up_read(&current->mm->mmap_sem);
4618
	goto out_srcu;
4619 4620
}

4621 4622 4623
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
4624
	if (nesting_enabled(kvm))
4625
		kvmhv_release_all_nested(kvm);
4626 4627 4628 4629 4630 4631
	kvmppc_rmap_reset(kvm);
	kvm->arch.process_table = 0;
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 0;
	spin_unlock(&kvm->mmu_lock);
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;
4646 4647 4648 4649 4650
	kvmppc_rmap_reset(kvm);
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 1;
	spin_unlock(&kvm->mmu_lock);
4651 4652 4653 4654 4655 4656
	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

4691
	cpus_read_lock();
4692

4693 4694 4695 4696 4697 4698 4699 4700
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

4701 4702
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4713
		cpus_read_unlock();
4714 4715
		kfree(ops->rm_core);
		kfree(ops);
4716
		return;
4717
	}
4718

4719 4720 4721 4722 4723
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
4724 4725 4726 4727 4728
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
4729
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4730 4731 4732 4733 4734 4735 4736
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

4737
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4738
{
4739
	unsigned long lpcr, lpid;
4740
	char buf[32];
4741
	int ret;
4742

4743 4744 4745
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
4746
	if ((long)lpid < 0)
4747 4748
		return -ENOMEM;
	kvm->arch.lpid = lpid;
4749

4750 4751
	kvmppc_alloc_host_rm_ops();

4752 4753
	kvmhv_vm_nested_init(kvm);

4754 4755 4756 4757
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
4758 4759
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
4760
	 */
4761 4762
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
4763

4764 4765 4766 4767
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

4768 4769
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4770

4771
	/* Init LPCR for virtual RMA mode */
4772 4773 4774 4775 4776 4777 4778
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
	} else {
		lpcr = 0;
	}
4779 4780 4781 4782 4783 4784 4785
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
4786 4787 4788
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4789 4790 4791
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
4792 4793
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4794
		lpcr &= ~LPCR_VPM0;
4795 4796 4797 4798 4799 4800
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
4801
		if (xics_on_xive())
4802
			lpcr |= LPCR_LPES;
4803 4804
	}

4805
	/*
4806
	 * If the host uses radix, the guest starts out as radix.
4807 4808 4809
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
4810
		kvm->arch.mmu_ready = 1;
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

4821
	kvm->arch.lpcr = lpcr;
4822

4823 4824 4825
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

4826 4827 4828 4829
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
4830
	if (radix_enabled())
4831 4832
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4833 4834 4835 4836 4837 4838
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

4839
	/*
4840 4841
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
4842 4843
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
4844
	 */
4845 4846 4847 4848 4849 4850 4851 4852
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
			kvm->arch.threads_indep = true;
		} else {
			kvm->arch.threads_indep = indep_threads_mode;
		}
	}
4853
	if (!kvm->arch.threads_indep)
4854
		kvm_hv_vm_activated();
4855

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
4867
	kvm->arch.emul_smt_mode = 1;
4868

4869 4870 4871 4872 4873
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4874
	kvmppc_mmu_debugfs_init(kvm);
4875 4876
	if (radix_enabled())
		kvmhv_radix_debugfs_init(kvm);
4877

4878
	return 0;
4879 4880
}

4881 4882 4883 4884
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

4885
	for (i = 0; i < KVM_MAX_VCORES; ++i)
4886 4887 4888 4889
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

4890
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4891
{
4892 4893
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

4894
	if (!kvm->arch.threads_indep)
4895
		kvm_hv_vm_deactivated();
4896

4897
	kvmppc_free_vcores(kvm);
4898

4899

4900 4901 4902
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
4903
		kvmppc_free_hpt(&kvm->arch.hpt);
4904

4905 4906
	/* Perform global invalidation and return lpid to the pool */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4907
		if (nesting_enabled(kvm))
4908
			kvmhv_release_all_nested(kvm);
4909
		kvm->arch.process_table = 0;
4910
		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4911 4912 4913
	}
	kvmppc_free_lpid(kvm->arch.lpid);

4914
	kvmppc_free_pimap(kvm);
4915 4916
}

4917 4918 4919
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
4920
{
4921
	return EMULATE_FAIL;
4922 4923
}

4924 4925
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
4926 4927 4928 4929
{
	return EMULATE_FAIL;
}

4930 4931
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
4932 4933 4934 4935
{
	return EMULATE_FAIL;
}

4936
static int kvmppc_core_check_processor_compat_hv(void)
4937
{
4938 4939 4940
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_206))
		return 0;
4941

4942 4943 4944 4945 4946
	/* POWER9 in radix mode is capable of being a nested hypervisor. */
	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
		return 0;

	return -EIO;
4947 4948
}

4949 4950 4951 4952 4953 4954 4955
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

4956
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4957 4958 4959
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
4960 4961 4962 4963 4964 4965 4966

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
4967
	int i, rc = 0;
4968

4969 4970 4971
	if (!kvm_irq_bypass)
		return 1;

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
4992
	 * what our real-mode EOI code does, or a XIVE interrupt
4993 4994
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
4995
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

5027 5028 5029 5030 5031 5032 5033
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

5034 5035 5036
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

5037
	if (xics_on_xive())
5038 5039 5040 5041 5042
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
5043

5044 5045 5046 5047 5048 5049 5050 5051 5052
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
5053
	int i, rc = 0;
5054

5055 5056 5057
	if (!kvm_irq_bypass)
		return 0;

5058 5059 5060 5061 5062
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
5063 5064
	if (!kvm->arch.pimap)
		goto unlock;
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

5078
	if (xics_on_xive())
5079 5080 5081
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5082

5083
	/* invalidate the entry (what do do on error from the above ?) */
5084 5085 5086 5087 5088 5089
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
5090
 unlock:
5091
	mutex_unlock(&kvm->lock);
5092
	return rc;
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
5131 5132
#endif

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
5148
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

5187 5188 5189 5190 5191 5192 5193
	default:
		r = -ENOTTY;
	}

	return r;
}

5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
5228
	unsigned int hcall;
5229

5230 5231 5232 5233 5234
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
5235 5236
}

5237 5238
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
5239
	unsigned long lpcr;
5240
	int radix;
5241
	int err;
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
5252
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5253
	if (!!(cfg->process_table & PATB_GR) != radix)
5254 5255 5256 5257 5258 5259
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

5260 5261 5262 5263
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

5264 5265 5266 5267
	/* If we're a nested hypervisor, we currently only support radix */
	if (kvmhv_on_pseries() && !radix)
		return -EINVAL;

5268
	mutex_lock(&kvm->lock);
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

5288 5289 5290 5291 5292
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5293
	err = 0;
5294

5295 5296 5297
 out_unlock:
	mutex_unlock(&kvm->lock);
	return err;
5298 5299
}

5300 5301 5302 5303
static int kvmhv_enable_nested(struct kvm *kvm)
{
	if (!nested)
		return -EPERM;
5304
	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5305 5306 5307 5308 5309 5310 5311 5312
		return -ENODEV;

	/* kvm == NULL means the caller is testing if the capability exists */
	if (kvm)
		kvm->arch.nested_enable = true;
	return 0;
}

5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
				 int size)
{
	int rc = -EINVAL;

	if (kvmhv_vcpu_is_radix(vcpu)) {
		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);

		if (rc > 0)
			rc = -EINVAL;
	}

	/* For now quadrants are the only way to access nested guest memory */
	if (rc && vcpu->arch.nested)
		rc = -EAGAIN;

	return rc;
}

static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
				int size)
{
	int rc = -EINVAL;

	if (kvmhv_vcpu_is_radix(vcpu)) {
		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);

		if (rc > 0)
			rc = -EINVAL;
	}

	/* For now quadrants are the only way to access nested guest memory */
	if (rc && vcpu->arch.nested)
		rc = -EAGAIN;

	return rc;
}

5351
static struct kvmppc_ops kvm_ops_hv = {
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5382
	.hcall_implemented = kvmppc_hcall_impl_hv,
5383 5384 5385 5386
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
5387 5388
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
5389
	.set_smt_mode = kvmhv_set_smt_mode,
5390
	.enable_nested = kvmhv_enable_nested,
5391 5392
	.load_from_eaddr = kvmhv_load_from_eaddr,
	.store_to_eaddr = kvmhv_store_to_eaddr,
5393 5394
};

5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
5406
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5407 5408 5409
			continue;

		sibling_subcore_state =
5410
			kzalloc_node(sizeof(struct sibling_subcore_state),
5411 5412 5413 5414 5415 5416 5417 5418
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;


		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

5419 5420
			paca_ptrs[cpu]->sibling_subcore_state =
						sibling_subcore_state;
5421 5422 5423 5424 5425
		}
	}
	return 0;
}

5426 5427 5428 5429 5430
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

5431
static int kvmppc_book3s_init_hv(void)
5432 5433
{
	int r;
5434 5435 5436 5437 5438
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
5439
		return -ENODEV;
5440

5441 5442 5443 5444
	r = kvmhv_nested_init();
	if (r)
		return r;

5445 5446 5447 5448
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

5449 5450
	/*
	 * We need a way of accessing the XICS interrupt controller,
5451
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5452 5453 5454
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
5455
	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5456
	    !local_paca->kvm_hstate.xics_phys) {
5457 5458 5459 5460 5461 5462 5463
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
5464 5465
		/* presence of intc confirmed - node can be dropped again */
		of_node_put(np);
5466 5467 5468
	}
#endif

5469 5470
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
5471

5472 5473
	init_default_hcalls();

5474 5475
	init_vcore_lists();

5476
	r = kvmppc_mmu_hv_init();
5477 5478 5479 5480 5481
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494

	/*
	 * POWER9 chips before version 2.02 can't have some threads in
	 * HPT mode and some in radix mode on the same core.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		unsigned int pvr = mfspr(SPRN_PVR);
		if ((pvr >> 16) == PVR_POWER9 &&
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
			no_mixing_hpt_and_radix = true;
	}

5495 5496 5497
	return r;
}

5498
static void kvmppc_book3s_exit_hv(void)
5499
{
5500
	kvmppc_free_host_rm_ops();
5501 5502
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
5503
	kvmppc_hv_ops = NULL;
5504
	kvmhv_nested_exit();
5505 5506
}

5507 5508
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
5509
MODULE_LICENSE("GPL");
5510 5511
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");