memcontrol.c 148.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

75
/* Whether the swap controller is active */
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP
77 78
int do_swap_account __read_mostly;
#else
79
#define do_swap_account		0
80 81
#endif

82 83 84
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
85
	"rss_huge",
86
	"mapped_file",
87
	"writeback",
88 89 90 91 92 93 94 95 96 97
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

98 99 100 101 102 103 104 105
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

106 107 108 109 110 111 112 113
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
114
	MEM_CGROUP_TARGET_SOFTLIMIT,
115
	MEM_CGROUP_TARGET_NUMAINFO,
116 117
	MEM_CGROUP_NTARGETS,
};
118 119 120
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
121

122
struct mem_cgroup_stat_cpu {
123
	long count[MEM_CGROUP_STAT_NSTATS];
124
	unsigned long events[MEMCG_NR_EVENTS];
125
	unsigned long nr_page_events;
126
	unsigned long targets[MEM_CGROUP_NTARGETS];
127 128
};

129 130
struct reclaim_iter {
	struct mem_cgroup *position;
131 132 133 134
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

135 136 137 138
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
139
	struct lruvec		lruvec;
140
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
141

142
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
143

144
	struct rb_node		tree_node;	/* RB tree node */
145
	unsigned long		usage_in_excess;/* Set to the value by which */
146 147
						/* the soft limit is exceeded*/
	bool			on_tree;
148
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
149
						/* use container_of	   */
150 151 152 153 154 155
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
178
	unsigned long threshold;
179 180
};

K
KAMEZAWA Hiroyuki 已提交
181
/* For threshold */
182
struct mem_cgroup_threshold_ary {
183
	/* An array index points to threshold just below or equal to usage. */
184
	int current_threshold;
185 186 187 188 189
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
190 191 192 193 194 195 196 197 198 199 200 201

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
202 203 204 205 206
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
207

208 209 210
/*
 * cgroup_event represents events which userspace want to receive.
 */
211
struct mem_cgroup_event {
212
	/*
213
	 * memcg which the event belongs to.
214
	 */
215
	struct mem_cgroup *memcg;
216 217 218 219 220 221 222 223
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
224 225 226 227 228
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
229
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
230
			      struct eventfd_ctx *eventfd, const char *args);
231 232 233 234 235
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
236
	void (*unregister_event)(struct mem_cgroup *memcg,
237
				 struct eventfd_ctx *eventfd);
238 239 240 241 242 243 244 245 246 247
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

248 249
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
250

B
Balbir Singh 已提交
251 252 253 254 255 256 257
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
258 259 260
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
261 262 263
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
264 265 266 267 268 269

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

270 271 272 273
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

274
	unsigned long soft_limit;
275

276 277 278
	/* vmpressure notifications */
	struct vmpressure vmpressure;

279 280 281
	/* css_online() has been completed */
	int initialized;

282 283 284 285
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
286 287 288

	bool		oom_lock;
	atomic_t	under_oom;
289
	atomic_t	oom_wakeups;
290

291
	int	swappiness;
292 293
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
294

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
311
	unsigned long move_charge_at_immigrate;
312 313 314
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
315
	atomic_t		moving_account;
316
	/* taken only while moving_account > 0 */
317 318 319
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
320
	/*
321
	 * percpu counter.
322
	 */
323
	struct mem_cgroup_stat_cpu __percpu *stat;
324 325 326 327 328 329
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
330

M
Michal Hocko 已提交
331
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
332
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
333
#endif
334 335 336 337
#if defined(CONFIG_MEMCG_KMEM)
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
338 339 340 341 342 343 344

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
345

346 347 348 349
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

350 351
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
352 353
};

354
#ifdef CONFIG_MEMCG_KMEM
355 356
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
V
Vladimir Davydov 已提交
357
	return memcg->kmemcg_id >= 0;
358
}
359 360
#endif

361 362
/* Stuffs for move charges at task migration. */
/*
363
 * Types of charges to be moved.
364
 */
365 366 367
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
368

369 370
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
371
	spinlock_t	  lock; /* for from, to */
372 373
	struct mem_cgroup *from;
	struct mem_cgroup *to;
374
	unsigned long flags;
375
	unsigned long precharge;
376
	unsigned long moved_charge;
377
	unsigned long moved_swap;
378 379 380
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
381
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
382 383
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
384

385 386 387 388
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
389
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
390
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
391

392 393
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
394
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
395
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
396
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
397 398 399
	NR_CHARGE_TYPE,
};

400
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
401 402 403 404
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
405
	_KMEM,
G
Glauber Costa 已提交
406 407
};

408 409
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
410
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
411 412
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
413

414 415 416 417 418 419 420
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

421 422
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
423
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

439 440 441 442 443
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

444 445 446 447 448 449
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
450 451
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
452
	return memcg->css.id;
L
Li Zefan 已提交
453 454 455 456 457 458
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

459
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
460 461 462
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
463
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
464
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
465 466 467

void sock_update_memcg(struct sock *sk)
{
468
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
469
		struct mem_cgroup *memcg;
470
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
471 472 473

		BUG_ON(!sk->sk_prot->proto_cgroup);

474 475 476 477 478 479 480 481 482 483
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
484
			css_get(&sk->sk_cgrp->memcg->css);
485 486 487
			return;
		}

G
Glauber Costa 已提交
488 489
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
490
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
491
		if (!mem_cgroup_is_root(memcg) &&
492 493
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
494
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
495 496 497 498 499 500 501 502
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
503
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
504 505 506
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
507
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
508 509
	}
}
G
Glauber Costa 已提交
510 511 512 513 514 515

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

516
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
517 518
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
519

520 521
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
522
	if (!memcg_proto_activated(&memcg->tcp_mem))
523 524 525 526 527 528 529 530 531
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

532
#ifdef CONFIG_MEMCG_KMEM
533 534
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
535 536 537 538 539
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
540 541 542 543 544 545
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
546 547
int memcg_limited_groups_array_size;

548 549 550 551 552 553
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
554
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
555 556
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
557
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
558 559 560
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
561
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
562

563 564 565 566 567 568
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
569
struct static_key memcg_kmem_enabled_key;
570
EXPORT_SYMBOL(memcg_kmem_enabled_key);
571

572 573
static void memcg_free_cache_id(int id);

574 575
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
576
	if (memcg_kmem_is_active(memcg)) {
577
		static_key_slow_dec(&memcg_kmem_enabled_key);
578
		memcg_free_cache_id(memcg->kmemcg_id);
579
	}
580 581 582 583
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
584
	WARN_ON(page_counter_read(&memcg->kmem));
585 586 587 588 589 590 591 592 593 594 595 596 597
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

598
static struct mem_cgroup_per_zone *
599
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
600
{
601 602 603
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

604
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
605 606
}

607
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
608
{
609
	return &memcg->css;
610 611
}

612
static struct mem_cgroup_per_zone *
613
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
614
{
615 616
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
617

618
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
619 620
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

636 637
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
638
					 unsigned long new_usage_in_excess)
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

668 669
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
670 671 672 673 674 675 676
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

677 678
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
679
{
680 681 682
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
683
	__mem_cgroup_remove_exceeded(mz, mctz);
684
	spin_unlock_irqrestore(&mctz->lock, flags);
685 686
}

687 688 689 690 691 692 693 694 695 696 697
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
698 699 700

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
701
	unsigned long excess;
702 703 704
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

705
	mctz = soft_limit_tree_from_page(page);
706 707 708 709 710
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
711
		mz = mem_cgroup_page_zoneinfo(memcg, page);
712
		excess = soft_limit_excess(memcg);
713 714 715 716 717
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
718 719 720
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
721 722
			/* if on-tree, remove it */
			if (mz->on_tree)
723
				__mem_cgroup_remove_exceeded(mz, mctz);
724 725 726 727
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
728
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
729
			spin_unlock_irqrestore(&mctz->lock, flags);
730 731 732 733 734 735 736
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
737 738
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
739

740 741 742 743
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
744
			mem_cgroup_remove_exceeded(mz, mctz);
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
767
	__mem_cgroup_remove_exceeded(mz, mctz);
768
	if (!soft_limit_excess(mz->memcg) ||
769
	    !css_tryget_online(&mz->memcg->css))
770 771 772 773 774 775 776 777 778 779
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

780
	spin_lock_irq(&mctz->lock);
781
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
782
	spin_unlock_irq(&mctz->lock);
783 784 785
	return mz;
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
805
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
806
				 enum mem_cgroup_stat_index idx)
807
{
808
	long val = 0;
809 810
	int cpu;

811 812
	get_online_cpus();
	for_each_online_cpu(cpu)
813
		val += per_cpu(memcg->stat->count[idx], cpu);
814
#ifdef CONFIG_HOTPLUG_CPU
815 816 817
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
818 819
#endif
	put_online_cpus();
820 821 822
	return val;
}

823
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
824 825 826 827 828
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

829
	get_online_cpus();
830
	for_each_online_cpu(cpu)
831
		val += per_cpu(memcg->stat->events[idx], cpu);
832
#ifdef CONFIG_HOTPLUG_CPU
833 834 835
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
836
#endif
837
	put_online_cpus();
838 839 840
	return val;
}

841
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
842
					 struct page *page,
843
					 int nr_pages)
844
{
845 846 847 848
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
849
	if (PageAnon(page))
850
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
851
				nr_pages);
852
	else
853
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
854
				nr_pages);
855

856 857 858 859
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

860 861
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
862
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
863
	else {
864
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
865 866
		nr_pages = -nr_pages; /* for event */
	}
867

868
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
869 870
}

871
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
872 873 874 875 876 877 878
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

879 880 881
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
882
{
883
	unsigned long nr = 0;
884 885
	int zid;

886
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
887

888 889 890 891 892 893 894 895 896 897 898 899
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
900
}
901

902
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
903
			unsigned int lru_mask)
904
{
905
	unsigned long nr = 0;
906
	int nid;
907

908
	for_each_node_state(nid, N_MEMORY)
909 910
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
911 912
}

913 914
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
915 916 917
{
	unsigned long val, next;

918
	val = __this_cpu_read(memcg->stat->nr_page_events);
919
	next = __this_cpu_read(memcg->stat->targets[target]);
920
	/* from time_after() in jiffies.h */
921 922 923 924 925
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
926 927 928
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
929 930 931 932 933 934 935 936
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
937
	}
938
	return false;
939 940 941 942 943 944
}

/*
 * Check events in order.
 *
 */
945
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
946 947
{
	/* threshold event is triggered in finer grain than soft limit */
948 949
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
950
		bool do_softlimit;
951
		bool do_numainfo __maybe_unused;
952

953 954
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
955 956 957 958
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
959
		mem_cgroup_threshold(memcg);
960 961
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
962
#if MAX_NUMNODES > 1
963
		if (unlikely(do_numainfo))
964
			atomic_inc(&memcg->numainfo_events);
965
#endif
966
	}
967 968
}

969
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
970
{
971 972 973 974 975 976 977 978
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

979
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
980 981
}

982
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
983
{
984
	struct mem_cgroup *memcg = NULL;
985

986 987
	rcu_read_lock();
	do {
988 989 990 991 992 993
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
994
			memcg = root_mem_cgroup;
995 996 997 998 999
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1000
	} while (!css_tryget_online(&memcg->css));
1001
	rcu_read_unlock();
1002
	return memcg;
1003 1004
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1022
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1023
				   struct mem_cgroup *prev,
1024
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1025
{
1026 1027
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1028
	struct mem_cgroup *memcg = NULL;
1029
	struct mem_cgroup *pos = NULL;
1030

1031 1032
	if (mem_cgroup_disabled())
		return NULL;
1033

1034 1035
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1036

1037
	if (prev && !reclaim)
1038
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1039

1040 1041
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1042
			goto out;
1043
		return root;
1044
	}
K
KAMEZAWA Hiroyuki 已提交
1045

1046
	rcu_read_lock();
M
Michal Hocko 已提交
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1082
		}
K
KAMEZAWA Hiroyuki 已提交
1083

1084 1085 1086 1087 1088 1089
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1090

1091 1092
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1093

1094
		if (css_tryget(css)) {
1095 1096 1097 1098 1099 1100 1101
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1102

1103
			css_put(css);
1104
		}
1105

1106
		memcg = NULL;
1107
	}
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1128
	}
1129

1130 1131
out_unlock:
	rcu_read_unlock();
1132
out:
1133 1134 1135
	if (prev && prev != root)
		css_put(&prev->css);

1136
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1137
}
K
KAMEZAWA Hiroyuki 已提交
1138

1139 1140 1141 1142 1143 1144 1145
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1146 1147 1148 1149 1150 1151
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1152

1153 1154 1155 1156 1157 1158
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1159
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1160
	     iter != NULL;				\
1161
	     iter = mem_cgroup_iter(root, iter, NULL))
1162

1163
#define for_each_mem_cgroup(iter)			\
1164
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1165
	     iter != NULL;				\
1166
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1167

1168
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1169
{
1170
	struct mem_cgroup *memcg;
1171 1172

	rcu_read_lock();
1173 1174
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1175 1176 1177 1178
		goto out;

	switch (idx) {
	case PGFAULT:
1179 1180 1181 1182
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1183 1184 1185 1186 1187 1188 1189
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1190
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1191

1192 1193 1194
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1195
 * @memcg: memcg of the wanted lruvec
1196 1197 1198 1199 1200 1201 1202 1203 1204
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1205
	struct lruvec *lruvec;
1206

1207 1208 1209 1210
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1211

1212
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1223 1224 1225
}

/**
1226
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1227
 * @page: the page
1228
 * @zone: zone of the page
1229 1230 1231 1232
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1233
 */
1234
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1235 1236
{
	struct mem_cgroup_per_zone *mz;
1237
	struct mem_cgroup *memcg;
1238
	struct lruvec *lruvec;
1239

1240 1241 1242 1243
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1244

1245
	memcg = page->mem_cgroup;
1246
	/*
1247
	 * Swapcache readahead pages are added to the LRU - and
1248
	 * possibly migrated - before they are charged.
1249
	 */
1250 1251
	if (!memcg)
		memcg = root_mem_cgroup;
1252

1253
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1264
}
1265

1266
/**
1267 1268 1269 1270
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1271
 *
1272 1273
 * This function must be called when a page is added to or removed from an
 * lru list.
1274
 */
1275 1276
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1277 1278
{
	struct mem_cgroup_per_zone *mz;
1279
	unsigned long *lru_size;
1280 1281 1282 1283

	if (mem_cgroup_disabled())
		return;

1284 1285 1286 1287
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1288
}
1289

1290
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1291
{
1292
	if (root == memcg)
1293
		return true;
1294
	if (!root->use_hierarchy)
1295
		return false;
1296
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1297 1298
}

1299
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1300
{
1301
	struct mem_cgroup *task_memcg;
1302
	struct task_struct *p;
1303
	bool ret;
1304

1305
	p = find_lock_task_mm(task);
1306
	if (p) {
1307
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1308 1309 1310 1311 1312 1313 1314
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1315
		rcu_read_lock();
1316 1317
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1318
		rcu_read_unlock();
1319
	}
1320 1321
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1322 1323 1324
	return ret;
}

1325
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1326
{
1327
	unsigned long inactive_ratio;
1328
	unsigned long inactive;
1329
	unsigned long active;
1330
	unsigned long gb;
1331

1332 1333
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1334

1335 1336 1337 1338 1339 1340
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1341
	return inactive * inactive_ratio < active;
1342 1343
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1358
#define mem_cgroup_from_counter(counter, member)	\
1359 1360
	container_of(counter, struct mem_cgroup, member)

1361
/**
1362
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1363
 * @memcg: the memory cgroup
1364
 *
1365
 * Returns the maximum amount of memory @mem can be charged with, in
1366
 * pages.
1367
 */
1368
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1369
{
1370 1371 1372
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1387 1388
}

1389
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1390 1391
{
	/* root ? */
1392
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1393 1394
		return vm_swappiness;

1395
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1396 1397
}

1398
/*
Q
Qiang Huang 已提交
1399
 * A routine for checking "mem" is under move_account() or not.
1400
 *
Q
Qiang Huang 已提交
1401 1402 1403
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1404
 */
1405
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1406
{
1407 1408
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1409
	bool ret = false;
1410 1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1419

1420 1421
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1422 1423
unlock:
	spin_unlock(&mc.lock);
1424 1425 1426
	return ret;
}

1427
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1428 1429
{
	if (mc.moving_task && current != mc.moving_task) {
1430
		if (mem_cgroup_under_move(memcg)) {
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1443
#define K(x) ((x) << (PAGE_SHIFT-10))
1444
/**
1445
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1446 1447 1448 1449 1450 1451 1452 1453
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1454
	/* oom_info_lock ensures that parallel ooms do not interleave */
1455
	static DEFINE_MUTEX(oom_info_lock);
1456 1457
	struct mem_cgroup *iter;
	unsigned int i;
1458

1459
	if (!p)
1460 1461
		return;

1462
	mutex_lock(&oom_info_lock);
1463 1464
	rcu_read_lock();

T
Tejun Heo 已提交
1465 1466
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1467
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1468
	pr_cont_cgroup_path(memcg->css.cgroup);
1469
	pr_cont("\n");
1470 1471 1472

	rcu_read_unlock();

1473 1474 1475 1476 1477 1478 1479 1480 1481
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1482 1483

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1484 1485
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1501
	mutex_unlock(&oom_info_lock);
1502 1503
}

1504 1505 1506 1507
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1508
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1509 1510
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1511 1512
	struct mem_cgroup *iter;

1513
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1514
		num++;
1515 1516 1517
	return num;
}

D
David Rientjes 已提交
1518 1519 1520
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1521
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1522
{
1523
	unsigned long limit;
1524

1525
	limit = memcg->memory.limit;
1526
	if (mem_cgroup_swappiness(memcg)) {
1527
		unsigned long memsw_limit;
1528

1529 1530
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1531 1532
	}
	return limit;
D
David Rientjes 已提交
1533 1534
}

1535 1536
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1537 1538 1539 1540 1541 1542 1543
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1544
	/*
1545 1546 1547
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1548
	 */
1549
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1550
		mark_tsk_oom_victim(current);
1551 1552 1553 1554
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1555
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1556
	for_each_mem_cgroup_tree(iter, memcg) {
1557
		struct css_task_iter it;
1558 1559
		struct task_struct *task;

1560 1561
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1574
				css_task_iter_end(&it);
1575 1576 1577 1578 1579 1580 1581 1582
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1595
		}
1596
		css_task_iter_end(&it);
1597 1598 1599 1600 1601 1602 1603 1604 1605
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1606 1607
#if MAX_NUMNODES > 1

1608 1609
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1610
 * @memcg: the target memcg
1611 1612 1613 1614 1615 1616 1617
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1618
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1619 1620
		int nid, bool noswap)
{
1621
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1622 1623 1624
		return true;
	if (noswap || !total_swap_pages)
		return false;
1625
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1626 1627 1628 1629
		return true;
	return false;

}
1630 1631 1632 1633 1634 1635 1636

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1637
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1638 1639
{
	int nid;
1640 1641 1642 1643
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1644
	if (!atomic_read(&memcg->numainfo_events))
1645
		return;
1646
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1647 1648 1649
		return;

	/* make a nodemask where this memcg uses memory from */
1650
	memcg->scan_nodes = node_states[N_MEMORY];
1651

1652
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1653

1654 1655
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1656
	}
1657

1658 1659
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1674
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1675 1676 1677
{
	int node;

1678 1679
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1680

1681
	node = next_node(node, memcg->scan_nodes);
1682
	if (node == MAX_NUMNODES)
1683
		node = first_node(memcg->scan_nodes);
1684 1685 1686 1687 1688 1689 1690 1691 1692
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1693
	memcg->last_scanned_node = node;
1694 1695 1696
	return node;
}
#else
1697
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1698 1699 1700 1701 1702
{
	return 0;
}
#endif

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1718
	excess = soft_limit_excess(root_memcg);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1747
		if (!soft_limit_excess(root_memcg))
1748
			break;
1749
	}
1750 1751
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1752 1753
}

1754 1755 1756 1757 1758 1759
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1760 1761
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1762 1763 1764 1765
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1766
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1767
{
1768
	struct mem_cgroup *iter, *failed = NULL;
1769

1770 1771
	spin_lock(&memcg_oom_lock);

1772
	for_each_mem_cgroup_tree(iter, memcg) {
1773
		if (iter->oom_lock) {
1774 1775 1776 1777 1778
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1779 1780
			mem_cgroup_iter_break(memcg, iter);
			break;
1781 1782
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1783
	}
K
KAMEZAWA Hiroyuki 已提交
1784

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1796
		}
1797 1798
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1799 1800 1801 1802

	spin_unlock(&memcg_oom_lock);

	return !failed;
1803
}
1804

1805
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1806
{
K
KAMEZAWA Hiroyuki 已提交
1807 1808
	struct mem_cgroup *iter;

1809
	spin_lock(&memcg_oom_lock);
1810
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1811
	for_each_mem_cgroup_tree(iter, memcg)
1812
		iter->oom_lock = false;
1813
	spin_unlock(&memcg_oom_lock);
1814 1815
}

1816
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1817 1818 1819
{
	struct mem_cgroup *iter;

1820
	for_each_mem_cgroup_tree(iter, memcg)
1821 1822 1823
		atomic_inc(&iter->under_oom);
}

1824
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1825 1826 1827
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1828 1829 1830 1831 1832
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1833
	for_each_mem_cgroup_tree(iter, memcg)
1834
		atomic_add_unless(&iter->under_oom, -1, 0);
1835 1836
}

K
KAMEZAWA Hiroyuki 已提交
1837 1838
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1839
struct oom_wait_info {
1840
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1841 1842 1843 1844 1845 1846
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1847 1848
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1849 1850 1851
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1852
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1853

1854 1855
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1856 1857 1858 1859
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1860
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1861
{
1862
	atomic_inc(&memcg->oom_wakeups);
1863 1864
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1865 1866
}

1867
static void memcg_oom_recover(struct mem_cgroup *memcg)
1868
{
1869 1870
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1871 1872
}

1873
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1874
{
1875 1876
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1877
	/*
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1890
	 */
1891 1892 1893 1894
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1895 1896 1897 1898
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1899
 * @handle: actually kill/wait or just clean up the OOM state
1900
 *
1901 1902
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1903
 *
1904
 * Memcg supports userspace OOM handling where failed allocations must
1905 1906 1907 1908
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1909
 * the end of the page fault to complete the OOM handling.
1910 1911
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1912
 * completed, %false otherwise.
1913
 */
1914
bool mem_cgroup_oom_synchronize(bool handle)
1915
{
1916
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1917
	struct oom_wait_info owait;
1918
	bool locked;
1919 1920 1921

	/* OOM is global, do not handle */
	if (!memcg)
1922
		return false;
1923

1924
	if (!handle || oom_killer_disabled)
1925
		goto cleanup;
1926 1927 1928 1929 1930 1931

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1932

1933
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1947
		schedule();
1948 1949 1950 1951 1952
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1953 1954 1955 1956 1957 1958 1959 1960
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1961 1962
cleanup:
	current->memcg_oom.memcg = NULL;
1963
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1964
	return true;
1965 1966
}

1967 1968 1969
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1970
 *
1971 1972 1973
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1974
 *
1975
 *   memcg = mem_cgroup_begin_page_stat(page);
1976 1977
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1978
 *   mem_cgroup_end_page_stat(memcg);
1979
 */
1980
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1981 1982
{
	struct mem_cgroup *memcg;
1983
	unsigned long flags;
1984

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1997 1998 1999 2000
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2001
again:
2002
	memcg = page->mem_cgroup;
2003
	if (unlikely(!memcg))
2004 2005
		return NULL;

Q
Qiang Huang 已提交
2006
	if (atomic_read(&memcg->moving_account) <= 0)
2007
		return memcg;
2008

2009
	spin_lock_irqsave(&memcg->move_lock, flags);
2010
	if (memcg != page->mem_cgroup) {
2011
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2012 2013
		goto again;
	}
2014 2015 2016 2017 2018 2019 2020 2021

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2022 2023

	return memcg;
2024 2025
}

2026 2027 2028 2029
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2030
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2031
{
2032 2033 2034 2035 2036 2037 2038 2039
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2040

2041
	rcu_read_unlock();
2042 2043
}

2044 2045 2046 2047 2048 2049 2050 2051 2052
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2053
				 enum mem_cgroup_stat_index idx, int val)
2054
{
2055
	VM_BUG_ON(!rcu_read_lock_held());
2056

2057 2058
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2059
}
2060

2061 2062 2063 2064
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2065
#define CHARGE_BATCH	32U
2066 2067
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2068
	unsigned int nr_pages;
2069
	struct work_struct work;
2070
	unsigned long flags;
2071
#define FLUSHING_CACHED_CHARGE	0
2072 2073
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2074
static DEFINE_MUTEX(percpu_charge_mutex);
2075

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2086
 */
2087
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2088 2089
{
	struct memcg_stock_pcp *stock;
2090
	bool ret = false;
2091

2092
	if (nr_pages > CHARGE_BATCH)
2093
		return ret;
2094

2095
	stock = &get_cpu_var(memcg_stock);
2096
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2097
		stock->nr_pages -= nr_pages;
2098 2099
		ret = true;
	}
2100 2101 2102 2103 2104
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2105
 * Returns stocks cached in percpu and reset cached information.
2106 2107 2108 2109 2110
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2111
	if (stock->nr_pages) {
2112
		page_counter_uncharge(&old->memory, stock->nr_pages);
2113
		if (do_swap_account)
2114
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2115
		css_put_many(&old->css, stock->nr_pages);
2116
		stock->nr_pages = 0;
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2127
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2128
	drain_stock(stock);
2129
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2130 2131 2132
}

/*
2133
 * Cache charges(val) to local per_cpu area.
2134
 * This will be consumed by consume_stock() function, later.
2135
 */
2136
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2137 2138 2139
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2140
	if (stock->cached != memcg) { /* reset if necessary */
2141
		drain_stock(stock);
2142
		stock->cached = memcg;
2143
	}
2144
	stock->nr_pages += nr_pages;
2145 2146 2147 2148
	put_cpu_var(memcg_stock);
}

/*
2149
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2150
 * of the hierarchy under it.
2151
 */
2152
static void drain_all_stock(struct mem_cgroup *root_memcg)
2153
{
2154
	int cpu, curcpu;
2155

2156 2157 2158
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2159 2160
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2161
	curcpu = get_cpu();
2162 2163
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2164
		struct mem_cgroup *memcg;
2165

2166 2167
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2168
			continue;
2169
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2170
			continue;
2171 2172 2173 2174 2175 2176
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2177
	}
2178
	put_cpu();
A
Andrew Morton 已提交
2179
	put_online_cpus();
2180
	mutex_unlock(&percpu_charge_mutex);
2181 2182
}

2183 2184 2185 2186
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2187
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2188 2189 2190
{
	int i;

2191
	spin_lock(&memcg->pcp_counter_lock);
2192
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2193
		long x = per_cpu(memcg->stat->count[i], cpu);
2194

2195 2196
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2197
	}
2198
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2199
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2200

2201 2202
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2203
	}
2204
	spin_unlock(&memcg->pcp_counter_lock);
2205 2206
}

2207
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2208 2209 2210 2211 2212
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2213
	struct mem_cgroup *iter;
2214

2215
	if (action == CPU_ONLINE)
2216 2217
		return NOTIFY_OK;

2218
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2219
		return NOTIFY_OK;
2220

2221
	for_each_mem_cgroup(iter)
2222 2223
		mem_cgroup_drain_pcp_counter(iter, cpu);

2224 2225 2226 2227 2228
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2229 2230
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2231
{
2232
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2233
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2234
	struct mem_cgroup *mem_over_limit;
2235
	struct page_counter *counter;
2236
	unsigned long nr_reclaimed;
2237 2238
	bool may_swap = true;
	bool drained = false;
2239
	int ret = 0;
2240

2241 2242
	if (mem_cgroup_is_root(memcg))
		goto done;
2243
retry:
2244 2245
	if (consume_stock(memcg, nr_pages))
		goto done;
2246

2247
	if (!do_swap_account ||
2248 2249
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2250
			goto done_restock;
2251
		if (do_swap_account)
2252 2253
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2254
	} else {
2255
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2256
		may_swap = false;
2257
	}
2258

2259 2260 2261 2262
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2278 2279
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2280

2281 2282
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2283 2284
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2285

2286
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2287
		goto retry;
2288

2289
	if (!drained) {
2290
		drain_all_stock(mem_over_limit);
2291 2292 2293 2294
		drained = true;
		goto retry;
	}

2295 2296
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2297 2298 2299 2300 2301 2302 2303 2304 2305
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2306
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2307 2308 2309 2310 2311 2312 2313 2314
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2315 2316 2317
	if (nr_retries--)
		goto retry;

2318 2319 2320
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2321 2322 2323
	if (fatal_signal_pending(current))
		goto bypass;

2324 2325
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2326
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2327
nomem:
2328
	if (!(gfp_mask & __GFP_NOFAIL))
2329
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2330
bypass:
2331
	return -EINTR;
2332 2333

done_restock:
2334
	css_get_many(&memcg->css, batch);
2335 2336
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2347
done:
2348
	return ret;
2349
}
2350

2351
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2352
{
2353 2354 2355
	if (mem_cgroup_is_root(memcg))
		return;

2356
	page_counter_uncharge(&memcg->memory, nr_pages);
2357
	if (do_swap_account)
2358
		page_counter_uncharge(&memcg->memsw, nr_pages);
2359

2360
	css_put_many(&memcg->css, nr_pages);
2361 2362
}

2363 2364
/*
 * A helper function to get mem_cgroup from ID. must be called under
2365 2366 2367
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2368 2369 2370 2371 2372 2373
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2374
	return mem_cgroup_from_id(id);
2375 2376
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2387
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2388
{
2389
	struct mem_cgroup *memcg;
2390
	unsigned short id;
2391 2392
	swp_entry_t ent;

2393
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2394

2395
	memcg = page->mem_cgroup;
2396 2397
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2398
			memcg = NULL;
2399
	} else if (PageSwapCache(page)) {
2400
		ent.val = page_private(page);
2401
		id = lookup_swap_cgroup_id(ent);
2402
		rcu_read_lock();
2403
		memcg = mem_cgroup_lookup(id);
2404
		if (memcg && !css_tryget_online(&memcg->css))
2405
			memcg = NULL;
2406
		rcu_read_unlock();
2407
	}
2408
	return memcg;
2409 2410
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2442
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2443
			  bool lrucare)
2444
{
2445
	int isolated;
2446

2447
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2448 2449 2450 2451 2452

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2453 2454
	if (lrucare)
		lock_page_lru(page, &isolated);
2455

2456 2457
	/*
	 * Nobody should be changing or seriously looking at
2458
	 * page->mem_cgroup at this point:
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2470
	page->mem_cgroup = memcg;
2471

2472 2473
	if (lrucare)
		unlock_page_lru(page, isolated);
2474
}
2475

2476
#ifdef CONFIG_MEMCG_KMEM
2477 2478
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2479
{
2480
	struct page_counter *counter;
2481 2482
	int ret = 0;

2483 2484
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2485 2486
		return ret;

2487
	ret = try_charge(memcg, gfp, nr_pages);
2488 2489
	if (ret == -EINTR)  {
		/*
2490 2491 2492 2493 2494 2495
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2496 2497 2498
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2499 2500 2501
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2502 2503
		 * directed to the root cgroup in memcontrol.h
		 */
2504
		page_counter_charge(&memcg->memory, nr_pages);
2505
		if (do_swap_account)
2506
			page_counter_charge(&memcg->memsw, nr_pages);
2507
		css_get_many(&memcg->css, nr_pages);
2508 2509
		ret = 0;
	} else if (ret)
2510
		page_counter_uncharge(&memcg->kmem, nr_pages);
2511 2512 2513 2514

	return ret;
}

2515
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2516
{
2517
	page_counter_uncharge(&memcg->memory, nr_pages);
2518
	if (do_swap_account)
2519
		page_counter_uncharge(&memcg->memsw, nr_pages);
2520

2521
	page_counter_uncharge(&memcg->kmem, nr_pages);
2522

2523
	css_put_many(&memcg->css, nr_pages);
2524 2525
}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2536
static int memcg_alloc_cache_id(void)
2537
{
2538 2539 2540 2541 2542 2543 2544
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2545

2546 2547 2548 2549 2550 2551 2552 2553 2554
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2555 2556 2557 2558 2559
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	err = memcg_update_all_caches(size);
	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2571 2572 2573 2574 2575 2576 2577 2578 2579
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2580
	memcg_limited_groups_array_size = num;
2581 2582
}

2583
struct memcg_kmem_cache_create_work {
2584 2585 2586 2587 2588
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2589
static void memcg_kmem_cache_create_func(struct work_struct *w)
2590
{
2591 2592
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2593 2594
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2595

2596
	memcg_create_kmem_cache(memcg, cachep);
2597

2598
	css_put(&memcg->css);
2599 2600 2601 2602 2603 2604
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2605 2606
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2607
{
2608
	struct memcg_kmem_cache_create_work *cw;
2609

2610
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2611
	if (!cw)
2612
		return;
2613 2614

	css_get(&memcg->css);
2615 2616 2617

	cw->memcg = memcg;
	cw->cachep = cachep;
2618
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2619 2620 2621 2622

	schedule_work(&cw->work);
}

2623 2624
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2625 2626 2627 2628
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2629
	 * in __memcg_schedule_kmem_cache_create will recurse.
2630 2631 2632 2633 2634 2635 2636
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2637
	current->memcg_kmem_skip_account = 1;
2638
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2639
	current->memcg_kmem_skip_account = 0;
2640
}
2641

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2655
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2656 2657
{
	struct mem_cgroup *memcg;
2658
	struct kmem_cache *memcg_cachep;
2659 2660 2661 2662

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2663
	if (current->memcg_kmem_skip_account)
2664 2665
		return cachep;

2666
	memcg = get_mem_cgroup_from_mm(current->mm);
2667
	if (!memcg_kmem_is_active(memcg))
2668
		goto out;
2669

2670
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2671 2672
	if (likely(memcg_cachep))
		return memcg_cachep;
2673 2674 2675 2676 2677 2678 2679 2680 2681

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2682 2683 2684
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2685
	 */
2686
	memcg_schedule_kmem_cache_create(memcg, cachep);
2687
out:
2688
	css_put(&memcg->css);
2689
	return cachep;
2690 2691
}

2692 2693 2694 2695 2696 2697
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
		css_put(&cachep->memcg_params->memcg->css);
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2719

2720
	memcg = get_mem_cgroup_from_mm(current->mm);
2721

2722
	if (!memcg_kmem_is_active(memcg)) {
2723 2724 2725 2726
		css_put(&memcg->css);
		return true;
	}

2727
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2742
		memcg_uncharge_kmem(memcg, 1 << order);
2743 2744
		return;
	}
2745
	page->mem_cgroup = memcg;
2746 2747 2748 2749
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2750
	struct mem_cgroup *memcg = page->mem_cgroup;
2751 2752 2753 2754

	if (!memcg)
		return;

2755
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2756

2757
	memcg_uncharge_kmem(memcg, 1 << order);
2758
	page->mem_cgroup = NULL;
2759 2760 2761
}
#endif /* CONFIG_MEMCG_KMEM */

2762 2763 2764 2765
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2766 2767 2768
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2769
 */
2770
void mem_cgroup_split_huge_fixup(struct page *head)
2771
{
2772
	int i;
2773

2774 2775
	if (mem_cgroup_disabled())
		return;
2776

2777
	for (i = 1; i < HPAGE_PMD_NR; i++)
2778
		head[i].mem_cgroup = head->mem_cgroup;
2779

2780
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2781
		       HPAGE_PMD_NR);
2782
}
2783
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2784

2785
/**
2786
 * mem_cgroup_move_account - move account of the page
2787
 * @page: the page
2788
 * @nr_pages: number of regular pages (>1 for huge pages)
2789 2790 2791 2792
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2793
 * - page is not on LRU (isolate_page() is useful.)
2794
 * - compound_lock is held when nr_pages > 1
2795
 *
2796 2797
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2798
 */
2799 2800 2801
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2802
				   struct mem_cgroup *to)
2803
{
2804 2805
	unsigned long flags;
	int ret;
2806

2807
	VM_BUG_ON(from == to);
2808
	VM_BUG_ON_PAGE(PageLRU(page), page);
2809 2810 2811 2812 2813 2814 2815
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2816
	if (nr_pages > 1 && !PageTransHuge(page))
2817 2818
		goto out;

2819
	/*
2820
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2821 2822 2823 2824 2825
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2826 2827

	ret = -EINVAL;
2828
	if (page->mem_cgroup != from)
2829
		goto out_unlock;
2830

2831
	spin_lock_irqsave(&from->move_lock, flags);
2832

2833
	if (!PageAnon(page) && page_mapped(page)) {
2834 2835 2836 2837 2838
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2839

2840 2841 2842 2843 2844 2845
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2846

2847
	/*
2848
	 * It is safe to change page->mem_cgroup here because the page
2849 2850 2851
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2852

2853
	/* caller should have done css_get */
2854
	page->mem_cgroup = to;
2855 2856
	spin_unlock_irqrestore(&from->move_lock, flags);

2857
	ret = 0;
2858 2859 2860

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2861
	memcg_check_events(to, page);
2862
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2863
	memcg_check_events(from, page);
2864 2865 2866
	local_irq_enable();
out_unlock:
	unlock_page(page);
2867
out:
2868 2869 2870
	return ret;
}

A
Andrew Morton 已提交
2871
#ifdef CONFIG_MEMCG_SWAP
2872 2873
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2874
{
2875 2876
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2877
}
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2890
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2891 2892 2893
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2894
				struct mem_cgroup *from, struct mem_cgroup *to)
2895 2896 2897
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2898 2899
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2900 2901 2902

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2903
		mem_cgroup_swap_statistics(to, true);
2904 2905 2906 2907 2908 2909
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2910
				struct mem_cgroup *from, struct mem_cgroup *to)
2911 2912 2913
{
	return -EINVAL;
}
2914
#endif
K
KAMEZAWA Hiroyuki 已提交
2915

2916
static DEFINE_MUTEX(memcg_limit_mutex);
2917

2918
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2919
				   unsigned long limit)
2920
{
2921 2922 2923
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2924
	int retry_count;
2925
	int ret;
2926 2927 2928 2929 2930 2931

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2932 2933
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2934

2935
	oldusage = page_counter_read(&memcg->memory);
2936

2937
	do {
2938 2939 2940 2941
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2942 2943 2944 2945

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2946
			ret = -EINVAL;
2947 2948
			break;
		}
2949 2950 2951 2952
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2953 2954 2955 2956

		if (!ret)
			break;

2957 2958
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2959
		curusage = page_counter_read(&memcg->memory);
2960
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2961
		if (curusage >= oldusage)
2962 2963 2964
			retry_count--;
		else
			oldusage = curusage;
2965 2966
	} while (retry_count);

2967 2968
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2969

2970 2971 2972
	return ret;
}

L
Li Zefan 已提交
2973
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2974
					 unsigned long limit)
2975
{
2976 2977 2978
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2979
	int retry_count;
2980
	int ret;
2981

2982
	/* see mem_cgroup_resize_res_limit */
2983 2984 2985 2986 2987 2988
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2989 2990 2991 2992
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2993 2994 2995 2996

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2997 2998 2999
			ret = -EINVAL;
			break;
		}
3000 3001 3002 3003
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3004 3005 3006 3007

		if (!ret)
			break;

3008 3009
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3010
		curusage = page_counter_read(&memcg->memsw);
3011
		/* Usage is reduced ? */
3012
		if (curusage >= oldusage)
3013
			retry_count--;
3014 3015
		else
			oldusage = curusage;
3016 3017
	} while (retry_count);

3018 3019
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3020

3021 3022 3023
	return ret;
}

3024 3025 3026 3027 3028 3029 3030 3031 3032
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3033
	unsigned long excess;
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3058
		spin_lock_irq(&mctz->lock);
3059
		__mem_cgroup_remove_exceeded(mz, mctz);
3060 3061 3062 3063 3064 3065

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3066 3067 3068
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3069
		excess = soft_limit_excess(mz->memcg);
3070 3071 3072 3073 3074 3075 3076 3077 3078
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3079
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3080
		spin_unlock_irq(&mctz->lock);
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3098 3099 3100 3101 3102 3103
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3104 3105
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3106 3107
	bool ret;

3108
	/*
3109 3110 3111 3112
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3113
	 */
3114 3115 3116 3117 3118 3119
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3120 3121
}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3132 3133
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3134
	/* try to free all pages in this cgroup */
3135
	while (nr_retries && page_counter_read(&memcg->memory)) {
3136
		int progress;
3137

3138 3139 3140
		if (signal_pending(current))
			return -EINTR;

3141 3142
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3143
		if (!progress) {
3144
			nr_retries--;
3145
			/* maybe some writeback is necessary */
3146
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3147
		}
3148 3149

	}
3150 3151

	return 0;
3152 3153
}

3154 3155 3156
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3157
{
3158
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3159

3160 3161
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3162
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3163 3164
}

3165 3166
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3167
{
3168
	return mem_cgroup_from_css(css)->use_hierarchy;
3169 3170
}

3171 3172
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3173 3174
{
	int retval = 0;
3175
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3176
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3177

3178
	mutex_lock(&memcg_create_mutex);
3179 3180 3181 3182

	if (memcg->use_hierarchy == val)
		goto out;

3183
	/*
3184
	 * If parent's use_hierarchy is set, we can't make any modifications
3185 3186 3187 3188 3189 3190
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3191
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3192
				(val == 1 || val == 0)) {
3193
		if (!memcg_has_children(memcg))
3194
			memcg->use_hierarchy = val;
3195 3196 3197 3198
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3199 3200

out:
3201
	mutex_unlock(&memcg_create_mutex);
3202 3203 3204 3205

	return retval;
}

3206 3207
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3225 3226 3227 3228 3229 3230
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3231
		if (!swap)
3232
			val = page_counter_read(&memcg->memory);
3233
		else
3234
			val = page_counter_read(&memcg->memsw);
3235 3236 3237 3238
	}
	return val << PAGE_SHIFT;
}

3239 3240 3241 3242 3243 3244 3245
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3246

3247
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3248
			       struct cftype *cft)
B
Balbir Singh 已提交
3249
{
3250
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3251
	struct page_counter *counter;
3252

3253
	switch (MEMFILE_TYPE(cft->private)) {
3254
	case _MEM:
3255 3256
		counter = &memcg->memory;
		break;
3257
	case _MEMSWAP:
3258 3259
		counter = &memcg->memsw;
		break;
3260
	case _KMEM:
3261
		counter = &memcg->kmem;
3262
		break;
3263 3264 3265
	default:
		BUG();
	}
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3285
}
3286 3287

#ifdef CONFIG_MEMCG_KMEM
3288 3289
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3290 3291 3292 3293 3294 3295 3296
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3309
	mutex_lock(&memcg_create_mutex);
3310 3311
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3312 3313 3314 3315
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3316

3317
	memcg_id = memcg_alloc_cache_id();
3318 3319 3320 3321 3322 3323
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3324 3325
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3326
	 */
3327
	err = page_counter_limit(&memcg->kmem, nr_pages);
3328 3329 3330 3331
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3332 3333
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3334 3335 3336
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3337
	memcg->kmemcg_id = memcg_id;
3338
out:
3339 3340 3341 3342
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3343
				   unsigned long limit)
3344 3345 3346
{
	int ret;

3347
	mutex_lock(&memcg_limit_mutex);
3348
	if (!memcg_kmem_is_active(memcg))
3349
		ret = memcg_activate_kmem(memcg, limit);
3350
	else
3351 3352
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3353 3354 3355
	return ret;
}

3356
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3357
{
3358
	int ret = 0;
3359
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3360

3361 3362
	if (!parent)
		return 0;
3363

3364
	mutex_lock(&memcg_limit_mutex);
3365
	/*
3366 3367
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3368
	 */
3369
	if (memcg_kmem_is_active(parent))
3370 3371
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3372
	return ret;
3373
}
3374 3375
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3376
				   unsigned long limit)
3377 3378 3379
{
	return -EINVAL;
}
3380
#endif /* CONFIG_MEMCG_KMEM */
3381

3382 3383 3384 3385
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3386 3387
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3388
{
3389
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3390
	unsigned long nr_pages;
3391 3392
	int ret;

3393
	buf = strstrip(buf);
3394
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3395 3396
	if (ret)
		return ret;
3397

3398
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3399
	case RES_LIMIT:
3400 3401 3402 3403
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3404 3405 3406
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3407
			break;
3408 3409
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3410
			break;
3411 3412 3413 3414
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3415
		break;
3416 3417 3418
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3419 3420
		break;
	}
3421
	return ret ?: nbytes;
B
Balbir Singh 已提交
3422 3423
}

3424 3425
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3426
{
3427
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3428
	struct page_counter *counter;
3429

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3443

3444
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3445
	case RES_MAX_USAGE:
3446
		page_counter_reset_watermark(counter);
3447 3448
		break;
	case RES_FAILCNT:
3449
		counter->failcnt = 0;
3450
		break;
3451 3452
	default:
		BUG();
3453
	}
3454

3455
	return nbytes;
3456 3457
}

3458
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3459 3460
					struct cftype *cft)
{
3461
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3462 3463
}

3464
#ifdef CONFIG_MMU
3465
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3466 3467
					struct cftype *cft, u64 val)
{
3468
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3469

3470
	if (val & ~MOVE_MASK)
3471
		return -EINVAL;
3472

3473
	/*
3474 3475 3476 3477
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3478
	 */
3479
	memcg->move_charge_at_immigrate = val;
3480 3481
	return 0;
}
3482
#else
3483
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3484 3485 3486 3487 3488
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3489

3490
#ifdef CONFIG_NUMA
3491
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3492
{
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3505
	int nid;
3506
	unsigned long nr;
3507
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3508

3509 3510 3511 3512 3513 3514 3515 3516 3517
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3518 3519
	}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3535 3536 3537 3538 3539 3540
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3541
static int memcg_stat_show(struct seq_file *m, void *v)
3542
{
3543
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3544
	unsigned long memory, memsw;
3545 3546
	struct mem_cgroup *mi;
	unsigned int i;
3547

3548 3549 3550 3551
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3552 3553
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3554
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3555
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3556
			continue;
3557 3558
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3559
	}
L
Lee Schermerhorn 已提交
3560

3561 3562 3563 3564 3565 3566 3567 3568
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3569
	/* Hierarchical information */
3570 3571 3572 3573
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3574
	}
3575 3576 3577 3578 3579
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3580

3581 3582 3583
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3584
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3585
			continue;
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3606
	}
K
KAMEZAWA Hiroyuki 已提交
3607

K
KOSAKI Motohiro 已提交
3608 3609 3610 3611
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3612
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3613 3614 3615 3616 3617
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3618
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3619
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3620

3621 3622 3623 3624
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3625
			}
3626 3627 3628 3629
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3630 3631 3632
	}
#endif

3633 3634 3635
	return 0;
}

3636 3637
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3638
{
3639
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3640

3641
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3642 3643
}

3644 3645
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3646
{
3647
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3648

3649
	if (val > 100)
K
KOSAKI Motohiro 已提交
3650 3651
		return -EINVAL;

3652
	if (css->parent)
3653 3654 3655
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3656

K
KOSAKI Motohiro 已提交
3657 3658 3659
	return 0;
}

3660 3661 3662
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3663
	unsigned long usage;
3664 3665 3666 3667
	int i;

	rcu_read_lock();
	if (!swap)
3668
		t = rcu_dereference(memcg->thresholds.primary);
3669
	else
3670
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3671 3672 3673 3674

	if (!t)
		goto unlock;

3675
	usage = mem_cgroup_usage(memcg, swap);
3676 3677

	/*
3678
	 * current_threshold points to threshold just below or equal to usage.
3679 3680 3681
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3682
	i = t->current_threshold;
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3706
	t->current_threshold = i - 1;
3707 3708 3709 3710 3711 3712
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3713 3714 3715 3716 3717 3718 3719
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3720 3721 3722 3723 3724 3725 3726
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3727 3728 3729 3730 3731 3732 3733
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3734 3735
}

3736
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3737 3738 3739
{
	struct mem_cgroup_eventfd_list *ev;

3740 3741
	spin_lock(&memcg_oom_lock);

3742
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3743
		eventfd_signal(ev->eventfd, 1);
3744 3745

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3746 3747 3748
	return 0;
}

3749
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3750
{
K
KAMEZAWA Hiroyuki 已提交
3751 3752
	struct mem_cgroup *iter;

3753
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3754
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3755 3756
}

3757
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3758
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3759
{
3760 3761
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3762 3763
	unsigned long threshold;
	unsigned long usage;
3764
	int i, size, ret;
3765

3766
	ret = page_counter_memparse(args, "-1", &threshold);
3767 3768 3769 3770
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3771

3772
	if (type == _MEM) {
3773
		thresholds = &memcg->thresholds;
3774
		usage = mem_cgroup_usage(memcg, false);
3775
	} else if (type == _MEMSWAP) {
3776
		thresholds = &memcg->memsw_thresholds;
3777
		usage = mem_cgroup_usage(memcg, true);
3778
	} else
3779 3780 3781
		BUG();

	/* Check if a threshold crossed before adding a new one */
3782
	if (thresholds->primary)
3783 3784
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3785
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3786 3787

	/* Allocate memory for new array of thresholds */
3788
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3789
			GFP_KERNEL);
3790
	if (!new) {
3791 3792 3793
		ret = -ENOMEM;
		goto unlock;
	}
3794
	new->size = size;
3795 3796

	/* Copy thresholds (if any) to new array */
3797 3798
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3799
				sizeof(struct mem_cgroup_threshold));
3800 3801
	}

3802
	/* Add new threshold */
3803 3804
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3805 3806

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3807
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3808 3809 3810
			compare_thresholds, NULL);

	/* Find current threshold */
3811
	new->current_threshold = -1;
3812
	for (i = 0; i < size; i++) {
3813
		if (new->entries[i].threshold <= usage) {
3814
			/*
3815 3816
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3817 3818
			 * it here.
			 */
3819
			++new->current_threshold;
3820 3821
		} else
			break;
3822 3823
	}

3824 3825 3826 3827 3828
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3829

3830
	/* To be sure that nobody uses thresholds */
3831 3832 3833 3834 3835 3836 3837 3838
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3839
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3840 3841
	struct eventfd_ctx *eventfd, const char *args)
{
3842
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3843 3844
}

3845
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3846 3847
	struct eventfd_ctx *eventfd, const char *args)
{
3848
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3849 3850
}

3851
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3852
	struct eventfd_ctx *eventfd, enum res_type type)
3853
{
3854 3855
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3856
	unsigned long usage;
3857
	int i, j, size;
3858 3859

	mutex_lock(&memcg->thresholds_lock);
3860 3861

	if (type == _MEM) {
3862
		thresholds = &memcg->thresholds;
3863
		usage = mem_cgroup_usage(memcg, false);
3864
	} else if (type == _MEMSWAP) {
3865
		thresholds = &memcg->memsw_thresholds;
3866
		usage = mem_cgroup_usage(memcg, true);
3867
	} else
3868 3869
		BUG();

3870 3871 3872
	if (!thresholds->primary)
		goto unlock;

3873 3874 3875 3876
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3877 3878 3879
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3880 3881 3882
			size++;
	}

3883
	new = thresholds->spare;
3884

3885 3886
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3887 3888
		kfree(new);
		new = NULL;
3889
		goto swap_buffers;
3890 3891
	}

3892
	new->size = size;
3893 3894

	/* Copy thresholds and find current threshold */
3895 3896 3897
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3898 3899
			continue;

3900
		new->entries[j] = thresholds->primary->entries[i];
3901
		if (new->entries[j].threshold <= usage) {
3902
			/*
3903
			 * new->current_threshold will not be used
3904 3905 3906
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3907
			++new->current_threshold;
3908 3909 3910 3911
		}
		j++;
	}

3912
swap_buffers:
3913 3914
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3915 3916 3917 3918 3919 3920
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3921
	rcu_assign_pointer(thresholds->primary, new);
3922

3923
	/* To be sure that nobody uses thresholds */
3924
	synchronize_rcu();
3925
unlock:
3926 3927
	mutex_unlock(&memcg->thresholds_lock);
}
3928

3929
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3930 3931
	struct eventfd_ctx *eventfd)
{
3932
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3933 3934
}

3935
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3936 3937
	struct eventfd_ctx *eventfd)
{
3938
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3939 3940
}

3941
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3942
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3943 3944 3945 3946 3947 3948 3949
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3950
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3951 3952 3953 3954 3955

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3956
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3957
		eventfd_signal(eventfd, 1);
3958
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3959 3960 3961 3962

	return 0;
}

3963
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3964
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3965 3966 3967
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3968
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3969

3970
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3971 3972 3973 3974 3975 3976
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3977
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3978 3979
}

3980
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3981
{
3982
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3983

3984 3985
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3986 3987 3988
	return 0;
}

3989
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3990 3991
	struct cftype *cft, u64 val)
{
3992
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3993 3994

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3995
	if (!css->parent || !((val == 0) || (val == 1)))
3996 3997
		return -EINVAL;

3998
	memcg->oom_kill_disable = val;
3999
	if (!val)
4000
		memcg_oom_recover(memcg);
4001

4002 4003 4004
	return 0;
}

A
Andrew Morton 已提交
4005
#ifdef CONFIG_MEMCG_KMEM
4006
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4007
{
4008 4009 4010 4011 4012
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4013

4014
	return mem_cgroup_sockets_init(memcg, ss);
4015
}
4016

4017
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4018
{
4019
	memcg_destroy_kmem_caches(memcg);
4020
	mem_cgroup_sockets_destroy(memcg);
4021
}
4022
#else
4023
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4024 4025 4026
{
	return 0;
}
G
Glauber Costa 已提交
4027

4028 4029 4030
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4031 4032
#endif

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4046 4047 4048 4049 4050
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4051
static void memcg_event_remove(struct work_struct *work)
4052
{
4053 4054
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4055
	struct mem_cgroup *memcg = event->memcg;
4056 4057 4058

	remove_wait_queue(event->wqh, &event->wait);

4059
	event->unregister_event(memcg, event->eventfd);
4060 4061 4062 4063 4064 4065

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4066
	css_put(&memcg->css);
4067 4068 4069 4070 4071 4072 4073
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4074 4075
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4076
{
4077 4078
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4079
	struct mem_cgroup *memcg = event->memcg;
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4092
		spin_lock(&memcg->event_list_lock);
4093 4094 4095 4096 4097 4098 4099 4100
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4101
		spin_unlock(&memcg->event_list_lock);
4102 4103 4104 4105 4106
	}

	return 0;
}

4107
static void memcg_event_ptable_queue_proc(struct file *file,
4108 4109
		wait_queue_head_t *wqh, poll_table *pt)
{
4110 4111
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4112 4113 4114 4115 4116 4117

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4118 4119
 * DO NOT USE IN NEW FILES.
 *
4120 4121 4122 4123 4124
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4125 4126
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4127
{
4128
	struct cgroup_subsys_state *css = of_css(of);
4129
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4130
	struct mem_cgroup_event *event;
4131 4132 4133 4134
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4135
	const char *name;
4136 4137 4138
	char *endp;
	int ret;

4139 4140 4141
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4142 4143
	if (*endp != ' ')
		return -EINVAL;
4144
	buf = endp + 1;
4145

4146
	cfd = simple_strtoul(buf, &endp, 10);
4147 4148
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4149
	buf = endp + 1;
4150 4151 4152 4153 4154

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4155
	event->memcg = memcg;
4156
	INIT_LIST_HEAD(&event->list);
4157 4158 4159
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4185 4186 4187 4188 4189
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4190 4191
	 *
	 * DO NOT ADD NEW FILES.
4192
	 */
A
Al Viro 已提交
4193
	name = cfile.file->f_path.dentry->d_name.name;
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4205 4206
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4207 4208 4209 4210 4211
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4212
	/*
4213 4214 4215
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4216
	 */
A
Al Viro 已提交
4217
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4218
					       &memory_cgrp_subsys);
4219
	ret = -EINVAL;
4220
	if (IS_ERR(cfile_css))
4221
		goto out_put_cfile;
4222 4223
	if (cfile_css != css) {
		css_put(cfile_css);
4224
		goto out_put_cfile;
4225
	}
4226

4227
	ret = event->register_event(memcg, event->eventfd, buf);
4228 4229 4230 4231 4232
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4233 4234 4235
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4236 4237 4238 4239

	fdput(cfile);
	fdput(efile);

4240
	return nbytes;
4241 4242

out_put_css:
4243
	css_put(css);
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4256
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4257
	{
4258
		.name = "usage_in_bytes",
4259
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4260
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4261
	},
4262 4263
	{
		.name = "max_usage_in_bytes",
4264
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4265
		.write = mem_cgroup_reset,
4266
		.read_u64 = mem_cgroup_read_u64,
4267
	},
B
Balbir Singh 已提交
4268
	{
4269
		.name = "limit_in_bytes",
4270
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4271
		.write = mem_cgroup_write,
4272
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4273
	},
4274 4275 4276
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4277
		.write = mem_cgroup_write,
4278
		.read_u64 = mem_cgroup_read_u64,
4279
	},
B
Balbir Singh 已提交
4280 4281
	{
		.name = "failcnt",
4282
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4283
		.write = mem_cgroup_reset,
4284
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4285
	},
4286 4287
	{
		.name = "stat",
4288
		.seq_show = memcg_stat_show,
4289
	},
4290 4291
	{
		.name = "force_empty",
4292
		.write = mem_cgroup_force_empty_write,
4293
	},
4294 4295 4296 4297 4298
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4299
	{
4300
		.name = "cgroup.event_control",		/* XXX: for compat */
4301
		.write = memcg_write_event_control,
4302 4303 4304
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4305 4306 4307 4308 4309
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4310 4311 4312 4313 4314
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4315 4316
	{
		.name = "oom_control",
4317
		.seq_show = mem_cgroup_oom_control_read,
4318
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4319 4320
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4321 4322 4323
	{
		.name = "pressure_level",
	},
4324 4325 4326
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4327
		.seq_show = memcg_numa_stat_show,
4328 4329
	},
#endif
4330 4331 4332 4333
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4334
		.write = mem_cgroup_write,
4335
		.read_u64 = mem_cgroup_read_u64,
4336 4337 4338 4339
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4340
		.read_u64 = mem_cgroup_read_u64,
4341 4342 4343 4344
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4345
		.write = mem_cgroup_reset,
4346
		.read_u64 = mem_cgroup_read_u64,
4347 4348 4349 4350
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4351
		.write = mem_cgroup_reset,
4352
		.read_u64 = mem_cgroup_read_u64,
4353
	},
4354 4355 4356
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4357 4358 4359 4360
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4361 4362
	},
#endif
4363
#endif
4364
	{ },	/* terminate */
4365
};
4366

4367
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4368 4369
{
	struct mem_cgroup_per_node *pn;
4370
	struct mem_cgroup_per_zone *mz;
4371
	int zone, tmp = node;
4372 4373 4374 4375 4376 4377 4378 4379
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4380 4381
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4382
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4383 4384
	if (!pn)
		return 1;
4385 4386 4387

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4388
		lruvec_init(&mz->lruvec);
4389 4390
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4391
		mz->memcg = memcg;
4392
	}
4393
	memcg->nodeinfo[node] = pn;
4394 4395 4396
	return 0;
}

4397
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4398
{
4399
	kfree(memcg->nodeinfo[node]);
4400 4401
}

4402 4403
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4404
	struct mem_cgroup *memcg;
4405
	size_t size;
4406

4407 4408
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4409

4410
	memcg = kzalloc(size, GFP_KERNEL);
4411
	if (!memcg)
4412 4413
		return NULL;

4414 4415
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4416
		goto out_free;
4417 4418
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4419 4420

out_free:
4421
	kfree(memcg);
4422
	return NULL;
4423 4424
}

4425
/*
4426 4427 4428 4429 4430 4431 4432 4433
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4434
 */
4435 4436

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4437
{
4438
	int node;
4439

4440
	mem_cgroup_remove_from_trees(memcg);
4441 4442 4443 4444 4445 4446

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4447
	disarm_static_keys(memcg);
4448
	kfree(memcg);
4449
}
4450

4451 4452 4453
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4454
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4455
{
4456
	if (!memcg->memory.parent)
4457
		return NULL;
4458
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4459
}
G
Glauber Costa 已提交
4460
EXPORT_SYMBOL(parent_mem_cgroup);
4461

L
Li Zefan 已提交
4462
static struct cgroup_subsys_state * __ref
4463
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4464
{
4465
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4466
	long error = -ENOMEM;
4467
	int node;
B
Balbir Singh 已提交
4468

4469 4470
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4471
		return ERR_PTR(error);
4472

B
Bob Liu 已提交
4473
	for_each_node(node)
4474
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4475
			goto free_out;
4476

4477
	/* root ? */
4478
	if (parent_css == NULL) {
4479
		root_mem_cgroup = memcg;
4480
		page_counter_init(&memcg->memory, NULL);
4481
		memcg->high = PAGE_COUNTER_MAX;
4482
		memcg->soft_limit = PAGE_COUNTER_MAX;
4483 4484
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4485
	}
4486

4487 4488 4489 4490 4491
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4492
	vmpressure_init(&memcg->vmpressure);
4493 4494
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4495 4496 4497
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4498 4499 4500 4501 4502 4503 4504 4505 4506

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4507
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4508
{
4509
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4510
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4511
	int ret;
4512

4513
	if (css->id > MEM_CGROUP_ID_MAX)
4514 4515
		return -ENOSPC;

T
Tejun Heo 已提交
4516
	if (!parent)
4517 4518
		return 0;

4519
	mutex_lock(&memcg_create_mutex);
4520 4521 4522 4523 4524 4525

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4526
		page_counter_init(&memcg->memory, &parent->memory);
4527
		memcg->high = PAGE_COUNTER_MAX;
4528
		memcg->soft_limit = PAGE_COUNTER_MAX;
4529 4530
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4531

4532
		/*
4533 4534
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4535
		 */
4536
	} else {
4537
		page_counter_init(&memcg->memory, NULL);
4538
		memcg->high = PAGE_COUNTER_MAX;
4539
		memcg->soft_limit = PAGE_COUNTER_MAX;
4540 4541
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4542 4543 4544 4545 4546
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4547
		if (parent != root_mem_cgroup)
4548
			memory_cgrp_subsys.broken_hierarchy = true;
4549
	}
4550
	mutex_unlock(&memcg_create_mutex);
4551

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4564 4565
}

4566
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4567
{
4568
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4569
	struct mem_cgroup_event *event, *tmp;
4570 4571 4572 4573 4574 4575

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4576 4577
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4578 4579 4580
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4581
	spin_unlock(&memcg->event_list_lock);
4582

4583
	vmpressure_cleanup(&memcg->vmpressure);
4584 4585
}

4586
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4587
{
4588
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4589

4590
	memcg_destroy_kmem(memcg);
4591
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4592 4593
}

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4611 4612 4613
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4614 4615
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4616
	memcg->soft_limit = PAGE_COUNTER_MAX;
4617 4618
}

4619
#ifdef CONFIG_MMU
4620
/* Handlers for move charge at task migration. */
4621
static int mem_cgroup_do_precharge(unsigned long count)
4622
{
4623
	int ret;
4624 4625

	/* Try a single bulk charge without reclaim first */
4626
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4627
	if (!ret) {
4628 4629 4630
		mc.precharge += count;
		return ret;
	}
4631
	if (ret == -EINTR) {
4632
		cancel_charge(root_mem_cgroup, count);
4633 4634
		return ret;
	}
4635 4636

	/* Try charges one by one with reclaim */
4637
	while (count--) {
4638
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4639 4640 4641
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4642 4643
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4644
		 */
4645
		if (ret == -EINTR)
4646
			cancel_charge(root_mem_cgroup, 1);
4647 4648
		if (ret)
			return ret;
4649
		mc.precharge++;
4650
		cond_resched();
4651
	}
4652
	return 0;
4653 4654 4655
}

/**
4656
 * get_mctgt_type - get target type of moving charge
4657 4658 4659
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4660
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4661 4662 4663 4664 4665 4666
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4667 4668 4669
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4670 4671 4672 4673 4674
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4675
	swp_entry_t	ent;
4676 4677 4678
};

enum mc_target_type {
4679
	MC_TARGET_NONE = 0,
4680
	MC_TARGET_PAGE,
4681
	MC_TARGET_SWAP,
4682 4683
};

D
Daisuke Nishimura 已提交
4684 4685
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4686
{
D
Daisuke Nishimura 已提交
4687
	struct page *page = vm_normal_page(vma, addr, ptent);
4688

D
Daisuke Nishimura 已提交
4689 4690 4691
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4692
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4693
			return NULL;
4694 4695 4696 4697
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4698 4699 4700 4701 4702 4703
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4704
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4705 4706 4707 4708 4709 4710
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4711
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4712
		return NULL;
4713 4714 4715 4716
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4717
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4718 4719 4720 4721 4722
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4723 4724 4725 4726 4727 4728 4729
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4730

4731 4732 4733 4734 4735 4736 4737 4738 4739
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4740
	if (!(mc.flags & MOVE_FILE))
4741 4742 4743
		return NULL;

	mapping = vma->vm_file->f_mapping;
4744
	pgoff = linear_page_index(vma, addr);
4745 4746

	/* page is moved even if it's not RSS of this task(page-faulted). */
4747 4748
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4761
#endif
4762 4763 4764
	return page;
}

4765
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4766 4767 4768
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4769
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4770 4771 4772 4773 4774 4775
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4776
	else if (pte_none(ptent))
4777
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4778 4779

	if (!page && !ent.val)
4780
		return ret;
4781 4782
	if (page) {
		/*
4783
		 * Do only loose check w/o serialization.
4784
		 * mem_cgroup_move_account() checks the page is valid or
4785
		 * not under LRU exclusion.
4786
		 */
4787
		if (page->mem_cgroup == mc.from) {
4788 4789 4790 4791 4792 4793 4794
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4795 4796
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4797
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4798 4799 4800
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4801 4802 4803 4804
	}
	return ret;
}

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4818
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4819
	if (!(mc.flags & MOVE_ANON))
4820
		return ret;
4821
	if (page->mem_cgroup == mc.from) {
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4838 4839 4840 4841
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4842
	struct vm_area_struct *vma = walk->vma;
4843 4844 4845
	pte_t *pte;
	spinlock_t *ptl;

4846
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4847 4848
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4849
		spin_unlock(ptl);
4850
		return 0;
4851
	}
4852

4853 4854
	if (pmd_trans_unstable(pmd))
		return 0;
4855 4856
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4857
		if (get_mctgt_type(vma, addr, *pte, NULL))
4858 4859 4860 4861
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4862 4863 4864
	return 0;
}

4865 4866 4867 4868
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4869 4870 4871 4872
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4873
	down_read(&mm->mmap_sem);
4874
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4875
	up_read(&mm->mmap_sem);
4876 4877 4878 4879 4880 4881 4882 4883 4884

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4885 4886 4887 4888 4889
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4890 4891
}

4892 4893
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4894
{
4895 4896 4897
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4898
	/* we must uncharge all the leftover precharges from mc.to */
4899
	if (mc.precharge) {
4900
		cancel_charge(mc.to, mc.precharge);
4901 4902 4903 4904 4905 4906 4907
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4908
		cancel_charge(mc.from, mc.moved_charge);
4909
		mc.moved_charge = 0;
4910
	}
4911 4912 4913
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4914
		if (!mem_cgroup_is_root(mc.from))
4915
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4916

4917
		/*
4918 4919
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4920
		 */
4921
		if (!mem_cgroup_is_root(mc.to))
4922 4923
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4924
		css_put_many(&mc.from->css, mc.moved_swap);
4925

L
Li Zefan 已提交
4926
		/* we've already done css_get(mc.to) */
4927 4928
		mc.moved_swap = 0;
	}
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4942
	spin_lock(&mc.lock);
4943 4944
	mc.from = NULL;
	mc.to = NULL;
4945
	spin_unlock(&mc.lock);
4946 4947
}

4948
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4949
				 struct cgroup_taskset *tset)
4950
{
4951
	struct task_struct *p = cgroup_taskset_first(tset);
4952
	int ret = 0;
4953
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4954
	unsigned long move_flags;
4955

4956 4957 4958 4959 4960
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
4961 4962
	move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
	if (move_flags) {
4963 4964 4965
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

4966
		VM_BUG_ON(from == memcg);
4967 4968 4969 4970 4971

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4972 4973 4974 4975
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4976
			VM_BUG_ON(mc.moved_charge);
4977
			VM_BUG_ON(mc.moved_swap);
4978

4979
			spin_lock(&mc.lock);
4980
			mc.from = from;
4981
			mc.to = memcg;
4982
			mc.flags = move_flags;
4983
			spin_unlock(&mc.lock);
4984
			/* We set mc.moving_task later */
4985 4986 4987 4988

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4989 4990
		}
		mmput(mm);
4991 4992 4993 4994
	}
	return ret;
}

4995
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4996
				     struct cgroup_taskset *tset)
4997
{
4998 4999
	if (mc.to)
		mem_cgroup_clear_mc();
5000 5001
}

5002 5003 5004
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5005
{
5006
	int ret = 0;
5007
	struct vm_area_struct *vma = walk->vma;
5008 5009
	pte_t *pte;
	spinlock_t *ptl;
5010 5011 5012
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5013

5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5024
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5025
		if (mc.precharge < HPAGE_PMD_NR) {
5026
			spin_unlock(ptl);
5027 5028 5029 5030 5031 5032 5033
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5034
							     mc.from, mc.to)) {
5035 5036 5037 5038 5039 5040 5041
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5042
		spin_unlock(ptl);
5043
		return 0;
5044 5045
	}

5046 5047
	if (pmd_trans_unstable(pmd))
		return 0;
5048 5049 5050 5051
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5052
		swp_entry_t ent;
5053 5054 5055 5056

		if (!mc.precharge)
			break;

5057
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5058 5059 5060 5061
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5062
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5063
				mc.precharge--;
5064 5065
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5066 5067
			}
			putback_lru_page(page);
5068
put:			/* get_mctgt_type() gets the page */
5069 5070
			put_page(page);
			break;
5071 5072
		case MC_TARGET_SWAP:
			ent = target.ent;
5073
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5074
				mc.precharge--;
5075 5076 5077
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5078
			break;
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5093
		ret = mem_cgroup_do_precharge(1);
5094 5095 5096 5097 5098 5099 5100 5101 5102
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5103 5104 5105 5106
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5107 5108

	lru_add_drain_all();
5109 5110 5111 5112 5113 5114 5115
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5129 5130 5131 5132 5133
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5134
	up_read(&mm->mmap_sem);
5135
	atomic_dec(&mc.from->moving_account);
5136 5137
}

5138
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5139
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5140
{
5141
	struct task_struct *p = cgroup_taskset_first(tset);
5142
	struct mm_struct *mm = get_task_mm(p);
5143 5144

	if (mm) {
5145 5146
		if (mc.to)
			mem_cgroup_move_charge(mm);
5147 5148
		mmput(mm);
	}
5149 5150
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5151
}
5152
#else	/* !CONFIG_MMU */
5153
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5154
				 struct cgroup_taskset *tset)
5155 5156 5157
{
	return 0;
}
5158
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5159
				     struct cgroup_taskset *tset)
5160 5161
{
}
5162
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5163
				 struct cgroup_taskset *tset)
5164 5165 5166
{
}
#endif
B
Balbir Singh 已提交
5167

5168 5169
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5170 5171
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5172
 */
5173
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5174 5175
{
	/*
5176
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5177 5178 5179
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5180
	if (cgroup_on_dfl(root_css->cgroup))
5181
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5182 5183
}

5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &low);
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &high);
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &max);
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5325
struct cgroup_subsys memory_cgrp_subsys = {
5326
	.css_alloc = mem_cgroup_css_alloc,
5327
	.css_online = mem_cgroup_css_online,
5328 5329
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5330
	.css_reset = mem_cgroup_css_reset,
5331 5332
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5333
	.attach = mem_cgroup_move_task,
5334
	.bind = mem_cgroup_bind,
5335 5336
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5337
	.early_init = 0,
B
Balbir Singh 已提交
5338
};
5339

5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

	if (page_counter_read(&memcg->memory) > memcg->low)
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

		if (page_counter_read(&memcg->memory) > memcg->low)
			return false;
	}
	return true;
}

5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5425
		if (page->mem_cgroup)
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5486 5487
	commit_charge(page, memcg, lrucare);

5488 5489 5490 5491 5492
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5493 5494 5495 5496
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5538 5539 5540 5541
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5542
	unsigned long nr_pages = nr_anon + nr_file;
5543 5544
	unsigned long flags;

5545
	if (!mem_cgroup_is_root(memcg)) {
5546 5547 5548
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5549 5550
		memcg_oom_recover(memcg);
	}
5551 5552 5553 5554 5555 5556

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5557
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5558 5559
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5560 5561

	if (!mem_cgroup_is_root(memcg))
5562
		css_put_many(&memcg->css, nr_pages);
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5585
		if (!page->mem_cgroup)
5586 5587 5588 5589
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5590
		 * page->mem_cgroup at this point, we have fully
5591
		 * exclusive access to the page.
5592 5593
		 */

5594
		if (memcg != page->mem_cgroup) {
5595
			if (memcg) {
5596 5597 5598
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5599
			}
5600
			memcg = page->mem_cgroup;
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5614
		page->mem_cgroup = NULL;
5615 5616 5617 5618 5619

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5620 5621
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5622 5623
}

5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5636
	/* Don't touch page->lru of any random page, pre-check: */
5637
	if (!page->mem_cgroup)
5638 5639
		return;

5640 5641 5642
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5643

5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5655

5656 5657
	if (!list_empty(page_list))
		uncharge_list(page_list);
5658 5659 5660 5661 5662 5663
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5664
 * @lrucare: either or both pages might be on the LRU already
5665 5666 5667 5668 5669 5670 5671 5672
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5673
	struct mem_cgroup *memcg;
5674 5675 5676 5677 5678 5679 5680
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5681 5682
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5683 5684 5685 5686 5687

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5688
	if (newpage->mem_cgroup)
5689 5690
		return;

5691 5692 5693 5694 5695 5696
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5697
	memcg = oldpage->mem_cgroup;
5698
	if (!memcg)
5699 5700 5701 5702 5703
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5704
	oldpage->mem_cgroup = NULL;
5705 5706 5707 5708

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5709
	commit_charge(newpage, memcg, lrucare);
5710 5711
}

5712
/*
5713 5714 5715 5716 5717 5718
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5719 5720 5721
 */
static int __init mem_cgroup_init(void)
{
5722 5723
	int cpu, node;

5724
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5747 5748 5749
	return 0;
}
subsys_initcall(mem_cgroup_init);
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */