book3s_hv.c 147.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 */

#include <linux/kvm_host.h>
19
#include <linux/kernel.h>
20 21 22
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
23
#include <linux/sched/signal.h>
24
#include <linux/sched/stat.h>
25
#include <linux/delay.h>
26
#include <linux/export.h>
27 28
#include <linux/fs.h>
#include <linux/anon_inodes.h>
29
#include <linux/cpu.h>
30
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34
#include <linux/miscdevice.h>
35
#include <linux/debugfs.h>
36 37 38 39 40 41 42 43 44
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
45

46
#include <asm/ftrace.h>
47
#include <asm/reg.h>
48
#include <asm/ppc-opcode.h>
49
#include <asm/asm-prototypes.h>
50
#include <asm/archrandom.h>
51
#include <asm/debug.h>
52
#include <asm/disassemble.h>
53 54
#include <asm/cputable.h>
#include <asm/cacheflush.h>
55
#include <linux/uaccess.h>
56 57 58 59 60 61
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
62
#include <asm/cputhreads.h>
63
#include <asm/page.h>
64
#include <asm/hvcall.h>
65
#include <asm/switch_to.h>
66
#include <asm/smp.h>
67
#include <asm/dbell.h>
68
#include <asm/hmi.h>
69
#include <asm/pnv-pci.h>
70
#include <asm/mmu.h>
71 72
#include <asm/opal.h>
#include <asm/xics.h>
73
#include <asm/xive.h>
74
#include <asm/hw_breakpoint.h>
75 76
#include <asm/kvm_host.h>
#include <asm/kvm_book3s_uvmem.h>
77
#include <asm/ultravisor.h>
78

79 80
#include "book3s.h"

81 82 83
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

84 85 86 87
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

88 89
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
90 91
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
92

93 94 95
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

96 97
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

98
static int dynamic_mt_modes = 6;
99
module_param(dynamic_mt_modes, int, 0644);
100
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101
static int target_smt_mode;
102
module_param(target_smt_mode, int, 0644);
103
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104

105 106 107 108
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

109 110 111 112
static bool one_vm_per_core;
module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");

113 114 115 116 117 118
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

119
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 121
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

122
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 124 125
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

126 127 128 129 130 131 132 133 134 135
/* If set, guests are allowed to create and control nested guests */
static bool nested = true;
module_param(nested, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");

static inline bool nesting_enabled(struct kvm *kvm)
{
	return kvm->arch.nested_enable && kvm_is_radix(kvm);
}

136 137 138
/* If set, the threads on each CPU core have to be in the same MMU mode */
static bool no_mixing_hpt_and_radix;

139
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140

141 142 143 144 145
/*
 * RWMR values for POWER8.  These control the rate at which PURR
 * and SPURR count and should be set according to the number of
 * online threads in the vcore being run.
 */
146 147 148 149 150 151 152 153
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
154 155 156 157 158 159 160 161 162 163 164 165 166

static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_2THREAD,
	RWMR_RPA_P8_3THREAD,
	RWMR_RPA_P8_4THREAD,
	RWMR_RPA_P8_5THREAD,
	RWMR_RPA_P8_6THREAD,
	RWMR_RPA_P8_7THREAD,
	RWMR_RPA_P8_8THREAD,
};

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

187 188
static bool kvmppc_ipi_thread(int cpu)
{
189 190
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

191 192 193 194
	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
	if (kvmhv_on_pseries())
		return false;

195 196 197 198 199 200 201 202
	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218
	if (cpu >= 0 && cpu < nr_cpu_ids) {
219
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220 221 222 223
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224 225 226 227 228 229 230
		return true;
	}
#endif

	return false;
}

231
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232
{
233
	int cpu;
234
	struct swait_queue_head *wqp;
235 236

	wqp = kvm_arch_vcpu_wq(vcpu);
237
	if (swq_has_sleeper(wqp)) {
238
		swake_up_one(wqp);
239 240 241
		++vcpu->stat.halt_wakeup;
	}

242 243
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
244
		return;
245 246

	/* CPU points to the first thread of the core */
247
	cpu = vcpu->cpu;
248 249
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
250 251
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
279 280 281 282
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
283 284
 */

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

306
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
307
{
308
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
309
	unsigned long flags;
310

311 312 313 314 315 316
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
317 318 319
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

320
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321 322 323 324 325
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
326
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 328
}

329
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330
{
331
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
332
	unsigned long flags;
333

334 335 336
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

337
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
338 339
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
340
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
341 342
}

T
Thomas Huth 已提交
343
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
344 345 346 347
{
	vcpu->arch.pvr = pvr;
}

348 349 350
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
351
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
352
{
353
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
354 355
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

356 357 358 359 360 361 362 363 364 365 366 367
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
368 369 370
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
371
			guest_pcr_bit = PCR_ARCH_205;
372 373 374
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
375
			guest_pcr_bit = PCR_ARCH_206;
376 377
			break;
		case PVR_ARCH_207:
378 379 380 381
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
382 383 384 385 386 387
			break;
		default:
			return -EINVAL;
		}
	}

388 389 390 391
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

392 393
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
394 395 396 397 398
	/*
	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
	 * Also set all reserved PCR bits
	 */
	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
399 400 401 402 403
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
404
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
405 406 407 408 409
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
410
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
411 412 413 414 415
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
416
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
417 418 419 420 421 422
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
423 424
	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
425 426 427 428 429 430 431 432
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
433
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
434 435 436
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
437
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
438
{
439
	return kvm_get_vcpu_by_id(kvm, id);
440 441 442 443
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
444
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
445
	vpa->yield_count = cpu_to_be32(1);
446 447
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

464 465 466 467
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
468 469
		__be16 hword;
		__be32 word;
470 471 472 473 474 475 476 477 478 479
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

480 481 482 483 484
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
485
	unsigned long len, nb;
486 487
	void *va;
	struct kvm_vcpu *tvcpu;
488 489 490
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
491 492 493 494 495

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

496 497 498 499 500
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
501
			return H_PARAMETER;
502 503

		/* convert logical addr to kernel addr and read length */
504 505
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
506
			return H_PARAMETER;
507
		if (subfunc == H_VPA_REG_VPA)
508
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
509
		else
510
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
511
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
527 528 529 530 531 532
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
533 534
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
		if (len < sizeof(struct lppaca))
535
			break;
536 537 538 539 540 541
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
542
			break;
543 544 545 546 547
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
548
			break;
549 550 551 552 553 554 555 556 557

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
558
			break;
559 560 561 562 563 564 565 566 567 568

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
569
			break;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
590
	}
591

592 593
	spin_unlock(&tvcpu->arch.vpa_update_lock);

594
	return err;
595 596
}

597
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
598
{
599
	struct kvm *kvm = vcpu->kvm;
600 601
	void *va;
	unsigned long nb;
602
	unsigned long gpa;
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
618
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
619 620 621 622 623
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
624
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
625 626 627 628 629 630 631 632 633
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
634
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
635
		va = NULL;
636 637
	}
	if (vpap->pinned_addr)
638 639 640
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
641
	vpap->pinned_addr = va;
642
	vpap->dirty = false;
643 644 645 646 647 648
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
649 650 651 652 653
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

654 655
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
656
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
657 658
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
659 660
	}
	if (vcpu->arch.dtl.update_pending) {
661
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
662 663 664 665
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
666
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
667 668 669
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

670 671 672 673 674 675 676
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
677
	unsigned long flags;
678

679 680
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
681
	if (vc->vcore_state != VCORE_INACTIVE &&
682 683 684
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
685 686 687
	return p;
}

688 689 690 691 692
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
693 694 695
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
696
	unsigned long flags;
697 698 699

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
700 701 702 703
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
704
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
705 706
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
707
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
708 709 710 711
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
712 713 714 715 716
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
717 718 719 720 721 722
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
723
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
724
	vcpu->arch.dtl.dirty = true;
725 726
}

727 728 729 730 731 732
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

733 734 735 736 737
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
738
	 * smp_wmb() in kvmppc_guest_entry_inject().
739 740
	 */
	smp_rmb();
741 742 743 744 745
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
776 777
		if (!ppc_breakpoint_available())
			return H_P2;
778 779 780 781 782 783 784
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
785 786 787 788 789
	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
		/* KVM does not support mflags=2 (AIL=2) */
		if (mflags != 0 && mflags != 3)
			return H_UNSUPPORTED_FLAG_START;
		return H_TOO_HARD;
790 791 792 793 794
	default:
		return H_TOO_HARD;
	}
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
/* Copy guest memory in place - must reside within a single memslot */
static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
				  unsigned long len)
{
	struct kvm_memory_slot *to_memslot = NULL;
	struct kvm_memory_slot *from_memslot = NULL;
	unsigned long to_addr, from_addr;
	int r;

	/* Get HPA for from address */
	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
	if (!from_memslot)
		return -EFAULT;
	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
			     << PAGE_SHIFT))
		return -EINVAL;
	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
	if (kvm_is_error_hva(from_addr))
		return -EFAULT;
	from_addr |= (from & (PAGE_SIZE - 1));

	/* Get HPA for to address */
	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
	if (!to_memslot)
		return -EFAULT;
	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
			   << PAGE_SHIFT))
		return -EINVAL;
	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
	if (kvm_is_error_hva(to_addr))
		return -EFAULT;
	to_addr |= (to & (PAGE_SIZE - 1));

	/* Perform copy */
	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
			     len);
	if (r)
		return -EFAULT;
	mark_page_dirty(kvm, to >> PAGE_SHIFT);
	return 0;
}

static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
			       unsigned long dest, unsigned long src)
{
	u64 pg_sz = SZ_4K;		/* 4K page size */
	u64 pg_mask = SZ_4K - 1;
	int ret;

	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
		return H_PARAMETER;

	/* dest (and src if copy_page flag set) must be page aligned */
	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
		return H_PARAMETER;

	/* zero and/or copy the page as determined by the flags */
	if (flags & H_COPY_PAGE) {
		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
		if (ret < 0)
			return H_PARAMETER;
	} else if (flags & H_ZERO_PAGE) {
		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
		if (ret < 0)
			return H_PARAMETER;
	}

	/* We can ignore the remaining flags */

	return H_SUCCESS;
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
883 884
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
885 886 887 888 889 890 891 892 893 894 895 896 897 898
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
899
		yield_count = be32_to_cpu(lppaca->yield_count);
900 901 902 903
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

904 905 906 907
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
908
	int yield_count;
909
	struct kvm_vcpu *tvcpu;
910
	int idx, rc;
911

912 913 914 915
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

916 917 918 919 920 921 922 923 924 925 926 927
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
928 929
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
930 931
		break;
	case H_CONFER:
932 933 934 935 936 937 938 939
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
940 941 942 943
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
944 945 946 947 948 949
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
950 951 952 953
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

954
		idx = srcu_read_lock(&vcpu->kvm->srcu);
955
		rc = kvmppc_rtas_hcall(vcpu);
956
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
957 958 959 960 961 962 963 964

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
965 966 967 968 969 970 971 972 973 974
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
975 976 977 978 979 980 981 982
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
983 984 985 986
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
987 988
	case H_IPOLL:
	case H_XIRR_X:
989
		if (kvmppc_xics_enabled(vcpu)) {
990
			if (xics_on_xive()) {
991 992 993
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
994 995
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
996 997
		}
		return RESUME_HOST;
998 999 1000 1001 1002 1003 1004
	case H_SET_DABR:
		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
		break;
	case H_SET_XDABR:
		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		break;
1005
#ifdef CONFIG_SPAPR_TCE_IOMMU
1006 1007 1008 1009 1010 1011
	case H_GET_TCE:
		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
1035
#endif
1036 1037 1038 1039
	case H_RANDOM:
		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
			ret = H_HARDWARE;
		break;
1040 1041 1042

	case H_SET_PARTITION_TABLE:
		ret = H_FUNCTION;
1043
		if (nesting_enabled(vcpu->kvm))
1044 1045 1046 1047
			ret = kvmhv_set_partition_table(vcpu);
		break;
	case H_ENTER_NESTED:
		ret = H_FUNCTION;
1048
		if (!nesting_enabled(vcpu->kvm))
1049 1050 1051 1052
			break;
		ret = kvmhv_enter_nested_guest(vcpu);
		if (ret == H_INTERRUPT) {
			kvmppc_set_gpr(vcpu, 3, 0);
1053
			vcpu->arch.hcall_needed = 0;
1054
			return -EINTR;
1055 1056 1057 1058
		} else if (ret == H_TOO_HARD) {
			kvmppc_set_gpr(vcpu, 3, 0);
			vcpu->arch.hcall_needed = 0;
			return RESUME_HOST;
1059
		}
1060 1061 1062
		break;
	case H_TLB_INVALIDATE:
		ret = H_FUNCTION;
1063 1064
		if (nesting_enabled(vcpu->kvm))
			ret = kvmhv_do_nested_tlbie(vcpu);
1065
		break;
1066 1067 1068 1069 1070
	case H_COPY_TOFROM_GUEST:
		ret = H_FUNCTION;
		if (nesting_enabled(vcpu->kvm))
			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
		break;
1071 1072 1073 1074 1075
	case H_PAGE_INIT:
		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
					 kvmppc_get_gpr(vcpu, 5),
					 kvmppc_get_gpr(vcpu, 6));
		break;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	case H_SVM_PAGE_IN:
		ret = kvmppc_h_svm_page_in(vcpu->kvm,
					   kvmppc_get_gpr(vcpu, 4),
					   kvmppc_get_gpr(vcpu, 5),
					   kvmppc_get_gpr(vcpu, 6));
		break;
	case H_SVM_PAGE_OUT:
		ret = kvmppc_h_svm_page_out(vcpu->kvm,
					    kvmppc_get_gpr(vcpu, 4),
					    kvmppc_get_gpr(vcpu, 5),
					    kvmppc_get_gpr(vcpu, 6));
		break;
	case H_SVM_INIT_START:
		ret = kvmppc_h_svm_init_start(vcpu->kvm);
		break;
	case H_SVM_INIT_DONE:
		ret = kvmppc_h_svm_init_done(vcpu->kvm);
		break;

1095 1096 1097 1098 1099 1100 1101 1102
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * Handle H_CEDE in the nested virtualization case where we haven't
 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
 * that the cede logic in kvmppc_run_single_vcpu() works properly.
 */
static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
{
	vcpu->arch.shregs.msr |= MSR_EE;
	vcpu->arch.ceded = 1;
	smp_mb();
	if (vcpu->arch.prodded) {
		vcpu->arch.prodded = 0;
		smp_mb();
		vcpu->arch.ceded = 0;
	}
}

1121 1122 1123 1124 1125 1126 1127
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
1128
	case H_SET_MODE:
1129 1130
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
1131 1132 1133 1134 1135 1136 1137 1138
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
1139
	case H_PAGE_INIT:
1140 1141 1142 1143 1144 1145 1146
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1264 1265
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1266 1267 1268 1269 1270
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1289 1290 1291 1292 1293 1294 1295 1296 1297
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1298
	case BOOK3S_INTERRUPT_H_DOORBELL:
1299
	case BOOK3S_INTERRUPT_H_VIRT:
1300 1301 1302
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1303
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1304
	case BOOK3S_INTERRUPT_HMI:
1305
	case BOOK3S_INTERRUPT_PERFMON:
1306
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1307 1308
		r = RESUME_GUEST;
		break;
1309
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1310
		/* Print the MCE event to host console. */
1311
		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

		/*
		 * If the guest can do FWNMI, exit to userspace so it can
		 * deliver a FWNMI to the guest.
		 * Otherwise we synthesize a machine check for the guest
		 * so that it knows that the machine check occurred.
		 */
		if (!vcpu->kvm->arch.fwnmi_enabled) {
			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
			kvmppc_core_queue_machine_check(vcpu, flags);
			r = RESUME_GUEST;
			break;
		}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
1338
		break;
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1358 1359 1360 1361
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1362 1363 1364 1365 1366 1367 1368 1369 1370
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1371 1372 1373 1374 1375
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1376 1377
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1378
		r = RESUME_PAGE_FAULT;
1379 1380
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1381
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1382 1383 1384 1385
		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
			DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1386
		r = RESUME_PAGE_FAULT;
1387 1388 1389
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1390 1391 1392 1393
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1394 1395
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1396 1397 1398 1399
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1400 1401 1402 1403 1404 1405
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1406 1407 1408
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1409 1410 1411 1412
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1413 1414
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1415
		r = EMULATE_FAIL;
1416
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1417
		    cpu_has_feature(CPU_FTR_ARCH_300))
1418 1419 1420 1421 1422
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1423
		break;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

1437 1438 1439
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1440 1441 1442 1443 1444
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1445
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1446 1447 1448 1449 1450 1451 1452
		r = RESUME_HOST;
		break;
	}

	return r;
}

1453
static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
{
	int r;
	int srcu_idx;

	vcpu->stat.sum_exits++;

	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		pr_emerg("KVM trap in HV mode while nested!\n");
		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
			 vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		return RESUME_HOST;
	}
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_HOST;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
	case BOOK3S_INTERRUPT_H_VIRT:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
	case BOOK3S_INTERRUPT_PERFMON:
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/* Pass the machine check to the L1 guest */
		r = RESUME_HOST;
		/* Print the MCE event to host console. */
1501
		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1502 1503 1504 1505 1506 1507 1508 1509 1510
		break;
	/*
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1511
		r = kvmhv_nested_page_fault(run, vcpu);
1512 1513 1514 1515 1516 1517 1518 1519 1520
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
					 DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1521
		r = kvmhv_nested_page_fault(run, vcpu);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

	case BOOK3S_INTERRUPT_HV_RM_HARD:
		vcpu->arch.trap = 0;
		r = RESUME_GUEST;
1540
		if (!xics_on_xive())
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
			kvmppc_xics_rm_complete(vcpu, 0);
		break;
	default:
		r = RESUME_HOST;
		break;
	}

	return r;
}

1551 1552
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1553 1554 1555 1556
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1557
	sregs->pvr = vcpu->arch.pvr;
1558 1559 1560 1561 1562 1563 1564 1565
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1566 1567
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1568 1569 1570
{
	int i, j;

1571 1572 1573
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1588 1589
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1590
{
1591
	struct kvm *kvm = vcpu->kvm;
1592 1593 1594 1595
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

	spin_lock(&vc->lock);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1614 1615 1616
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1617
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1618 1619
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1620 1621
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1622 1623 1624 1625 1626 1627
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1628 1629 1630 1631

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1632 1633 1634 1635
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
}

1636 1637
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1638
{
1639 1640
	int r = 0;
	long int i;
1641

1642
	switch (id) {
1643 1644 1645
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1646
	case KVM_REG_PPC_HIOR:
1647 1648 1649 1650 1651
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1652 1653 1654
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1670
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1671 1672 1673 1674 1675 1676
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1677
		break;
1678 1679 1680 1681
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1682 1683 1684 1685 1686 1687
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1688 1689
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1690
		break;
1691 1692 1693 1694 1695 1696 1697
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
1698 1699 1700 1701 1702 1703 1704 1705
		/*
		 * On POWER9, where we are emulating msgsndp etc.,
		 * we return 1 bit for each vcpu, which can come from
		 * either vcore->dpdes or doorbell_request.
		 * On POWER8, doorbell_request is 0.
		 */
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
				   vcpu->arch.doorbell_request);
1706
		break;
1707 1708 1709
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1736
		break;
1737 1738 1739 1740 1741 1742
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1760 1761 1762
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1763
	case KVM_REG_PPC_LPCR:
1764
	case KVM_REG_PPC_LPCR_64:
1765 1766
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1767 1768 1769
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1802 1803 1804
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1836 1837 1838
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1839 1840 1841 1842
	case KVM_REG_PPC_DEC_EXPIRY:
		*val = get_reg_val(id, vcpu->arch.dec_expires +
				   vcpu->arch.vcore->tb_offset);
		break;
1843 1844 1845
	case KVM_REG_PPC_ONLINE:
		*val = get_reg_val(id, vcpu->arch.online);
		break;
1846 1847 1848
	case KVM_REG_PPC_PTCR:
		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
		break;
1849
	default:
1850
		r = -EINVAL;
1851 1852 1853 1854 1855 1856
		break;
	}

	return r;
}

1857 1858
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1859
{
1860 1861
	int r = 0;
	long int i;
1862
	unsigned long addr, len;
1863

1864
	switch (id) {
1865 1866
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1867
		if (set_reg_val(id, *val))
1868 1869
			r = -EINVAL;
		break;
1870 1871 1872
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1873 1874 1875
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1891
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1892 1893 1894 1895 1896 1897 1898
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1899 1900 1901 1902
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1903 1904 1905 1906 1907 1908
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1909 1910
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1911
		break;
1912 1913 1914 1915 1916 1917 1918 1919 1920
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1921 1922 1923
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1953
		break;
1954 1955 1956 1957 1958 1959
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1980 1981
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1982 1983 1984 1985
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1986 1987 1988 1989 1990
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1991
	case KVM_REG_PPC_LPCR:
1992 1993 1994 1995
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1996
		break;
1997 1998 1999
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
2031 2032 2033
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
2065 2066 2067
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
2068 2069 2070 2071
	case KVM_REG_PPC_DEC_EXPIRY:
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
			vcpu->arch.vcore->tb_offset;
		break;
2072
	case KVM_REG_PPC_ONLINE:
2073 2074 2075 2076 2077 2078
		i = set_reg_val(id, *val);
		if (i && !vcpu->arch.online)
			atomic_inc(&vcpu->arch.vcore->online_count);
		else if (!i && vcpu->arch.online)
			atomic_dec(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = i;
2079
		break;
2080 2081 2082
	case KVM_REG_PPC_PTCR:
		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
		break;
2083
	default:
2084
		r = -EINVAL;
2085 2086 2087 2088 2089 2090
		break;
	}

	return r;
}

2091 2092 2093 2094 2095 2096 2097
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
2098
static int threads_per_vcore(struct kvm *kvm)
2099
{
2100
	if (kvm->arch.threads_indep)
2101 2102 2103 2104
		return 1;
	return threads_per_subcore;
}

2105
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2106 2107 2108 2109 2110 2111 2112 2113 2114
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
2115
	spin_lock_init(&vcore->stoltb_lock);
2116
	init_swait_queue_head(&vcore->wq);
2117 2118
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
2119
	vcore->first_vcpuid = id;
2120
	vcore->kvm = kvm;
2121
	INIT_LIST_HEAD(&vcore->preempt_list);
2122 2123 2124 2125

	return vcore;
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

2138
#define N_TIMINGS	(ARRAY_SIZE(timings))
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

2274 2275
static int kvmppc_core_vcpu_create_hv(struct kvm *kvm, struct kvm_vcpu *vcpu,
				      unsigned int id)
2276
{
2277
	int err;
2278 2279
	int core;
	struct kvmppc_vcore *vcore;
2280 2281 2282

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
2283
		return err;
2284 2285

	vcpu->arch.shared = &vcpu->arch.shregs;
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
2297 2298 2299
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
2300
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2301
	spin_lock_init(&vcpu->arch.vpa_update_lock);
2302 2303
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
2304
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2305

2306 2307 2308
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
2309
	 * On POWER9, we want to virtualize the doorbell facility, so we
2310 2311
	 * don't set the HFSCR_MSGP bit, and that causes those instructions
	 * to trap and then we emulate them.
2312
	 */
2313 2314 2315 2316 2317 2318 2319 2320
	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
			vcpu->arch.hfscr |= HFSCR_TM;
	}
	if (cpu_has_feature(CPU_FTR_TM_COMP))
2321
		vcpu->arch.hfscr |= HFSCR_TM;
2322

2323 2324
	kvmppc_mmu_book3s_hv_init(vcpu);

2325
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2326 2327 2328 2329

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
2330 2331
	vcore = NULL;
	err = -EINVAL;
2332
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2333 2334 2335 2336 2337 2338 2339
		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
			pr_devel("KVM: VCPU ID too high\n");
			core = KVM_MAX_VCORES;
		} else {
			BUG_ON(kvm->arch.smt_mode != 1);
			core = kvmppc_pack_vcpu_id(kvm, id);
		}
2340 2341 2342
	} else {
		core = id / kvm->arch.smt_mode;
	}
2343 2344
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
2345 2346 2347 2348
		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
			pr_devel("KVM: collision on id %u", id);
			vcore = NULL;
		} else if (!vcore) {
2349 2350 2351 2352
			/*
			 * Take mmu_setup_lock for mutual exclusion
			 * with kvmppc_update_lpcr().
			 */
2353
			err = -ENOMEM;
2354 2355
			vcore = kvmppc_vcore_create(kvm,
					id & ~(kvm->arch.smt_mode - 1));
2356
			mutex_lock(&kvm->arch.mmu_setup_lock);
2357 2358
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
2359
			mutex_unlock(&kvm->arch.mmu_setup_lock);
2360
		}
2361 2362 2363 2364
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
2365
		goto uninit_vcpu;
2366 2367 2368 2369 2370

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
2371
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2372
	vcpu->arch.thread_cpu = -1;
2373
	vcpu->arch.prev_cpu = -1;
2374

2375 2376 2377
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2378 2379
	debugfs_vcpu_init(vcpu, id);

2380
	return 0;
2381

2382 2383
uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
2384
	return err;
2385 2386
}

2387 2388 2389 2390
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2391
	int esmt = 0;
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2409
		esmt = smt_mode;
2410 2411 2412 2413 2414 2415
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2416
		kvm->arch.emul_smt_mode = esmt;
2417 2418 2419 2420 2421 2422 2423
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2424 2425 2426 2427 2428 2429 2430
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2431
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2432
{
2433
	spin_lock(&vcpu->arch.vpa_update_lock);
2434 2435 2436
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2437
	spin_unlock(&vcpu->arch.vpa_update_lock);
2438 2439 2440
	kvm_vcpu_uninit(vcpu);
}

2441 2442 2443 2444 2445 2446
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2447
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2448
{
2449
	unsigned long dec_nsec, now;
2450

2451 2452 2453 2454
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2455
		kvmppc_core_prepare_to_enter(vcpu);
2456
		return;
2457
	}
2458
	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
T
Thomas Gleixner 已提交
2459
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2460
	vcpu->arch.timer_running = 1;
2461 2462
}

2463
extern int __kvmppc_vcore_entry(void);
2464

2465 2466
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2467
{
2468 2469
	u64 now;

2470 2471
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2472
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2473 2474 2475 2476 2477
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2478
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2479
	--vc->n_runnable;
2480
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2481 2482
}

2483 2484 2485
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2486
	long timeout = 10000;
2487

2488
	tpaca = paca_ptrs[cpu];
2489 2490

	/* Ensure the thread won't go into the kernel if it wakes */
2491
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2492
	tpaca->kvm_hstate.kvm_vcore = NULL;
2493 2494 2495
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

2521
	tpaca = paca_ptrs[cpu];
2522
	tpaca->kvm_hstate.hwthread_req = 0;
2523
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2524 2525
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2526 2527
}

2528 2529
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
2530 2531
	struct kvm_nested_guest *nested = vcpu->arch.nested;
	cpumask_t *cpu_in_guest;
2532 2533 2534
	int i;

	cpu = cpu_first_thread_sibling(cpu);
2535 2536 2537 2538 2539 2540 2541
	if (nested) {
		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
		cpu_in_guest = &nested->cpu_in_guest;
	} else {
		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
		cpu_in_guest = &kvm->arch.cpu_in_guest;
	}
2542 2543 2544 2545 2546 2547 2548
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
2549
		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2550 2551 2552
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2553 2554
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
2555
	struct kvm_nested_guest *nested = vcpu->arch.nested;
2556
	struct kvm *kvm = vcpu->kvm;
2557 2558 2559 2560 2561 2562 2563 2564 2565
	int prev_cpu;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return;

	if (nested)
		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
	else
		prev_cpu = vcpu->arch.prev_cpu;
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
2579 2580 2581
	if (prev_cpu != pcpu) {
		if (prev_cpu >= 0 &&
		    cpu_first_thread_sibling(prev_cpu) !=
2582
		    cpu_first_thread_sibling(pcpu))
2583 2584 2585 2586 2587 2588 2589 2590
			radix_flush_cpu(kvm, prev_cpu, vcpu);
		if (nested)
			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
		else
			vcpu->arch.prev_cpu = pcpu;
	}
}

2591
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2592 2593 2594
{
	int cpu;
	struct paca_struct *tpaca;
2595
	struct kvm *kvm = vc->kvm;
2596

2597 2598 2599 2600 2601 2602 2603
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2604
		vcpu->cpu = vc->pcpu;
2605
		vcpu->arch.thread_cpu = cpu;
2606
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2607
	}
2608
	tpaca = paca_ptrs[cpu];
2609
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2610
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2611
	tpaca->kvm_hstate.fake_suspend = 0;
2612
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2613
	smp_wmb();
2614
	tpaca->kvm_hstate.kvm_vcore = vc;
2615
	if (cpu != smp_processor_id())
2616
		kvmppc_ipi_thread(cpu);
2617
}
2618

2619
static void kvmppc_wait_for_nap(int n_threads)
2620
{
2621 2622
	int cpu = smp_processor_id();
	int i, loops;
2623

2624 2625
	if (n_threads <= 1)
		return;
2626 2627 2628
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2629
		 * We set the vcore pointer when starting a thread
2630
		 * and the thread clears it when finished, so we look
2631
		 * for any threads that still have a non-NULL vcore ptr.
2632
		 */
2633
		for (i = 1; i < n_threads; ++i)
2634
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2635
				break;
2636
		if (i == n_threads) {
2637 2638
			HMT_medium();
			return;
2639
		}
2640
		HMT_low();
2641 2642
	}
	HMT_medium();
2643
	for (i = 1; i < n_threads; ++i)
2644
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2645
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2646 2647 2648 2649
}

/*
 * Check that we are on thread 0 and that any other threads in
2650 2651
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2652 2653 2654 2655
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2656
	int thr;
2657

2658 2659
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2660
		return 0;
2661 2662 2663

	thr = 0;
	while (++thr < threads_per_subcore)
2664 2665
		if (cpu_online(cpu + thr))
			return 0;
2666 2667

	/* Grab all hw threads so they can't go into the kernel */
2668
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2669 2670 2671 2672 2673 2674 2675 2676
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2677 2678 2679
	return 1;
}

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2709
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2721
	struct preempted_vcore_list *lp;
2722 2723 2724

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2725
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2726 2727 2728 2729 2730 2731 2732
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2733 2734 2735 2736
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2737
struct core_info {
2738 2739
	int		n_subcores;
	int		max_subcore_threads;
2740
	int		total_threads;
2741
	int		subcore_threads[MAX_SUBCORES];
2742
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2743 2744
};

2745 2746
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2747
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2748 2749 2750
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2751 2752 2753
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2754 2755
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2756
	cip->total_threads = vc->num_threads;
2757
	cip->subcore_threads[0] = vc->num_threads;
2758
	cip->vc[0] = vc;
2759 2760 2761 2762
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2763
	/*
2764 2765
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
	 * split-core mode, with one thread per subcore.
2766 2767 2768 2769 2770
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2783 2784
}

2785
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2786 2787 2788 2789 2790
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
2791
	vc->tb_offset_applied = 0;
2792 2793
}

2794 2795 2796 2797 2798 2799 2800 2801
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2802 2803 2804 2805
	/* In one_vm_per_core mode, require all vcores to be from the same vm */
	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
		return false;

2806 2807
	/* Some POWER9 chips require all threads to be in the same MMU mode */
	if (no_mixing_hpt_and_radix &&
2808 2809 2810
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2811 2812
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2813
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2814
		return false;
2815
	cip->max_subcore_threads = n_threads;
2816 2817 2818 2819 2820

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2821 2822 2823
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2838
	return can_dynamic_split(pvc, cip);
2839 2840
}

2841 2842
static void prepare_threads(struct kvmppc_vcore *vc)
{
2843 2844
	int i;
	struct kvm_vcpu *vcpu;
2845

2846
	for_each_runnable_thread(i, vcpu, vc) {
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
2870
		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2891
static bool recheck_signals_and_mmu(struct core_info *cip)
2892 2893 2894
{
	int sub, i;
	struct kvm_vcpu *vcpu;
2895
	struct kvmppc_vcore *vc;
2896

2897 2898 2899 2900 2901
	for (sub = 0; sub < cip->n_subcores; ++sub) {
		vc = cip->vc[sub];
		if (!vc->kvm->arch.mmu_ready)
			return true;
		for_each_runnable_thread(i, vcpu, vc)
2902 2903
			if (signal_pending(vcpu->arch.run_task))
				return true;
2904
	}
2905 2906 2907
	return false;
}

2908
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2909
{
2910
	int still_running = 0, i;
2911 2912
	u64 now;
	long ret;
2913
	struct kvm_vcpu *vcpu;
2914

2915
	spin_lock(&vc->lock);
2916
	now = get_tb();
2917
	for_each_runnable_thread(i, vcpu, vc) {
2918 2919 2920 2921 2922 2923 2924 2925
		/*
		 * It's safe to unlock the vcore in the loop here, because
		 * for_each_runnable_thread() is safe against removal of
		 * the vcpu, and the vcore state is VCORE_EXITING here,
		 * so any vcpus becoming runnable will have their arch.trap
		 * set to zero and can't actually run in the guest.
		 */
		spin_unlock(&vc->lock);
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2941
		spin_lock(&vc->lock);
2942 2943 2944 2945
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2946
				kvmppc_set_timer(vcpu);
2947 2948 2949
			else
				++still_running;
		} else {
2950 2951 2952 2953
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2954
	if (!is_master) {
2955
		if (still_running > 0) {
2956
			kvmppc_vcore_preempt(vc);
2957 2958 2959 2960 2961 2962
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2963 2964
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2965 2966
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2967 2968 2969 2970
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2971 2972
}

2973 2974 2975 2976 2977
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2978
static inline int kvmppc_clear_host_core(unsigned int cpu)
2979 2980 2981 2982
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2983
		return 0;
2984 2985 2986 2987 2988 2989 2990
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2991
	return 0;
2992 2993 2994 2995 2996 2997 2998
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2999
static inline int kvmppc_set_host_core(unsigned int cpu)
3000 3001 3002 3003
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3004
		return 0;
3005 3006 3007 3008 3009 3010 3011

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3012
	return 0;
3013 3014
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
3027 3028 3029
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
3030 3031 3032
	}
}

3033 3034 3035 3036
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
3037
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3038
{
3039
	struct kvm_vcpu *vcpu;
3040
	int i;
3041
	int srcu_idx;
3042
	struct core_info core_info;
3043
	struct kvmppc_vcore *pvc;
3044 3045 3046 3047 3048
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
3049 3050
	int pcpu, thr;
	int target_threads;
3051
	int controlled_threads;
3052
	int trap;
3053
	bool is_power8;
3054
	bool hpt_on_radix;
3055

3056 3057 3058 3059 3060 3061 3062 3063 3064
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
3065 3066

	/*
3067
	 * Initialize *vc.
3068
	 */
3069
	init_vcore_to_run(vc);
3070
	vc->preempt_tb = TB_NIL;
3071

3072 3073 3074 3075 3076
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
3077
	controlled_threads = threads_per_vcore(vc->kvm);
3078

3079
	/*
3080 3081 3082
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
3083
	 * On POWER9, we need to be not in independent-threads mode if
3084 3085
	 * this is a HPT guest on a radix host machine where the
	 * CPU threads may not be in different MMU modes.
3086
	 */
3087 3088
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
		!kvm_is_radix(vc->kvm);
3089 3090 3091
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3092
		for_each_runnable_thread(i, vcpu, vc) {
3093
			vcpu->arch.ret = -EBUSY;
3094 3095 3096
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
3097 3098 3099
		goto out;
	}

3100 3101 3102 3103 3104 3105
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
3106
	target_threads = controlled_threads;
3107 3108 3109 3110
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
3111

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
3128
	 * If the mmu_ready flag has been cleared, don't go into the
3129
	 * guest because that means a HPT resize operation is in progress.
3130 3131 3132 3133
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
3134
	    recheck_signals_and_mmu(&core_info)) {
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

3151 3152 3153 3154 3155
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
3156 3157 3158
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

3159
	if (split > 1 || hpt_on_radix) {
3160 3161 3162
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
3163
			split_info.vc[sub] = core_info.vc[sub];
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
3181 3182 3183 3184 3185 3186 3187
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
3188 3189
		}

3190 3191 3192
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
3193 3194

	for (thr = 0; thr < controlled_threads; ++thr) {
3195 3196 3197 3198 3199
		struct paca_struct *paca = paca_ptrs[pcpu + thr];

		paca->kvm_hstate.tid = thr;
		paca->kvm_hstate.napping = 0;
		paca->kvm_hstate.kvm_split_mode = sip;
3200
	}
3201

3202
	/* Initiate micro-threading (split-core) on POWER8 if required */
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
3215
		}
3216
	}
3217

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
	/*
	 * On POWER8, set RWMR register.
	 * Since it only affects PURR and SPURR, it doesn't affect
	 * the host, so we don't save/restore the host value.
	 */
	if (is_power8) {
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
		int n_online = atomic_read(&vc->online_count);

		/*
		 * Use the 8-thread value if we're doing split-core
		 * or if the vcore's online count looks bogus.
		 */
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
			rwmr_val = p8_rwmr_values[n_online];
		mtspr(SPRN_RWMR, rwmr_val);
	}

3237 3238 3239
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3240
		thr = is_power8 ? subcore_thread_map[sub] : sub;
3241 3242
		thr0_done = false;
		active |= 1 << thr;
3243 3244 3245 3246 3247 3248 3249 3250 3251
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
3252
		}
3253 3254 3255 3256 3257 3258
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
3259
	}
3260

3261 3262 3263 3264 3265 3266
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

3267 3268 3269 3270
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
3271 3272
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
3273
	 */
3274
	if (cmd_bit || hpt_on_radix) {
3275
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3276 3277 3278
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
3279
	}
3280

3281
	vc->vcore_state = VCORE_RUNNING;
3282
	preempt_disable();
3283 3284 3285

	trace_kvmppc_run_core(vc, 0);

3286
	for (sub = 0; sub < core_info.n_subcores; ++sub)
3287
		spin_unlock(&core_info.vc[sub]->lock);
3288

3289
	guest_enter_irqoff();
3290

3291
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3292

3293 3294
	this_cpu_disable_ftrace();

3295 3296 3297 3298 3299 3300
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();

3301
	trap = __kvmppc_vcore_entry();
3302

3303 3304
	trace_hardirqs_off();

3305 3306
	this_cpu_enable_ftrace();

3307 3308
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

3309 3310
	set_irq_happened(trap);

3311
	spin_lock(&vc->lock);
3312
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3313
	vc->vcore_state = VCORE_EXITING;
3314

3315
	/* wait for secondary threads to finish writing their state to memory */
3316
	kvmppc_wait_for_nap(controlled_threads);
3317 3318

	/* Return to whole-core mode if we split the core earlier */
3319
	if (cmd_bit) {
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
3335 3336 3337
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
3338 3339 3340
			struct paca_struct *paca = paca_ptrs[pcpu + thr];

			while (paca->kvm_hstate.kvm_split_mode) {
3341 3342 3343 3344 3345
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
3346
	}
3347
	split_info.do_nap = 0;
3348

3349 3350 3351
	kvmppc_set_host_core(pcpu);

	local_irq_enable();
3352
	guest_exit();
3353

3354
	/* Let secondaries go back to the offline loop */
3355
	for (i = 0; i < controlled_threads; ++i) {
3356 3357 3358
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
3359
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3360 3361
	}

3362
	spin_unlock(&vc->lock);
3363

3364 3365
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
3366

3367 3368
	preempt_enable();

3369 3370 3371 3372
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
3373

3374
	spin_lock(&vc->lock);
3375 3376

 out:
3377
	vc->vcore_state = VCORE_INACTIVE;
3378
	trace_kvmppc_run_core(vc, 1);
3379 3380
}

3381 3382 3383
/*
 * Load up hypervisor-mode registers on P9.
 */
3384 3385
static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
				     unsigned long lpcr)
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	s64 hdec;
	u64 tb, purr, spurr;
	int trap;
	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
	unsigned long host_ciabr = mfspr(SPRN_CIABR);
	unsigned long host_dawr = mfspr(SPRN_DAWR);
	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
	unsigned long host_psscr = mfspr(SPRN_PSSCR);
	unsigned long host_pidr = mfspr(SPRN_PID);

	hdec = time_limit - mftb();
	if (hdec < 0)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	mtspr(SPRN_HDEC, hdec);

	if (vc->tb_offset) {
		u64 new_tb = mftb() + vc->tb_offset;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = vc->tb_offset;
	}

	if (vc->pcr)
3413
		mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3414 3415 3416 3417 3418 3419 3420 3421
	mtspr(SPRN_DPDES, vc->dpdes);
	mtspr(SPRN_VTB, vc->vtb);

	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, vcpu->arch.purr);
	mtspr(SPRN_SPURR, vcpu->arch.spurr);

3422
	if (dawr_enabled()) {
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
		mtspr(SPRN_DAWR, vcpu->arch.dawr);
		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
	}
	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
	mtspr(SPRN_IC, vcpu->arch.ic);
	mtspr(SPRN_PID, vcpu->arch.pid);

	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));

	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);

	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);

	mtspr(SPRN_AMOR, ~0UL);

3442
	mtspr(SPRN_LPCR, lpcr);
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	isync();

	kvmppc_xive_push_vcpu(vcpu);

	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);

	trap = __kvmhv_vcpu_entry_p9(vcpu);

	/* Advance host PURR/SPURR by the amount used by guest */
	purr = mfspr(SPRN_PURR);
	spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
	      purr - vcpu->arch.purr);
	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
	      spurr - vcpu->arch.spurr);
	vcpu->arch.purr = purr;
	vcpu->arch.spurr = spurr;

	vcpu->arch.ic = mfspr(SPRN_IC);
	vcpu->arch.pid = mfspr(SPRN_PID);
	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;

	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);

3471 3472 3473
	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
	mtspr(SPRN_PSSCR, host_psscr |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	mtspr(SPRN_HFSCR, host_hfscr);
	mtspr(SPRN_CIABR, host_ciabr);
	mtspr(SPRN_DAWR, host_dawr);
	mtspr(SPRN_DAWRX, host_dawrx);
	mtspr(SPRN_PID, host_pidr);

	/*
	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
	 * case we interrupted the guest between a tlbie and a ptesync.
	 */
	asm volatile("eieio; tlbsync; ptesync");

	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
	isync();

	vc->dpdes = mfspr(SPRN_DPDES);
	vc->vtb = mfspr(SPRN_VTB);
	mtspr(SPRN_DPDES, 0);
	if (vc->pcr)
3493
		mtspr(SPRN_PCR, PCR_MASK);
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513

	if (vc->tb_offset_applied) {
		u64 new_tb = mftb() - vc->tb_offset_applied;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = 0;
	}

	mtspr(SPRN_HDEC, 0x7fffffff);
	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);

	return trap;
}

/*
 * Virtual-mode guest entry for POWER9 and later when the host and
 * guest are both using the radix MMU.  The LPIDR has already been set.
 */
3514 3515
int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
			 unsigned long lpcr)
3516 3517 3518 3519 3520
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	unsigned long host_dscr = mfspr(SPRN_DSCR);
	unsigned long host_tidr = mfspr(SPRN_TIDR);
	unsigned long host_iamr = mfspr(SPRN_IAMR);
3521
	unsigned long host_amr = mfspr(SPRN_AMR);
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	s64 dec;
	u64 tb;
	int trap, save_pmu;

	dec = mfspr(SPRN_DEC);
	tb = mftb();
	if (dec < 512)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	local_paca->kvm_hstate.dec_expires = dec + tb;
	if (local_paca->kvm_hstate.dec_expires < time_limit)
		time_limit = local_paca->kvm_hstate.dec_expires;

	vcpu->arch.ceded = 0;

	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */

	kvmppc_subcore_enter_guest();

	vc->entry_exit_map = 1;
	vc->in_guest = 1;

	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
	}

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	kvmhv_load_guest_pmu(vcpu);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	load_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	load_vr_state(&vcpu->arch.vr);
#endif
3561
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582

	mtspr(SPRN_DSCR, vcpu->arch.dscr);
	mtspr(SPRN_IAMR, vcpu->arch.iamr);
	mtspr(SPRN_PSPB, vcpu->arch.pspb);
	mtspr(SPRN_FSCR, vcpu->arch.fscr);
	mtspr(SPRN_TAR, vcpu->arch.tar);
	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
	mtspr(SPRN_BESCR, vcpu->arch.bescr);
	mtspr(SPRN_WORT, vcpu->arch.wort);
	mtspr(SPRN_TIDR, vcpu->arch.tid);
	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
	mtspr(SPRN_AMR, vcpu->arch.amr);
	mtspr(SPRN_UAMOR, vcpu->arch.uamor);

	if (!(vcpu->arch.ctrl & 1))
		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);

	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());

3583
	if (kvmhv_on_pseries()) {
3584 3585 3586 3587 3588 3589 3590
		/*
		 * We need to save and restore the guest visible part of the
		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
		 * doesn't do this for us. Note only required if pseries since
		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
		 */
		unsigned long host_psscr;
3591 3592 3593
		/* call our hypervisor to load up HV regs and go */
		struct hv_guest_state hvregs;

3594 3595
		host_psscr = mfspr(SPRN_PSSCR_PR);
		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
		kvmhv_save_hv_regs(vcpu, &hvregs);
		hvregs.lpcr = lpcr;
		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
		hvregs.version = HV_GUEST_STATE_VERSION;
		if (vcpu->arch.nested) {
			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
		} else {
			hvregs.lpid = vcpu->kvm->arch.lpid;
			hvregs.vcpu_token = vcpu->vcpu_id;
		}
		hvregs.hdec_expiry = time_limit;
		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
					  __pa(&vcpu->arch.regs));
		kvmhv_restore_hv_return_state(vcpu, &hvregs);
		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3614 3615
		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
		mtspr(SPRN_PSSCR_PR, host_psscr);
3616 3617 3618 3619 3620 3621 3622

		/* H_CEDE has to be handled now, not later */
		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
			kvmppc_nested_cede(vcpu);
			trap = 0;
		}
3623 3624
	} else {
		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3625 3626 3627 3628
	}

	vcpu->arch.slb_max = 0;
	dec = mfspr(SPRN_DEC);
3629 3630
	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
		dec = (s32) dec;
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	tb = mftb();
	vcpu->arch.dec_expires = dec + tb;
	vcpu->cpu = -1;
	vcpu->arch.thread_cpu = -1;
	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);

	vcpu->arch.iamr = mfspr(SPRN_IAMR);
	vcpu->arch.pspb = mfspr(SPRN_PSPB);
	vcpu->arch.fscr = mfspr(SPRN_FSCR);
	vcpu->arch.tar = mfspr(SPRN_TAR);
	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
	vcpu->arch.bescr = mfspr(SPRN_BESCR);
	vcpu->arch.wort = mfspr(SPRN_WORT);
	vcpu->arch.tid = mfspr(SPRN_TIDR);
	vcpu->arch.amr = mfspr(SPRN_AMR);
	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
	vcpu->arch.dscr = mfspr(SPRN_DSCR);

	mtspr(SPRN_PSPB, 0);
	mtspr(SPRN_WORT, 0);
	mtspr(SPRN_UAMOR, 0);
	mtspr(SPRN_DSCR, host_dscr);
	mtspr(SPRN_TIDR, host_tidr);
	mtspr(SPRN_IAMR, host_iamr);
	mtspr(SPRN_PSPB, 0);

3658 3659 3660
	if (host_amr != vcpu->arch.amr)
		mtspr(SPRN_AMR, host_amr);

3661 3662 3663 3664 3665
	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	store_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	store_vr_state(&vcpu->arch.vr);
#endif
3666
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	save_pmu = 1;
	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
		save_pmu = lp->pmcregs_in_use;
	}
3680 3681
	/* Must save pmu if this guest is capable of running nested guests */
	save_pmu |= nesting_enabled(vcpu->kvm);
3682 3683 3684 3685 3686 3687 3688

	kvmhv_save_guest_pmu(vcpu, save_pmu);

	vc->entry_exit_map = 0x101;
	vc->in_guest = 0;

	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3689
	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3690 3691 3692 3693 3694 3695 3696 3697

	kvmhv_load_host_pmu();

	kvmppc_subcore_exit_guest();

	return trap;
}

3698 3699 3700 3701
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
3702 3703
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
3704 3705 3706
{
	DEFINE_WAIT(wait);

3707
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3708 3709
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
3710
		schedule();
3711 3712
		spin_lock(&vc->lock);
	}
3713 3714 3715
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

3716 3717
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
3718 3719 3720
	if (!halt_poll_ns_grow)
		return;

3721 3722
	vc->halt_poll_ns *= halt_poll_ns_grow;
	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3723
		vc->halt_poll_ns = halt_poll_ns_grow_start;
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

3734 3735 3736
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
3737
	if (!xics_on_xive())
3738
		return false;
3739
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3740 3741 3742 3743 3744 3745 3746 3747 3748
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

3749 3750 3751
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3752
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3753 3754 3755 3756 3757
		return true;

	return false;
}

3758 3759
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3760 3761 3762 3763 3764 3765 3766 3767
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3768
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3769 3770 3771 3772 3773 3774
			return 1;
	}

	return 0;
}

3775 3776 3777 3778 3779 3780
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3781
	ktime_t cur, start_poll, start_wait;
3782 3783
	int do_sleep = 1;
	u64 block_ns;
3784
	DECLARE_SWAITQUEUE(wait);
3785

3786
	/* Poll for pending exceptions and ceded state */
3787
	cur = start_poll = ktime_get();
3788
	if (vc->halt_poll_ns) {
3789 3790
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3791

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3806 3807
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3808
			goto out;
3809
		}
3810 3811
	}

3812
	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3813 3814

	if (kvmppc_vcore_check_block(vc)) {
3815
		finish_swait(&vc->wq, &wait);
3816
		do_sleep = 0;
3817 3818 3819
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3820
		goto out;
3821 3822
	}

3823 3824
	start_wait = ktime_get();

3825
	vc->vcore_state = VCORE_SLEEPING;
3826
	trace_kvmppc_vcore_blocked(vc, 0);
3827
	spin_unlock(&vc->lock);
3828
	schedule();
3829
	finish_swait(&vc->wq, &wait);
3830 3831
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3832
	trace_kvmppc_vcore_blocked(vc, 1);
3833
	++vc->runner->stat.halt_successful_wait;
3834 3835 3836 3837

	cur = ktime_get();

out:
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3856 3857

	/* Adjust poll time */
3858
	if (halt_poll_ns) {
3859 3860 3861
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3862
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3863 3864
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3865 3866
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3867
			grow_halt_poll_ns(vc);
3868 3869
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3870 3871 3872 3873
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3874
}
3875

3876 3877 3878 3879 3880
/*
 * This never fails for a radix guest, as none of the operations it does
 * for a radix guest can fail or have a way to report failure.
 * kvmhv_run_single_vcpu() relies on this fact.
 */
3881 3882 3883 3884 3885
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

3886
	mutex_lock(&kvm->arch.mmu_setup_lock);
3887 3888 3889 3890 3891 3892 3893 3894 3895
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
3896
	mutex_unlock(&kvm->arch.mmu_setup_lock);
3897 3898 3899
	return r;
}

3900 3901
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3902
	int n_ceded, i, r;
3903
	struct kvmppc_vcore *vc;
3904
	struct kvm_vcpu *v;
3905

3906 3907
	trace_kvmppc_run_vcpu_enter(vcpu);

3908 3909 3910
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3911
	kvmppc_update_vpas(vcpu);
3912 3913 3914 3915 3916 3917

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3918
	vcpu->arch.ceded = 0;
3919 3920
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3921
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3922
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3923
	vcpu->arch.busy_preempt = TB_NIL;
3924
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3925 3926
	++vc->n_runnable;

3927 3928 3929 3930 3931
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3932
	if (!signal_pending(current)) {
3933 3934
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
		     vc->vcore_state == VCORE_RUNNING) &&
3935
			   !VCORE_IS_EXITING(vc)) {
3936
			kvmppc_create_dtl_entry(vcpu, vc);
3937
			kvmppc_start_thread(vcpu, vc);
3938
			trace_kvm_guest_enter(vcpu);
3939
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3940
			swake_up_one(&vc->wq);
3941 3942
		}

3943
	}
3944

3945 3946
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3947 3948
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3949
			spin_unlock(&vc->lock);
3950
			r = kvmhv_setup_mmu(vcpu);
3951 3952 3953
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3954 3955
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3956 3957 3958 3959 3960
				vcpu->arch.ret = r;
				break;
			}
		}

3961 3962 3963
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3964
		if (vc->vcore_state != VCORE_INACTIVE) {
3965
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3966 3967
			continue;
		}
3968
		for_each_runnable_thread(i, v, vc) {
3969
			kvmppc_core_prepare_to_enter(v);
3970 3971 3972 3973 3974 3975 3976 3977
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3978 3979 3980
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3981
		for_each_runnable_thread(i, v, vc) {
3982
			if (!kvmppc_vcpu_woken(v))
3983
				n_ceded += v->arch.ceded;
3984 3985 3986
			else
				v->arch.ceded = 0;
		}
3987 3988
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3989
			kvmppc_vcore_blocked(vc);
3990
		} else if (need_resched()) {
3991
			kvmppc_vcore_preempt(vc);
3992 3993
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3994 3995
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3996
		} else {
3997
			kvmppc_run_core(vc);
3998
		}
3999
		vc->runner = NULL;
4000
	}
4001

4002 4003
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
4004 4005
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
4006
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4007

4008 4009 4010
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

4011 4012 4013 4014 4015 4016 4017 4018 4019
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
4020 4021
		i = -1;
		v = next_runnable_thread(vc, &i);
4022
		wake_up(&v->arch.cpu_run);
4023 4024
	}

4025
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4026 4027
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
4028 4029
}

4030 4031 4032
int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
			  struct kvm_vcpu *vcpu, u64 time_limit,
			  unsigned long lpcr)
4033
{
4034
	int trap, r, pcpu;
4035
	int srcu_idx, lpid;
4036 4037
	struct kvmppc_vcore *vc;
	struct kvm *kvm = vcpu->kvm;
4038
	struct kvm_nested_guest *nested = vcpu->arch.nested;
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058

	trace_kvmppc_run_vcpu_enter(vcpu);

	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	vc = vcpu->arch.vcore;
	vcpu->arch.ceded = 0;
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
	vcpu->arch.busy_preempt = TB_NIL;
	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
	vc->runnable_threads[0] = vcpu;
	vc->n_runnable = 1;
	vc->runner = vcpu;

	/* See if the MMU is ready to go */
4059 4060
	if (!kvm->arch.mmu_ready)
		kvmhv_setup_mmu(vcpu);
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081

	if (need_resched())
		cond_resched();

	kvmppc_update_vpas(vcpu);

	init_vcore_to_run(vc);
	vc->preempt_tb = TB_NIL;

	preempt_disable();
	pcpu = smp_processor_id();
	vc->pcpu = pcpu;
	kvmppc_prepare_radix_vcpu(vcpu, pcpu);

	local_irq_disable();
	hard_irq_disable();
	if (signal_pending(current))
		goto sigpend;
	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
		goto out;

4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	if (!nested) {
		kvmppc_core_prepare_to_enter(vcpu);
		if (vcpu->arch.doorbell_request) {
			vc->dpdes = 1;
			smp_wmb();
			vcpu->arch.doorbell_request = 0;
		}
		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
			     &vcpu->arch.pending_exceptions))
			lpcr |= LPCR_MER;
	} else if (vcpu->arch.pending_exceptions ||
		   vcpu->arch.doorbell_request ||
		   xive_interrupt_pending(vcpu)) {
		vcpu->arch.ret = RESUME_HOST;
		goto out;
	}
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110

	kvmppc_clear_host_core(pcpu);

	local_paca->kvm_hstate.tid = 0;
	local_paca->kvm_hstate.napping = 0;
	local_paca->kvm_hstate.kvm_split_mode = NULL;
	kvmppc_start_thread(vcpu, vc);
	kvmppc_create_dtl_entry(vcpu, vc);
	trace_kvm_guest_enter(vcpu);

	vc->vcore_state = VCORE_RUNNING;
	trace_kvmppc_run_core(vc, 0);

4111 4112 4113 4114 4115 4116
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
		mtspr(SPRN_LPID, lpid);
		isync();
		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
	}
4117 4118 4119 4120 4121 4122 4123

	guest_enter_irqoff();

	srcu_idx = srcu_read_lock(&kvm->srcu);

	this_cpu_disable_ftrace();

4124 4125 4126
	/* Tell lockdep that we're about to enable interrupts */
	trace_hardirqs_on();

4127
	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4128 4129
	vcpu->arch.trap = trap;

4130 4131
	trace_hardirqs_off();

4132 4133 4134 4135
	this_cpu_enable_ftrace();

	srcu_read_unlock(&kvm->srcu, srcu_idx);

4136 4137 4138 4139
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		mtspr(SPRN_LPID, kvm->arch.host_lpid);
		isync();
	}
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151

	set_irq_happened(trap);

	kvmppc_set_host_core(pcpu);

	local_irq_enable();
	guest_exit();

	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);

	preempt_enable();

4152 4153 4154 4155 4156 4157 4158 4159 4160
	/*
	 * cancel pending decrementer exception if DEC is now positive, or if
	 * entering a nested guest in which case the decrementer is now owned
	 * by L2 and the L1 decrementer is provided in hdec_expires
	 */
	if (kvmppc_core_pending_dec(vcpu) &&
			((get_tb() < vcpu->arch.dec_expires) ||
			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4161 4162 4163 4164
		kvmppc_core_dequeue_dec(vcpu);

	trace_kvm_guest_exit(vcpu);
	r = RESUME_GUEST;
4165 4166 4167 4168
	if (trap) {
		if (!nested)
			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
		else
4169
			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4170
	}
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	vcpu->arch.ret = r;

	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
	    !kvmppc_vcpu_woken(vcpu)) {
		kvmppc_set_timer(vcpu);
		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
			if (signal_pending(current)) {
				vcpu->stat.signal_exits++;
				kvm_run->exit_reason = KVM_EXIT_INTR;
				vcpu->arch.ret = -EINTR;
				break;
			}
			spin_lock(&vc->lock);
			kvmppc_vcore_blocked(vc);
			spin_unlock(&vc->lock);
		}
	}
	vcpu->arch.ceded = 0;

	vc->vcore_state = VCORE_INACTIVE;
	trace_kvmppc_run_core(vc, 1);

 done:
	kvmppc_remove_runnable(vc, vcpu);
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);

	return vcpu->arch.ret;

 sigpend:
	vcpu->stat.signal_exits++;
	kvm_run->exit_reason = KVM_EXIT_INTR;
	vcpu->arch.ret = -EINTR;
 out:
	local_irq_enable();
	preempt_enable();
	goto done;
}

4209
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4210 4211
{
	int r;
4212
	int srcu_idx;
4213
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4214 4215
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
4216
	struct kvm *kvm;
4217

4218 4219 4220 4221 4222
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
4237 4238
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
4239 4240 4241 4242 4243 4244 4245
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

4246 4247 4248 4249 4250 4251 4252 4253 4254
	/*
	 * Force online to 1 for the sake of old userspace which doesn't
	 * set it.
	 */
	if (!vcpu->arch.online) {
		atomic_inc(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = 1;
	}

4255 4256
	kvmppc_core_prepare_to_enter(vcpu);

4257 4258 4259 4260 4261 4262
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

4263 4264 4265
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4266 4267
	smp_mb();

4268 4269
	flush_all_to_thread(current);

4270
	/* Save userspace EBB and other register values */
4271 4272 4273 4274
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
4275
		user_tar = mfspr(SPRN_TAR);
4276
	}
4277
	user_vrsave = mfspr(SPRN_VRSAVE);
4278

4279
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4280
	vcpu->arch.pgdir = current->mm->pgd;
4281
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4282

4283
	do {
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
		/*
		 * The early POWER9 chips that can't mix radix and HPT threads
		 * on the same core also need the workaround for the problem
		 * where the TLB would prefetch entries in the guest exit path
		 * for radix guests using the guest PIDR value and LPID 0.
		 * The workaround is in the old path (kvmppc_run_vcpu())
		 * but not the new path (kvmhv_run_single_vcpu()).
		 */
		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
		    !no_mixing_hpt_and_radix)
4294 4295
			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
						  vcpu->arch.vcore->lpcr);
4296 4297
		else
			r = kvmppc_run_vcpu(run, vcpu);
4298 4299 4300

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4301
			trace_kvm_hcall_enter(vcpu);
4302
			r = kvmppc_pseries_do_hcall(vcpu);
4303
			trace_kvm_hcall_exit(vcpu, r);
4304
			kvmppc_core_prepare_to_enter(vcpu);
4305
		} else if (r == RESUME_PAGE_FAULT) {
4306
			srcu_idx = srcu_read_lock(&kvm->srcu);
4307 4308
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4309
			srcu_read_unlock(&kvm->srcu, srcu_idx);
4310
		} else if (r == RESUME_PASSTHROUGH) {
4311
			if (WARN_ON(xics_on_xive()))
4312 4313 4314 4315
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
4316
	} while (is_kvmppc_resume_guest(r));
4317

4318
	/* Restore userspace EBB and other register values */
4319 4320 4321 4322
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
4323 4324
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
4325
	}
4326
	mtspr(SPRN_VRSAVE, user_vrsave);
4327

4328
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4329
	atomic_dec(&kvm->arch.vcpus_running);
4330 4331 4332
	return r;
}

4333
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4334
				     int shift, int sllp)
4335
{
4336 4337 4338 4339
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4340
	/*
4341
	 * Add 16MB MPSS support (may get filtered out by userspace)
4342
	 */
4343 4344 4345 4346 4347 4348
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
4349
	}
4350 4351 4352
	(*sps)++;
}

4353 4354
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
4355 4356 4357
{
	struct kvm_ppc_one_seg_page_size *sps;

4358 4359 4360 4361 4362 4363 4364 4365
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

4366 4367 4368
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
4369 4370 4371

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
4372 4373 4374
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4375

4376 4377 4378 4379
	/* If running as a nested hypervisor, we don't support HPT guests */
	if (kvmhv_on_pseries())
		info->flags |= KVM_PPC_NO_HASH;

4380 4381 4382
	return 0;
}

4383 4384 4385
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
4386 4387
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
4388
{
4389
	struct kvm_memslots *slots;
4390
	struct kvm_memory_slot *memslot;
4391
	int i, r;
4392
	unsigned long n;
4393
	unsigned long *buf, *p;
4394
	struct kvm_vcpu *vcpu;
4395 4396 4397 4398

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
4399
	if (log->slot >= KVM_USER_MEM_SLOTS)
4400 4401
		goto out;

4402 4403
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
4404 4405 4406 4407
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

4408
	/*
4409 4410
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
4411
	 */
4412
	n = kvm_dirty_bitmap_bytes(memslot);
4413 4414
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
4415

4416 4417 4418 4419
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4420 4421 4422
	if (r)
		goto out;

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

4433 4434 4435 4436 4437 4438 4439 4440 4441
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

4442
	r = -EFAULT;
4443
	if (copy_to_user(log->dirty_bitmap, buf, n))
4444 4445 4446 4447 4448 4449 4450 4451
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

4452 4453
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
4454 4455 4456 4457
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
4458
	}
4459 4460
}

4461 4462
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
4463
{
4464
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4465 4466
	if (!slot->arch.rmap)
		return -ENOMEM;
4467

4468 4469
	return 0;
}
4470

4471 4472
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
4473
					const struct kvm_userspace_memory_region *mem)
4474
{
4475
	return 0;
4476 4477
}

4478
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4479
				const struct kvm_userspace_memory_region *mem,
4480
				const struct kvm_memory_slot *old,
4481 4482
				const struct kvm_memory_slot *new,
				enum kvm_mr_change change)
4483
{
4484 4485
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

4486 4487 4488 4489 4490 4491 4492 4493
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510

	/*
	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
	 * have already called kvm_arch_flush_shadow_memslot() to
	 * flush shadow mappings.  For KVM_MR_CREATE we have no
	 * previous mappings.  So the only case to handle is
	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
	 * has been changed.
	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
	 * to get rid of any THP PTEs in the partition-scoped page tables
	 * so we can track dirtiness at the page level; we flush when
	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
	 * using THP PTEs.
	 */
	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
		kvmppc_radix_flush_memslot(kvm, old);
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
	/*
	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
	 */
	if (!kvm->arch.secure_guest)
		return;

	switch (change) {
	case KVM_MR_CREATE:
		if (kvmppc_uvmem_slot_init(kvm, new))
			return;
		uv_register_mem_slot(kvm->arch.lpid,
				     new->base_gfn << PAGE_SHIFT,
				     new->npages * PAGE_SIZE,
				     0, new->id);
		break;
	case KVM_MR_DELETE:
		uv_unregister_mem_slot(kvm->arch.lpid, old->id);
		kvmppc_uvmem_slot_free(kvm, old);
		break;
	default:
		/* TODO: Handle KVM_MR_MOVE */
		break;
	}
4534 4535
}

4536 4537
/*
 * Update LPCR values in kvm->arch and in vcores.
4538 4539
 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
 * of kvm->arch.lpcr update).
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

4563 4564 4565 4566 4567
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

4568
void kvmppc_setup_partition_table(struct kvm *kvm)
4569 4570 4571
{
	unsigned long dw0, dw1;

4572 4573 4574 4575 4576 4577
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
4578

4579 4580 4581 4582 4583 4584 4585
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
4586
	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4587 4588
}

4589 4590
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
4591
 * Must be called with kvm->arch.mmu_setup_lock held.
4592
 */
4593
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4594 4595 4596 4597 4598 4599
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
4600
	unsigned long lpcr = 0, senc;
4601
	unsigned long psize, porder;
4602
	int srcu_idx;
4603

4604
	/* Allocate hashed page table (if not done already) and reset it */
4605
	if (!kvm->arch.hpt.virt) {
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
4617 4618 4619
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
4620 4621

		kvmppc_set_hpt(kvm, &info);
4622 4623
	}

4624
	/* Look up the memslot for guest physical address 0 */
4625
	srcu_idx = srcu_read_lock(&kvm->srcu);
4626
	memslot = gfn_to_memslot(kvm, 0);
4627

4628 4629 4630
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4631
		goto out_srcu;
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);

	up_read(&current->mm->mmap_sem);

4644
	/* We can handle 4k, 64k or 16M pages in the VRMA */
4645 4646 4647 4648 4649 4650 4651
	if (psize >= 0x1000000)
		psize = 0x1000000;
	else if (psize >= 0x10000)
		psize = 0x10000;
	else
		psize = 0x1000;
	porder = __ilog2(psize);
4652

4653 4654 4655 4656 4657
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
4658

4659 4660 4661 4662 4663 4664
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
4665

4666
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4667 4668
	smp_wmb();
	err = 0;
4669 4670
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
4671 4672
 out:
	return err;
4673

4674 4675
 up_out:
	up_read(&current->mm->mmap_sem);
4676
	goto out_srcu;
4677 4678
}

4679 4680 4681 4682
/*
 * Must be called with kvm->arch.mmu_setup_lock held and
 * mmu_ready = 0 and no vcpus running.
 */
4683 4684
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
4685
	if (nesting_enabled(kvm))
4686
		kvmhv_release_all_nested(kvm);
4687 4688 4689 4690 4691 4692
	kvmppc_rmap_reset(kvm);
	kvm->arch.process_table = 0;
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 0;
	spin_unlock(&kvm->mmu_lock);
4693 4694 4695 4696 4697 4698
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

4699 4700 4701 4702
/*
 * Must be called with kvm->arch.mmu_setup_lock held and
 * mmu_ready = 0 and no vcpus running.
 */
4703 4704 4705 4706 4707 4708 4709
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;
4710 4711 4712 4713 4714
	kvmppc_rmap_reset(kvm);
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 1;
	spin_unlock(&kvm->mmu_lock);
4715 4716 4717 4718 4719 4720
	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

4755
	cpus_read_lock();
4756

4757 4758 4759 4760 4761 4762 4763 4764
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

4765 4766
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4777
		cpus_read_unlock();
4778 4779
		kfree(ops->rm_core);
		kfree(ops);
4780
		return;
4781
	}
4782

4783 4784 4785 4786 4787
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
4788 4789 4790 4791 4792
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
4793
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4794 4795 4796 4797 4798 4799 4800
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

4801
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4802
{
4803
	unsigned long lpcr, lpid;
4804
	char buf[32];
4805
	int ret;
4806

4807 4808
	mutex_init(&kvm->arch.uvmem_lock);
	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4809 4810
	mutex_init(&kvm->arch.mmu_setup_lock);

4811 4812 4813
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
4814
	if ((long)lpid < 0)
4815 4816
		return -ENOMEM;
	kvm->arch.lpid = lpid;
4817

4818 4819
	kvmppc_alloc_host_rm_ops();

4820 4821
	kvmhv_vm_nested_init(kvm);

4822 4823 4824 4825
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
4826 4827
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
4828
	 */
4829 4830
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
4831

4832 4833 4834 4835
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

4836 4837
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4838

4839
	/* Init LPCR for virtual RMA mode */
4840 4841 4842 4843 4844 4845 4846
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
	} else {
		lpcr = 0;
	}
4847 4848 4849 4850 4851 4852 4853
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
4854 4855 4856
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4857 4858 4859
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
4860 4861
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4862
		lpcr &= ~LPCR_VPM0;
4863 4864 4865 4866 4867 4868
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
4869
		if (xics_on_xive())
4870
			lpcr |= LPCR_LPES;
4871 4872
	}

4873
	/*
4874
	 * If the host uses radix, the guest starts out as radix.
4875 4876 4877
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
4878
		kvm->arch.mmu_ready = 1;
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

4889
	kvm->arch.lpcr = lpcr;
4890

4891 4892 4893
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

4894 4895 4896 4897
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
4898
	if (radix_enabled())
4899 4900
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4901 4902 4903 4904 4905 4906
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

4907
	/*
4908 4909
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
4910 4911
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
4912
	 */
4913 4914 4915 4916 4917 4918 4919 4920
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
			kvm->arch.threads_indep = true;
		} else {
			kvm->arch.threads_indep = indep_threads_mode;
		}
	}
4921
	if (!kvm->arch.threads_indep)
4922
		kvm_hv_vm_activated();
4923

4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
4935
	kvm->arch.emul_smt_mode = 1;
4936

4937 4938 4939 4940 4941
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4942
	kvmppc_mmu_debugfs_init(kvm);
4943 4944
	if (radix_enabled())
		kvmhv_radix_debugfs_init(kvm);
4945

4946
	return 0;
4947 4948
}

4949 4950 4951 4952
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

4953
	for (i = 0; i < KVM_MAX_VCORES; ++i)
4954 4955 4956 4957
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

4958
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4959
{
4960 4961
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

4962
	if (!kvm->arch.threads_indep)
4963
		kvm_hv_vm_deactivated();
4964

4965
	kvmppc_free_vcores(kvm);
4966

4967

4968 4969 4970
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
4971
		kvmppc_free_hpt(&kvm->arch.hpt);
4972

4973 4974
	/* Perform global invalidation and return lpid to the pool */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4975
		if (nesting_enabled(kvm))
4976
			kvmhv_release_all_nested(kvm);
4977
		kvm->arch.process_table = 0;
4978 4979
		if (kvm->arch.secure_guest)
			uv_svm_terminate(kvm->arch.lpid);
4980
		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4981
	}
4982

4983 4984
	kvmppc_free_lpid(kvm->arch.lpid);

4985
	kvmppc_free_pimap(kvm);
4986 4987
}

4988 4989 4990
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
4991
{
4992
	return EMULATE_FAIL;
4993 4994
}

4995 4996
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
4997 4998 4999 5000
{
	return EMULATE_FAIL;
}

5001 5002
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
5003 5004 5005 5006
{
	return EMULATE_FAIL;
}

5007
static int kvmppc_core_check_processor_compat_hv(void)
5008
{
5009 5010 5011
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_206))
		return 0;
5012

5013 5014 5015 5016 5017
	/* POWER9 in radix mode is capable of being a nested hypervisor. */
	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
		return 0;

	return -EIO;
5018 5019
}

5020 5021 5022 5023 5024 5025 5026
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

5027
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5028 5029 5030
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
5031 5032 5033 5034 5035 5036 5037

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
5038
	int i, rc = 0;
5039

5040 5041 5042
	if (!kvm_irq_bypass)
		return 1;

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
5063
	 * what our real-mode EOI code does, or a XIVE interrupt
5064 5065
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
5066
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

5098 5099 5100 5101 5102 5103 5104
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

5105 5106 5107
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

5108
	if (xics_on_xive())
5109 5110 5111 5112 5113
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
5114

5115 5116 5117 5118 5119 5120 5121 5122 5123
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
5124
	int i, rc = 0;
5125

5126 5127 5128
	if (!kvm_irq_bypass)
		return 0;

5129 5130 5131 5132 5133
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
5134 5135
	if (!kvm->arch.pimap)
		goto unlock;
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

5149
	if (xics_on_xive())
5150 5151 5152
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5153

5154
	/* invalidate the entry (what do do on error from the above ?) */
5155 5156 5157 5158 5159 5160
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
5161
 unlock:
5162
	mutex_unlock(&kvm->lock);
5163
	return rc;
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
5202 5203
#endif

5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
5219
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

5258 5259 5260 5261 5262 5263 5264
	default:
		r = -ENOTTY;
	}

	return r;
}

5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
5299
	unsigned int hcall;
5300

5301 5302 5303 5304 5305
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
5306 5307
}

5308 5309
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
5310
	unsigned long lpcr;
5311
	int radix;
5312
	int err;
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
5323
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5324
	if (!!(cfg->process_table & PATB_GR) != radix)
5325 5326 5327 5328 5329 5330
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

5331 5332 5333 5334
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

5335 5336 5337 5338
	/* If we're a nested hypervisor, we currently only support radix */
	if (kvmhv_on_pseries() && !radix)
		return -EINVAL;

5339
	mutex_lock(&kvm->arch.mmu_setup_lock);
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

5359 5360 5361 5362 5363
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5364
	err = 0;
5365

5366
 out_unlock:
5367
	mutex_unlock(&kvm->arch.mmu_setup_lock);
5368
	return err;
5369 5370
}

5371 5372 5373 5374
static int kvmhv_enable_nested(struct kvm *kvm)
{
	if (!nested)
		return -EPERM;
5375
	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5376 5377 5378 5379 5380 5381 5382 5383
		return -ENODEV;

	/* kvm == NULL means the caller is testing if the capability exists */
	if (kvm)
		kvm->arch.nested_enable = true;
	return 0;
}

5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
				 int size)
{
	int rc = -EINVAL;

	if (kvmhv_vcpu_is_radix(vcpu)) {
		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);

		if (rc > 0)
			rc = -EINVAL;
	}

	/* For now quadrants are the only way to access nested guest memory */
	if (rc && vcpu->arch.nested)
		rc = -EAGAIN;

	return rc;
}

static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
				int size)
{
	int rc = -EINVAL;

	if (kvmhv_vcpu_is_radix(vcpu)) {
		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);

		if (rc > 0)
			rc = -EINVAL;
	}

	/* For now quadrants are the only way to access nested guest memory */
	if (rc && vcpu->arch.nested)
		rc = -EAGAIN;

	return rc;
}

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	unpin_vpa(kvm, vpa);
	vpa->gpa = 0;
	vpa->pinned_addr = NULL;
	vpa->dirty = false;
	vpa->update_pending = 0;
}

/*
 *  IOCTL handler to turn off secure mode of guest
 *
 * - Release all device pages
 * - Issue ucall to terminate the guest on the UV side
 * - Unpin the VPA pages.
 * - Reinit the partition scoped page tables
 */
static int kvmhv_svm_off(struct kvm *kvm)
{
	struct kvm_vcpu *vcpu;
	int mmu_was_ready;
	int srcu_idx;
	int ret = 0;
	int i;

	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
		return ret;

	mutex_lock(&kvm->arch.mmu_setup_lock);
	mmu_was_ready = kvm->arch.mmu_ready;
	if (kvm->arch.mmu_ready) {
		kvm->arch.mmu_ready = 0;
		/* order mmu_ready vs. vcpus_running */
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
			kvm->arch.mmu_ready = 1;
			ret = -EBUSY;
			goto out;
		}
	}

	srcu_idx = srcu_read_lock(&kvm->srcu);
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		struct kvm_memory_slot *memslot;
		struct kvm_memslots *slots = __kvm_memslots(kvm, i);

		if (!slots)
			continue;

		kvm_for_each_memslot(memslot, slots) {
			kvmppc_uvmem_drop_pages(memslot, kvm);
			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
		}
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);

	ret = uv_svm_terminate(kvm->arch.lpid);
	if (ret != U_SUCCESS) {
		ret = -EINVAL;
		goto out;
	}

	/*
	 * When secure guest is reset, all the guest pages are sent
	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
	 * chance to run and unpin their VPA pages. Unpinning of all
	 * VPA pages is done here explicitly so that VPA pages
	 * can be migrated to the secure side.
	 *
	 * This is required to for the secure SMP guest to reboot
	 * correctly.
	 */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

	kvmppc_setup_partition_table(kvm);
	kvm->arch.secure_guest = 0;
	kvm->arch.mmu_ready = mmu_was_ready;
out:
	mutex_unlock(&kvm->arch.mmu_setup_lock);
	return ret;
}

5510
static struct kvmppc_ops kvm_ops_hv = {
5511 5512 5513 5514 5515 5516
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5517
	.inject_interrupt = kvmppc_inject_interrupt_hv,
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5542
	.hcall_implemented = kvmppc_hcall_impl_hv,
5543 5544 5545 5546
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
5547 5548
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
5549
	.set_smt_mode = kvmhv_set_smt_mode,
5550
	.enable_nested = kvmhv_enable_nested,
5551 5552
	.load_from_eaddr = kvmhv_load_from_eaddr,
	.store_to_eaddr = kvmhv_store_to_eaddr,
5553
	.svm_off = kvmhv_svm_off,
5554 5555
};

5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
5567
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5568 5569 5570
			continue;

		sibling_subcore_state =
5571
			kzalloc_node(sizeof(struct sibling_subcore_state),
5572 5573 5574 5575 5576 5577 5578 5579
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;


		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

5580 5581
			paca_ptrs[cpu]->sibling_subcore_state =
						sibling_subcore_state;
5582 5583 5584 5585 5586
		}
	}
	return 0;
}

5587 5588 5589 5590 5591
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

5592
static int kvmppc_book3s_init_hv(void)
5593 5594
{
	int r;
5595 5596 5597 5598 5599 5600

	if (!tlbie_capable) {
		pr_err("KVM-HV: Host does not support TLBIE\n");
		return -ENODEV;
	}

5601 5602 5603 5604 5605
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
5606
		return -ENODEV;
5607

5608 5609 5610 5611
	r = kvmhv_nested_init();
	if (r)
		return r;

5612 5613 5614 5615
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

5616 5617
	/*
	 * We need a way of accessing the XICS interrupt controller,
5618
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5619 5620 5621
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
5622
	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5623
	    !local_paca->kvm_hstate.xics_phys) {
5624 5625 5626 5627 5628 5629 5630
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
5631 5632
		/* presence of intc confirmed - node can be dropped again */
		of_node_put(np);
5633 5634 5635
	}
#endif

5636 5637
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
5638

5639 5640
	init_default_hcalls();

5641 5642
	init_vcore_lists();

5643
	r = kvmppc_mmu_hv_init();
5644 5645 5646 5647 5648
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661

	/*
	 * POWER9 chips before version 2.02 can't have some threads in
	 * HPT mode and some in radix mode on the same core.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		unsigned int pvr = mfspr(SPRN_PVR);
		if ((pvr >> 16) == PVR_POWER9 &&
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
			no_mixing_hpt_and_radix = true;
	}

5662 5663 5664 5665
	r = kvmppc_uvmem_init();
	if (r < 0)
		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);

5666 5667 5668
	return r;
}

5669
static void kvmppc_book3s_exit_hv(void)
5670
{
5671
	kvmppc_uvmem_free();
5672
	kvmppc_free_host_rm_ops();
5673 5674
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
5675
	kvmppc_hv_ops = NULL;
5676
	kvmhv_nested_exit();
5677 5678
}

5679 5680
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
5681
MODULE_LICENSE("GPL");
5682 5683
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");