Kconfig 54.9 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29
	help
30 31
	  This option enables the fips boot option which is
	  required if you want the system to operate in a FIPS 200
N
Neil Horman 已提交
32
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55
config CRYPTO_SKCIPHER
56
	tristate
57
	select CRYPTO_SKCIPHER2
58
	select CRYPTO_ALGAPI
59

60
config CRYPTO_SKCIPHER2
61 62 63
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106 107
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
108
	select SGL_ALLOC
109 110 111 112 113 114

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

H
Herbert Xu 已提交
115 116
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
117
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
118 119 120 121
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

122 123 124 125
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
126
	select CRYPTO_SKCIPHER2
127
	select CRYPTO_AKCIPHER2
128
	select CRYPTO_KPP2
129
	select CRYPTO_ACOMP2
130

131 132
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
133
	depends on NET
134 135
	select CRYPTO_MANAGER
	help
136
	  Userspace configuration for cryptographic instantiations such as
137 138
	  cbc(aes).

139 140
if CRYPTO_MANAGER2

141 142
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
143
	default y
144
	help
145 146
	  Disable run-time self tests that normally take place at
	  algorithm registration.
147

148 149 150 151 152 153 154 155 156 157
config CRYPTO_MANAGER_EXTRA_TESTS
	bool "Enable extra run-time crypto self tests"
	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
	help
	  Enable extra run-time self tests of registered crypto algorithms,
	  including randomized fuzz tests.

	  This is intended for developer use only, as these tests take much
	  longer to run than the normal self tests.

158 159
endif	# if CRYPTO_MANAGER2

160
config CRYPTO_GF128MUL
161
	tristate
K
Kazunori MIYAZAWA 已提交
162

L
Linus Torvalds 已提交
163 164
config CRYPTO_NULL
	tristate "Null algorithms"
165
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
166 167 168
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

169
config CRYPTO_NULL2
170
	tristate
171
	select CRYPTO_ALGAPI2
172
	select CRYPTO_SKCIPHER2
173 174
	select CRYPTO_HASH2

175
config CRYPTO_PCRYPT
176 177
	tristate "Parallel crypto engine"
	depends on SMP
178 179 180 181 182 183 184
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

185 186
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
187
	select CRYPTO_SKCIPHER
188
	select CRYPTO_HASH
189
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
190
	help
191 192 193
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
194

195 196 197
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
198
	select CRYPTO_SKCIPHER
199 200
	select CRYPTO_MANAGER
	select CRYPTO_HASH
201
	select CRYPTO_NULL
L
Linus Torvalds 已提交
202
	help
203 204
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
205

206 207 208
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
209
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
210
	help
211
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
212

213 214
config CRYPTO_SIMD
	tristate
215 216
	select CRYPTO_CRYPTD

217 218 219
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
220
	select CRYPTO_SKCIPHER
221

222 223 224
config CRYPTO_ENGINE
	tristate

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
comment "Public-key cryptography"

config CRYPTO_RSA
	tristate "RSA algorithm"
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

243 244 245
config CRYPTO_ECC
	tristate

246 247
config CRYPTO_ECDH
	tristate "ECDH algorithm"
248
	select CRYPTO_ECC
249 250 251 252 253
	select CRYPTO_KPP
	select CRYPTO_RNG_DEFAULT
	help
	  Generic implementation of the ECDH algorithm

254 255 256 257 258
config CRYPTO_ECRDSA
	tristate "EC-RDSA (GOST 34.10) algorithm"
	select CRYPTO_ECC
	select CRYPTO_AKCIPHER
	select CRYPTO_STREEBOG
259 260
	select OID_REGISTRY
	select ASN1
261 262 263 264 265 266
	help
	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
	  standard algorithms (called GOST algorithms). Only signature verification
	  is implemented.

267 268 269 270 271
config CRYPTO_CURVE25519
	tristate "Curve25519 algorithm"
	select CRYPTO_KPP
	select CRYPTO_LIB_CURVE25519_GENERIC

272 273 274 275 276 277
config CRYPTO_CURVE25519_X86
	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
	depends on X86 && 64BIT
	select CRYPTO_LIB_CURVE25519_GENERIC
	select CRYPTO_ARCH_HAVE_LIB_CURVE25519

278
comment "Authenticated Encryption with Associated Data"
279

280 281 282
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
283
	select CRYPTO_HASH
284
	select CRYPTO_AEAD
285
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
286
	help
287
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
288

289 290 291 292
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
293
	select CRYPTO_GHASH
294
	select CRYPTO_NULL
295
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
296
	help
297 298
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
299

300 301 302 303 304
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
305
	select CRYPTO_MANAGER
306 307 308 309 310 311 312
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

313 314 315 316 317 318 319
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

320 321 322
config CRYPTO_AEGIS128_SIMD
	bool "Support SIMD acceleration for AEGIS-128"
	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
323
	depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800
324 325
	default y

326 327 328 329
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
330
	select CRYPTO_SIMD
331
	help
332
	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
333

334 335 336
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
337
	select CRYPTO_SKCIPHER
338
	select CRYPTO_NULL
339
	select CRYPTO_RNG_DEFAULT
340
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
341
	help
342 343
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
344

345 346 347 348
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
349
	select CRYPTO_RNG_DEFAULT
350
	select CRYPTO_MANAGER
351 352 353 354 355
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

356
comment "Block modes"
357

358 359
config CRYPTO_CBC
	tristate "CBC support"
360
	select CRYPTO_SKCIPHER
361
	select CRYPTO_MANAGER
362
	help
363 364
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
365

366 367
config CRYPTO_CFB
	tristate "CFB support"
368
	select CRYPTO_SKCIPHER
369 370 371 372 373
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

374 375
config CRYPTO_CTR
	tristate "CTR support"
376
	select CRYPTO_SKCIPHER
377
	select CRYPTO_SEQIV
378
	select CRYPTO_MANAGER
379
	help
380
	  CTR: Counter mode
381 382
	  This block cipher algorithm is required for IPSec.

383 384
config CRYPTO_CTS
	tristate "CTS support"
385
	select CRYPTO_SKCIPHER
386
	select CRYPTO_MANAGER
387 388 389
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
390 391 392
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
393 394 395
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

396 397
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

398 399
config CRYPTO_ECB
	tristate "ECB support"
400
	select CRYPTO_SKCIPHER
401 402
	select CRYPTO_MANAGER
	help
403 404 405
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
406

407
config CRYPTO_LRW
408
	tristate "LRW support"
409
	select CRYPTO_SKCIPHER
410 411 412 413 414 415 416 417 418
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

419 420
config CRYPTO_OFB
	tristate "OFB support"
421
	select CRYPTO_SKCIPHER
422 423 424 425 426 427 428 429 430
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

431 432
config CRYPTO_PCBC
	tristate "PCBC support"
433
	select CRYPTO_SKCIPHER
434 435 436 437 438
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

439
config CRYPTO_XTS
440
	tristate "XTS support"
441
	select CRYPTO_SKCIPHER
442
	select CRYPTO_MANAGER
M
Milan Broz 已提交
443
	select CRYPTO_ECB
444 445 446 447 448
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

449 450
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
451
	select CRYPTO_SKCIPHER
452
	select CRYPTO_MANAGER
453 454 455 456
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

457 458 459
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
460
	select CRYPTO_LIB_POLY1305_GENERIC
461

462 463 464 465 466 467 468 469
config CRYPTO_NHPOLY1305_SSE2
	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  SSE2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

470 471 472 473 474 475 476 477
config CRYPTO_NHPOLY1305_AVX2
	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  AVX2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

478 479 480
config CRYPTO_ADIANTUM
	tristate "Adiantum support"
	select CRYPTO_CHACHA20
481
	select CRYPTO_LIB_POLY1305_GENERIC
482
	select CRYPTO_NHPOLY1305
483
	select CRYPTO_MANAGER
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	help
	  Adiantum is a tweakable, length-preserving encryption mode
	  designed for fast and secure disk encryption, especially on
	  CPUs without dedicated crypto instructions.  It encrypts
	  each sector using the XChaCha12 stream cipher, two passes of
	  an ε-almost-∆-universal hash function, and an invocation of
	  the AES-256 block cipher on a single 16-byte block.  On CPUs
	  without AES instructions, Adiantum is much faster than
	  AES-XTS.

	  Adiantum's security is provably reducible to that of its
	  underlying stream and block ciphers, subject to a security
	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
	  mode, so it actually provides an even stronger notion of
	  security than XTS, subject to the security bound.

	  If unsure, say N.

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
config CRYPTO_ESSIV
	tristate "ESSIV support for block encryption"
	select CRYPTO_AUTHENC
	help
	  Encrypted salt-sector initialization vector (ESSIV) is an IV
	  generation method that is used in some cases by fscrypt and/or
	  dm-crypt. It uses the hash of the block encryption key as the
	  symmetric key for a block encryption pass applied to the input
	  IV, making low entropy IV sources more suitable for block
	  encryption.

	  This driver implements a crypto API template that can be
	  instantiated either as a skcipher or as a aead (depending on the
	  type of the first template argument), and which defers encryption
	  and decryption requests to the encapsulated cipher after applying
	  ESSIV to the input IV. Note that in the aead case, it is assumed
	  that the keys are presented in the same format used by the authenc
	  template, and that the IV appears at the end of the authenticated
	  associated data (AAD) region (which is how dm-crypt uses it.)

	  Note that the use of ESSIV is not recommended for new deployments,
	  and so this only needs to be enabled when interoperability with
	  existing encrypted volumes of filesystems is required, or when
	  building for a particular system that requires it (e.g., when
	  the SoC in question has accelerated CBC but not XTS, making CBC
	  combined with ESSIV the only feasible mode for h/w accelerated
	  block encryption)

530 531
comment "Hash modes"

532 533 534 535 536 537 538 539 540 541 542
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

543 544 545
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
546 547
	select CRYPTO_MANAGER
	help
548 549
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
550

551 552 553 554
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
555
	help
556 557 558 559
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
560

561 562 563 564 565 566 567 568 569 570 571
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

572
comment "Digest"
M
Mikko Herranen 已提交
573

574 575
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
576
	select CRYPTO_HASH
577
	select CRC32
J
Joy Latten 已提交
578
	help
579 580
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
581
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
582

583 584 585 586 587 588 589 590 591 592 593 594
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

595
config CRYPTO_CRC32C_VPMSUM
596
	tristate "CRC32c CRC algorithm (powerpc64)"
597
	depends on PPC64 && ALTIVEC
598 599 600 601 602 603 604 605
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


606 607 608 609 610 611 612 613 614
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
H
haco 已提交
632
	  instruction. This option will create 'crc32-pclmul' module,
633 634 635
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

636 637 638 639 640 641 642 643 644
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


645 646 647 648 649 650 651 652
config CRYPTO_XXHASH
	tristate "xxHash hash algorithm"
	select CRYPTO_HASH
	select XXHASH
	help
	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
	  speeds close to RAM limits.

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
config CRYPTO_BLAKE2B
	tristate "BLAKE2b digest algorithm"
	select CRYPTO_HASH
	help
	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
	  optimized for 64bit platforms and can produce digests of any size
	  between 1 to 64.  The keyed hash is also implemented.

	  This module provides the following algorithms:

	  - blake2b-160
	  - blake2b-256
	  - blake2b-384
	  - blake2b-512

	  See https://blake2.net for further information.

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
config CRYPTO_BLAKE2S
	tristate "BLAKE2s digest algorithm"
	select CRYPTO_LIB_BLAKE2S_GENERIC
	select CRYPTO_HASH
	help
	  Implementation of cryptographic hash function BLAKE2s
	  optimized for 8-32bit platforms and can produce digests of any size
	  between 1 to 32.  The keyed hash is also implemented.

	  This module provides the following algorithms:

	  - blake2s-128
	  - blake2s-160
	  - blake2s-224
	  - blake2s-256

	  See https://blake2.net for further information.

688 689 690 691 692 693
config CRYPTO_BLAKE2S_X86
	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
	depends on X86 && 64BIT
	select CRYPTO_LIB_BLAKE2S_GENERIC
	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
H
haco 已提交
710
	  'crct10dif-pclmul' module, which is faster when computing the
711 712
	  crct10dif checksum as compared with the generic table implementation.

713 714 715 716 717 718 719 720 721
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

722 723 724 725 726 727 728 729
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

730
config CRYPTO_GHASH
731
	tristate "GHASH hash function"
732
	select CRYPTO_GF128MUL
733
	select CRYPTO_HASH
734
	help
735 736
	  GHASH is the hash function used in GCM (Galois/Counter Mode).
	  It is not a general-purpose cryptographic hash function.
737

738 739
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
740
	select CRYPTO_HASH
741
	select CRYPTO_LIB_POLY1305_GENERIC
742 743 744 745 746 747 748
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

749
config CRYPTO_POLY1305_X86_64
750
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
751
	depends on X86 && 64BIT
752
	select CRYPTO_LIB_POLY1305_GENERIC
753
	select CRYPTO_ARCH_HAVE_LIB_POLY1305
754 755 756 757 758 759 760 761
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

762 763 764 765 766
config CRYPTO_POLY1305_MIPS
	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
	depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
	select CRYPTO_ARCH_HAVE_LIB_POLY1305

767 768
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
769
	select CRYPTO_HASH
770
	help
771
	  MD4 message digest algorithm (RFC1320).
772

773 774
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
775
	select CRYPTO_HASH
L
Linus Torvalds 已提交
776
	help
777
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
778

779 780 781 782 783 784 785 786 787
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

788 789 790 791 792 793 794 795
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

796 797 798 799 800 801 802 803 804
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

805 806
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
807
	select CRYPTO_HASH
808
	help
809 810 811 812
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
813

814
config CRYPTO_RMD128
815
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
816
	select CRYPTO_HASH
817 818
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
819

820
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
821
	  be used as a secure replacement for RIPEMD. For other use cases,
822
	  RIPEMD-160 should be used.
823

824
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
825
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
826 827

config CRYPTO_RMD160
828
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
829
	select CRYPTO_HASH
830 831
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
832

833 834 835 836
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
837

838 839
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
840

841
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
842
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
843 844

config CRYPTO_RMD256
845
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
846
	select CRYPTO_HASH
847 848 849 850 851
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
852

853
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
854
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
855 856

config CRYPTO_RMD320
857
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
858
	select CRYPTO_HASH
859 860 861 862 863
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
864

865
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
866
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
867

868 869
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
870
	select CRYPTO_HASH
L
Linus Torvalds 已提交
871
	help
872
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
873

874
config CRYPTO_SHA1_SSSE3
875
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
876 877 878 879 880 881
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
882 883
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
884

885
config CRYPTO_SHA256_SSSE3
886
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
887 888 889 890 891 892 893
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
894 895
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
896 897 898 899 900 901 902 903 904 905

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
906 907
	  version 2 (AVX2) instructions, when available.

908 909 910 911 912 913 914 915 916
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

917 918 919 920 921 922 923 924 925
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

926 927 928 929 930 931 932
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

933 934 935 936 937 938 939
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

940 941
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
942
	select CRYPTO_HASH
943
	select CRYPTO_LIB_SHA256
L
Linus Torvalds 已提交
944
	help
945
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
946

947 948
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
949

950 951
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
952

953 954 955 956 957 958 959 960 961
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

962 963 964 965 966 967 968 969 970
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

971 972 973 974 975 976 977 978 979
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

980 981
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
982
	select CRYPTO_HASH
983
	help
984
	  SHA512 secure hash standard (DFIPS 180-2).
985

986 987
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
988

989 990
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
991

992 993 994 995 996 997 998 999 1000
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

1001 1002 1003 1004 1005 1006 1007 1008 1009
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

1043 1044
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
1045
	select CRYPTO_HASH
1046
	help
1047
	  Tiger hash algorithm 192, 160 and 128-bit hashes
1048

1049 1050 1051
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
1052 1053

	  See also:
1054
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1055

1056 1057
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
1058
	select CRYPTO_HASH
L
Linus Torvalds 已提交
1059
	help
1060
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
1061

1062 1063
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
1064 1065

	  See also:
1066
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1067

1068
config CRYPTO_GHASH_CLMUL_NI_INTEL
1069
	tristate "GHASH hash function (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
1070
	depends on X86 && 64BIT
1071 1072
	select CRYPTO_CRYPTD
	help
1073 1074
	  This is the x86_64 CLMUL-NI accelerated implementation of
	  GHASH, the hash function used in GCM (Galois/Counter mode).
1075

1076
comment "Ciphers"
L
Linus Torvalds 已提交
1077 1078 1079

config CRYPTO_AES
	tristate "AES cipher algorithms"
1080
	select CRYPTO_ALGAPI
1081
	select CRYPTO_LIB_AES
L
Linus Torvalds 已提交
1082
	help
1083
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1084 1085 1086
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1087 1088 1089 1090 1091 1092 1093
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1094

1095
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1096 1097 1098

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1099 1100 1101
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
1102
	select CRYPTO_LIB_AES
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1115 1116
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1117

1118 1119
config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1120
	depends on X86
H
Herbert Xu 已提交
1121
	select CRYPTO_AEAD
1122
	select CRYPTO_LIB_AES
1123
	select CRYPTO_ALGAPI
1124
	select CRYPTO_SKCIPHER
1125
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1126
	select CRYPTO_SIMD
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1137 1138 1139 1140
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1141

1142
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1143 1144 1145

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1146 1147
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1148
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1149
	  acceleration for CTR.
1150

1151 1152 1153
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
1154
	select CRYPTO_SKCIPHER
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1178 1179 1180
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
1181
	select CRYPTO_SKCIPHER
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1203 1204
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1205 1206 1207

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1208
	select CRYPTO_SKCIPHER
1209
	select CRYPTO_LIB_ARC4
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1221
	select CRYPTO_BLOWFISH_COMMON
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1232 1233 1234 1235 1236 1237 1238 1239 1240
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1241 1242
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1243
	depends on X86 && 64BIT
1244
	select CRYPTO_SKCIPHER
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1271 1272
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1273
	depends on X86 && 64BIT
1274
	depends on CRYPTO
1275
	select CRYPTO_SKCIPHER
1276
	select CRYPTO_GLUE_HELPER_X86
1277 1278 1279 1280 1281 1282 1283 1284 1285
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1286 1287 1288 1289 1290 1291
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1292
	select CRYPTO_SKCIPHER
1293
	select CRYPTO_CAMELLIA_X86_64
1294 1295
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1306 1307
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1324 1325 1326 1327 1328
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
1329
	select CRYPTO_SKCIPHER
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1341 1342 1343 1344 1345 1346
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1347 1348
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1349
	select CRYPTO_ALGAPI
1350
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1351 1352 1353 1354
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1355 1356 1357
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1358
	select CRYPTO_SKCIPHER
1359
	select CRYPTO_CAST5
1360 1361
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1362 1363 1364 1365 1366 1367 1368
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1369 1370
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1371
	select CRYPTO_ALGAPI
1372
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1373 1374 1375 1376
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1377 1378 1379
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1380
	select CRYPTO_SKCIPHER
1381
	select CRYPTO_CAST6
1382 1383 1384
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1385 1386 1387 1388 1389 1390 1391 1392
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1393 1394
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1395
	select CRYPTO_ALGAPI
1396
	select CRYPTO_LIB_DES
L
Linus Torvalds 已提交
1397
	help
1398
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1399

1400 1401
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1402
	depends on SPARC64
1403
	select CRYPTO_ALGAPI
1404
	select CRYPTO_LIB_DES
1405
	select CRYPTO_SKCIPHER
1406 1407 1408 1409
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1410 1411 1412
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1413
	select CRYPTO_SKCIPHER
1414
	select CRYPTO_LIB_DES
1415 1416 1417 1418 1419 1420 1421 1422
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1423 1424
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1425
	select CRYPTO_ALGAPI
1426
	select CRYPTO_SKCIPHER
L
Linus Torvalds 已提交
1427
	help
1428
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1429 1430 1431

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1432
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437 1438 1439 1440
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1441
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1442

1443
config CRYPTO_SALSA20
1444
	tristate "Salsa20 stream cipher algorithm"
1445
	select CRYPTO_SKCIPHER
1446 1447 1448 1449 1450
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1451 1452 1453 1454

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1455
config CRYPTO_CHACHA20
1456
	tristate "ChaCha stream cipher algorithms"
1457
	select CRYPTO_LIB_CHACHA_GENERIC
1458
	select CRYPTO_SKCIPHER
1459
	help
1460
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1461 1462 1463

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1464
	  This is the portable C implementation of ChaCha20.  See also:
1465 1466
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1467 1468 1469 1470 1471 1472
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1473 1474 1475 1476
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1477
config CRYPTO_CHACHA20_X86_64
1478
	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1479
	depends on X86 && 64BIT
1480
	select CRYPTO_SKCIPHER
1481
	select CRYPTO_LIB_CHACHA_GENERIC
1482
	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1483
	help
1484 1485
	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
	  XChaCha20, and XChaCha12 stream ciphers.
1486

1487 1488 1489 1490 1491 1492
config CRYPTO_CHACHA_MIPS
	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
	depends on CPU_MIPS32_R2
	select CRYPTO_BLKCIPHER
	select CRYPTO_ARCH_HAVE_LIB_CHACHA

1493 1494
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1495
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1496
	help
1497
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1509
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1510
	help
1511
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1512

1513 1514 1515 1516 1517 1518 1519
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1520 1521 1522
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1523
	select CRYPTO_SKCIPHER
1524
	select CRYPTO_GLUE_HELPER_X86
1525
	select CRYPTO_SERPENT
1526
	select CRYPTO_SIMD
1527 1528 1529 1530 1531 1532
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1533
	  This module provides Serpent cipher algorithm that processes eight
1534 1535 1536 1537 1538
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1539 1540 1541
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1542
	select CRYPTO_SKCIPHER
1543
	select CRYPTO_GLUE_HELPER_X86
1544
	select CRYPTO_SERPENT
1545
	select CRYPTO_SIMD
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1557 1558 1559 1560

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1561
	select CRYPTO_SKCIPHER
1562
	select CRYPTO_GLUE_HELPER_X86
1563
	select CRYPTO_SERPENT
1564
	select CRYPTO_SIMD
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1619 1620
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1621
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1622
	help
1623
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1638
	select CRYPTO_ALGAPI
1639
	select CRYPTO_TWOFISH_COMMON
1640
	help
1641
	  Twofish cipher algorithm.
1642

1643 1644 1645 1646
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1669 1670

	  See also:
1671
	  <http://www.schneier.com/twofish.html>
1672

1673 1674 1675
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1676
	select CRYPTO_ALGAPI
1677
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1678
	help
1679
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1680

1681 1682 1683 1684 1685 1686 1687 1688
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1689 1690
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1691
	depends on X86 && 64BIT
1692
	select CRYPTO_SKCIPHER
1693 1694
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1695
	select CRYPTO_GLUE_HELPER_X86
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1710 1711 1712
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1713
	select CRYPTO_SKCIPHER
1714
	select CRYPTO_GLUE_HELPER_X86
1715
	select CRYPTO_SIMD
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1733 1734 1735 1736 1737
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1738
	select CRYPTO_ACOMP2
1739 1740
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1741
	help
1742 1743 1744 1745
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1746

1747 1748 1749
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1750
	select CRYPTO_ACOMP2
1751 1752 1753 1754 1755
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1756 1757
config CRYPTO_842
	tristate "842 compression algorithm"
1758
	select CRYPTO_ALGAPI
1759
	select CRYPTO_ACOMP2
1760 1761
	select 842_COMPRESS
	select 842_DECOMPRESS
1762 1763
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1764 1765 1766 1767

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1768
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1769 1770 1771 1772 1773 1774 1775 1776
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1777
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1778 1779 1780 1781
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1782

N
Nick Terrell 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1792 1793 1794 1795 1796 1797 1798 1799 1800
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1801 1802
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1803

1804
menuconfig CRYPTO_DRBG_MENU
1805 1806 1807 1808 1809
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1810
if CRYPTO_DRBG_MENU
1811 1812

config CRYPTO_DRBG_HMAC
1813
	bool
1814 1815
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1816
	select CRYPTO_SHA256
1817 1818 1819

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1820
	select CRYPTO_SHA256
1821 1822 1823 1824 1825 1826
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1827
	depends on CRYPTO_CTR
1828 1829 1830
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1831 1832
config CRYPTO_DRBG
	tristate
1833
	default CRYPTO_DRBG_MENU
1834
	select CRYPTO_RNG
1835
	select CRYPTO_JITTERENTROPY
1836 1837

endif	# if CRYPTO_DRBG_MENU
1838

1839 1840
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1841
	select CRYPTO_RNG
1842 1843 1844 1845 1846 1847 1848
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1849 1850 1851
config CRYPTO_USER_API
	tristate

1852 1853
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1854
	depends on NET
1855 1856 1857 1858 1859 1860
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1861 1862
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1863
	depends on NET
1864
	select CRYPTO_SKCIPHER
1865 1866 1867 1868 1869
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1870 1871 1872 1873 1874 1875 1876 1877 1878
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1879 1880 1881 1882
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1883
	select CRYPTO_SKCIPHER
1884
	select CRYPTO_NULL
1885 1886 1887 1888 1889
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1890 1891
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
1892
	depends on CRYPTO_USER
1893 1894 1895 1896 1897 1898 1899 1900 1901
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1902 1903 1904
config CRYPTO_HASH_INFO
	bool

1905
source "lib/crypto/Kconfig"
L
Linus Torvalds 已提交
1906
source "drivers/crypto/Kconfig"
1907 1908
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
L
Linus Torvalds 已提交
1909

1910
endif	# if CRYPTO