Kconfig 53.2 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29 30 31 32
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64
	select CRYPTO_WORKQUEUE
65

66 67
config CRYPTO_HASH
	tristate
68
	select CRYPTO_HASH2
69 70
	select CRYPTO_ALGAPI

71 72 73 74
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

75 76
config CRYPTO_RNG
	tristate
77
	select CRYPTO_RNG2
78 79
	select CRYPTO_ALGAPI

80 81 82 83
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

84 85 86 87
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
88 89 90 91 92 93 94 95 96
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

97 98 99 100 101 102 103 104 105
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

106 107 108
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
109
	select SGL_ALLOC
110 111 112 113 114 115

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

116 117
config CRYPTO_RSA
	tristate "RSA algorithm"
118
	select CRYPTO_AKCIPHER
119
	select CRYPTO_MANAGER
120 121 122 123 124
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

125 126 127 128 129 130 131
config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

132 133
config CRYPTO_ECDH
	tristate "ECDH algorithm"
134
	select CRYPTO_KPP
135
	select CRYPTO_RNG_DEFAULT
136 137
	help
	  Generic implementation of the ECDH algorithm
138

H
Herbert Xu 已提交
139 140
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
141
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
142 143 144 145
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

146 147 148 149 150
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
151
	select CRYPTO_AKCIPHER2
152
	select CRYPTO_KPP2
153
	select CRYPTO_ACOMP2
154

155 156
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
157
	depends on NET
158 159
	select CRYPTO_MANAGER
	help
160
	  Userspace configuration for cryptographic instantiations such as
161 162
	  cbc(aes).

163 164
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
165 166
	default y
	depends on CRYPTO_MANAGER2
167
	help
168 169
	  Disable run-time self tests that normally take place at
	  algorithm registration.
170

171
config CRYPTO_GF128MUL
172
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
173
	help
174 175 176 177 178
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
179

L
Linus Torvalds 已提交
180 181
config CRYPTO_NULL
	tristate "Null algorithms"
182
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
183 184 185
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

186
config CRYPTO_NULL2
187
	tristate
188 189 190 191
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

192
config CRYPTO_PCRYPT
193 194
	tristate "Parallel crypto engine"
	depends on SMP
195 196 197 198 199 200 201
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

202 203 204
config CRYPTO_WORKQUEUE
       tristate

205 206 207
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
208
	select CRYPTO_HASH
209
	select CRYPTO_MANAGER
210
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
211
	help
212 213 214
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
215

216 217 218 219 220 221
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
222
	select CRYPTO_NULL
L
Linus Torvalds 已提交
223
	help
224 225
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
226

227 228 229
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
230
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
231
	help
232
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
233

234 235
config CRYPTO_SIMD
	tristate
236 237
	select CRYPTO_CRYPTD

238 239 240
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
241
	select CRYPTO_BLKCIPHER
242

243 244 245
config CRYPTO_ENGINE
	tristate

246
comment "Authenticated Encryption with Associated Data"
247

248 249 250
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
251
	select CRYPTO_HASH
252
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
253
	help
254
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
255

256 257 258 259
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
260
	select CRYPTO_GHASH
261
	select CRYPTO_NULL
L
Linus Torvalds 已提交
262
	help
263 264
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
265

266 267 268 269 270 271 272 273 274 275 276 277
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L
	tristate "AEGIS-128L AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256
	tristate "AEGIS-256 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-256 dedicated AEAD algorithm.

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L_AESNI_SSE2
	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256_AESNI_SSE2
	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.

323 324 325 326 327 328
config CRYPTO_MORUS640
	tristate "MORUS-640 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-640 dedicated AEAD algorithm.

329
config CRYPTO_MORUS640_GLUE
330 331
	tristate
	depends on X86
332 333 334 335 336 337
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
	  algorithm.

338 339 340 341 342 343 344 345
config CRYPTO_MORUS640_SSE2
	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS640_GLUE
	help
	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.

346 347 348 349 350 351
config CRYPTO_MORUS1280
	tristate "MORUS-1280 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-1280 dedicated AEAD algorithm.

352
config CRYPTO_MORUS1280_GLUE
353 354
	tristate
	depends on X86
355 356 357 358
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	  algorithm.

config CRYPTO_MORUS1280_SSE2
	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
	  algorithm.

config CRYPTO_MORUS1280_AVX2
	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
377 378
	  algorithm.

379 380 381 382
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
383
	select CRYPTO_NULL
384
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
385
	help
386 387
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
388

389 390 391 392
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
393
	select CRYPTO_RNG_DEFAULT
394
	default m
395 396 397 398 399
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

400
comment "Block modes"
401

402 403
config CRYPTO_CBC
	tristate "CBC support"
404
	select CRYPTO_BLKCIPHER
405
	select CRYPTO_MANAGER
406
	help
407 408
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
409

410 411 412 413 414 415 416 417
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

418 419
config CRYPTO_CTR
	tristate "CTR support"
420
	select CRYPTO_BLKCIPHER
421
	select CRYPTO_SEQIV
422
	select CRYPTO_MANAGER
423
	help
424
	  CTR: Counter mode
425 426
	  This block cipher algorithm is required for IPSec.

427 428 429 430 431 432
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
433 434 435
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
436 437 438
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

439 440
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

441 442
config CRYPTO_ECB
	tristate "ECB support"
443 444 445
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
446 447 448
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
449

450
config CRYPTO_LRW
451
	tristate "LRW support"
452 453 454 455 456 457 458 459 460 461
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

462 463 464 465 466 467 468 469 470 471 472 473
config CRYPTO_OFB
	tristate "OFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

474 475 476 477 478 479 480 481
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

482
config CRYPTO_XTS
483
	tristate "XTS support"
484 485
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
486
	select CRYPTO_ECB
487 488 489 490 491
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

492 493 494 495 496 497 498
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

499 500 501 502 503
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
	select CRYPTO_POLY1305

504 505
comment "Hash modes"

506 507 508 509 510 511 512 513 514 515 516
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

517 518 519
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
520 521
	select CRYPTO_MANAGER
	help
522 523
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
524

525 526 527 528
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
529
	help
530 531 532 533
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
534

535 536 537 538 539 540 541 542 543 544 545
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

546
comment "Digest"
M
Mikko Herranen 已提交
547

548 549
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
550
	select CRYPTO_HASH
551
	select CRC32
J
Joy Latten 已提交
552
	help
553 554
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
555
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
556

557 558 559 560 561 562 563 564 565 566 567 568
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

569
config CRYPTO_CRC32C_VPMSUM
570
	tristate "CRC32c CRC algorithm (powerpc64)"
571
	depends on PPC64 && ALTIVEC
572 573 574 575 576 577 578 579
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


580 581 582 583 584 585 586 587 588
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

610 611 612 613 614 615 616 617 618
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

638 639 640 641 642 643 644 645 646
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

647 648 649 650 651 652 653 654
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

655 656 657
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
658
	select CRYPTO_HASH
659 660 661
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

662 663
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
664
	select CRYPTO_HASH
665 666 667 668 669 670 671
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

672
config CRYPTO_POLY1305_X86_64
673
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
674 675 676 677 678 679 680 681 682 683
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

684 685
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
686
	select CRYPTO_HASH
687
	help
688
	  MD4 message digest algorithm (RFC1320).
689

690 691
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
692
	select CRYPTO_HASH
L
Linus Torvalds 已提交
693
	help
694
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
695

696 697 698 699 700 701 702 703 704
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

705 706 707 708 709 710 711 712
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

713 714 715 716 717 718 719 720 721
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

722 723
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
724
	select CRYPTO_HASH
725
	help
726 727 728 729
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
730

731
config CRYPTO_RMD128
732
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
733
	select CRYPTO_HASH
734 735
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
736

737
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
738
	  be used as a secure replacement for RIPEMD. For other use cases,
739
	  RIPEMD-160 should be used.
740

741
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
742
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
743 744

config CRYPTO_RMD160
745
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
746
	select CRYPTO_HASH
747 748
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
749

750 751 752 753
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
754

755 756
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
757

758
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
759
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
760 761

config CRYPTO_RMD256
762
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
763
	select CRYPTO_HASH
764 765 766 767 768
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
769

770
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
771
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
772 773

config CRYPTO_RMD320
774
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
775
	select CRYPTO_HASH
776 777 778 779 780
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
781

782
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
783
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
784

785 786
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
787
	select CRYPTO_HASH
L
Linus Torvalds 已提交
788
	help
789
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
790

791
config CRYPTO_SHA1_SSSE3
792
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
793 794 795 796 797 798
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
799 800
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
801

802
config CRYPTO_SHA256_SSSE3
803
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
804 805 806 807 808 809 810
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
811 812
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
813 814 815 816 817 818 819 820 821 822

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
823 824
	  version 2 (AVX2) instructions, when available.

825 826 827 828 829 830 831 832 833
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

834 835 836 837 838 839 840 841 842
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

843 844 845 846 847 848 849
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

850 851 852 853 854 855 856
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

857 858
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
859
	select CRYPTO_HASH
L
Linus Torvalds 已提交
860
	help
861
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
862

863 864
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
865

866 867
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
868

869 870 871 872 873 874 875 876 877
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

878 879 880 881 882 883 884 885 886
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

887 888 889 890 891 892 893 894 895
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

896 897
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
898
	select CRYPTO_HASH
899
	help
900
	  SHA512 secure hash standard (DFIPS 180-2).
901

902 903
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
904

905 906
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
907

908 909 910 911 912 913 914 915 916
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

917 918 919 920 921 922 923 924 925
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

926 927 928 929 930 931 932 933 934 935
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

936 937 938 939 940 941 942 943 944 945 946
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

947 948 949 950 951 952 953 954 955 956 957 958
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

959 960
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
961
	select CRYPTO_HASH
962
	help
963
	  Tiger hash algorithm 192, 160 and 128-bit hashes
964

965 966 967
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
968 969

	  See also:
970
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
971

972 973
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
974
	select CRYPTO_HASH
L
Linus Torvalds 已提交
975
	help
976
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
977

978 979
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
980 981

	  See also:
982
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
983

984 985
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
986
	depends on X86 && 64BIT
987 988 989 990 991
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

992
comment "Ciphers"
L
Linus Torvalds 已提交
993 994 995

config CRYPTO_AES
	tristate "AES cipher algorithms"
996
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
997
	help
998
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
999 1000 1001
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1002 1003 1004 1005 1006 1007 1008
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1009

1010
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1011 1012 1013

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1029 1030
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1031

L
Linus Torvalds 已提交
1032 1033
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
1034 1035
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
1036
	select CRYPTO_AES
L
Linus Torvalds 已提交
1037
	help
1038
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1039 1040 1041
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1042 1043 1044 1045 1046 1047 1048
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1049

1050
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
1051 1052 1053 1054 1055

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
1056 1057
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
1058
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
1059
	help
1060
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
1061 1062 1063
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1064 1065 1066
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1078
	depends on X86
H
Herbert Xu 已提交
1079
	select CRYPTO_AEAD
1080 1081
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
1082
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
1083
	select CRYPTO_BLKCIPHER
1084
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1085
	select CRYPTO_SIMD
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1096 1097 1098 1099
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1100

1101
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1102 1103 1104

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1105 1106
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1107
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1108
	  acceleration for CTR.
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1162 1163
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1164 1165 1166

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1167
	select CRYPTO_BLKCIPHER
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1179
	select CRYPTO_BLOWFISH_COMMON
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1190 1191 1192 1193 1194 1195 1196 1197 1198
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1199 1200
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1201
	depends on X86 && 64BIT
1202
	select CRYPTO_BLKCIPHER
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1229 1230
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1231
	depends on X86 && 64BIT
1232
	depends on CRYPTO
1233
	select CRYPTO_BLKCIPHER
1234
	select CRYPTO_GLUE_HELPER_X86
1235 1236 1237 1238 1239 1240 1241 1242 1243
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1244 1245 1246 1247 1248 1249
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1250
	select CRYPTO_BLKCIPHER
1251
	select CRYPTO_CAMELLIA_X86_64
1252 1253
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1264 1265
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1298 1299 1300 1301 1302 1303
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1304 1305
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1306
	select CRYPTO_ALGAPI
1307
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1308 1309 1310 1311
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1312 1313 1314
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1315
	select CRYPTO_BLKCIPHER
1316
	select CRYPTO_CAST5
1317 1318
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1319 1320 1321 1322 1323 1324 1325
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1326 1327
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1328
	select CRYPTO_ALGAPI
1329
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1330 1331 1332 1333
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1334 1335 1336
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1337
	select CRYPTO_BLKCIPHER
1338
	select CRYPTO_CAST6
1339 1340 1341
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1342 1343 1344 1345 1346 1347 1348 1349
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1350 1351
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1352
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1353
	help
1354
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1355

1356 1357
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1358
	depends on SPARC64
1359 1360 1361 1362 1363 1364
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1365 1366 1367
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1368
	select CRYPTO_BLKCIPHER
1369 1370 1371 1372 1373 1374 1375 1376 1377
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1378 1379
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1380
	select CRYPTO_ALGAPI
1381
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1382
	help
1383
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1384 1385 1386

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1387
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1388 1389 1390 1391 1392 1393 1394 1395
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1396
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1397

1398
config CRYPTO_SALSA20
1399
	tristate "Salsa20 stream cipher algorithm"
1400 1401 1402 1403 1404 1405
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1406 1407 1408 1409

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1410
config CRYPTO_CHACHA20
1411
	tristate "ChaCha stream cipher algorithms"
1412 1413
	select CRYPTO_BLKCIPHER
	help
1414
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1415 1416 1417

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1418
	  This is the portable C implementation of ChaCha20.  See also:
1419 1420
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1421 1422 1423 1424 1425 1426
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1427 1428 1429 1430
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1431
config CRYPTO_CHACHA20_X86_64
1432
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1446 1447
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1448
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1449
	help
1450
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1462
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1463
	help
1464
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1465

1466 1467 1468 1469 1470 1471 1472
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1473 1474 1475
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1476
	select CRYPTO_BLKCIPHER
1477
	select CRYPTO_GLUE_HELPER_X86
1478
	select CRYPTO_SERPENT
1479
	select CRYPTO_SIMD
1480 1481 1482 1483 1484 1485
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1486
	  This module provides Serpent cipher algorithm that processes eight
1487 1488 1489 1490 1491
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1492 1493 1494
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1495
	select CRYPTO_BLKCIPHER
1496
	select CRYPTO_GLUE_HELPER_X86
1497
	select CRYPTO_SERPENT
1498
	select CRYPTO_SIMD
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1510 1511 1512 1513

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1514
	select CRYPTO_BLKCIPHER
1515
	select CRYPTO_GLUE_HELPER_X86
1516
	select CRYPTO_SERPENT
1517
	select CRYPTO_SIMD
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1530

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1572 1573
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1574
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1575
	help
1576
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1591
	select CRYPTO_ALGAPI
1592
	select CRYPTO_TWOFISH_COMMON
1593
	help
1594
	  Twofish cipher algorithm.
1595

1596 1597 1598 1599
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1622 1623

	  See also:
1624
	  <http://www.schneier.com/twofish.html>
1625

1626 1627 1628
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1629
	select CRYPTO_ALGAPI
1630
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1631
	help
1632
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1633

1634 1635 1636 1637 1638 1639 1640 1641
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1642 1643
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1644
	depends on X86 && 64BIT
1645
	select CRYPTO_BLKCIPHER
1646 1647
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1648
	select CRYPTO_GLUE_HELPER_X86
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1663 1664 1665
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1666
	select CRYPTO_BLKCIPHER
1667
	select CRYPTO_GLUE_HELPER_X86
1668
	select CRYPTO_SIMD
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1686 1687 1688 1689 1690
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1691
	select CRYPTO_ACOMP2
1692 1693
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1694
	help
1695 1696 1697 1698
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1699

1700 1701 1702
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1703
	select CRYPTO_ACOMP2
1704 1705 1706 1707 1708
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1709 1710
config CRYPTO_842
	tristate "842 compression algorithm"
1711
	select CRYPTO_ALGAPI
1712
	select CRYPTO_ACOMP2
1713 1714
	select 842_COMPRESS
	select 842_DECOMPRESS
1715 1716
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1717 1718 1719 1720

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1721
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1722 1723 1724 1725 1726 1727 1728 1729
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1730
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1731 1732 1733 1734
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1735

N
Nick Terrell 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1745 1746 1747 1748 1749 1750 1751 1752 1753
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1754 1755
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1756

1757
menuconfig CRYPTO_DRBG_MENU
1758 1759 1760 1761 1762
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1763
if CRYPTO_DRBG_MENU
1764 1765

config CRYPTO_DRBG_HMAC
1766
	bool
1767 1768
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1769
	select CRYPTO_SHA256
1770 1771 1772

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1773
	select CRYPTO_SHA256
1774 1775 1776 1777 1778 1779
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1780
	depends on CRYPTO_CTR
1781 1782 1783
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1784 1785
config CRYPTO_DRBG
	tristate
1786
	default CRYPTO_DRBG_MENU
1787
	select CRYPTO_RNG
1788
	select CRYPTO_JITTERENTROPY
1789 1790

endif	# if CRYPTO_DRBG_MENU
1791

1792 1793
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1794
	select CRYPTO_RNG
1795 1796 1797 1798 1799 1800 1801
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1802 1803 1804
config CRYPTO_USER_API
	tristate

1805 1806
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1807
	depends on NET
1808 1809 1810 1811 1812 1813
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1814 1815
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1816
	depends on NET
1817 1818 1819 1820 1821 1822
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1823 1824 1825 1826 1827 1828 1829 1830 1831
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1832 1833 1834 1835
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1836 1837
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1838 1839 1840 1841 1842
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1854 1855 1856
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1857
source "drivers/crypto/Kconfig"
1858
source crypto/asymmetric_keys/Kconfig
1859
source certs/Kconfig
L
Linus Torvalds 已提交
1860

1861
endif	# if CRYPTO