Kconfig 55.2 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29
	help
30 31
	  This option enables the fips boot option which is
	  required if you want the system to operate in a FIPS 200
N
Neil Horman 已提交
32
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64
	select CRYPTO_WORKQUEUE
65

66 67
config CRYPTO_HASH
	tristate
68
	select CRYPTO_HASH2
69 70
	select CRYPTO_ALGAPI

71 72 73 74
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

75 76
config CRYPTO_RNG
	tristate
77
	select CRYPTO_RNG2
78 79
	select CRYPTO_ALGAPI

80 81 82 83
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

84 85 86 87
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
88 89 90 91 92 93 94 95 96
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

97 98 99 100 101 102 103 104 105
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

106 107 108
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
109
	select SGL_ALLOC
110 111 112 113 114 115

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

H
Herbert Xu 已提交
116 117
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
118
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
119 120 121 122
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

123 124 125 126 127
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
128
	select CRYPTO_AKCIPHER2
129
	select CRYPTO_KPP2
130
	select CRYPTO_ACOMP2
131

132 133
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
134
	depends on NET
135 136
	select CRYPTO_MANAGER
	help
137
	  Userspace configuration for cryptographic instantiations such as
138 139
	  cbc(aes).

140 141
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
142 143
	default y
	depends on CRYPTO_MANAGER2
144
	help
145 146
	  Disable run-time self tests that normally take place at
	  algorithm registration.
147

148 149 150 151 152 153 154 155 156 157
config CRYPTO_MANAGER_EXTRA_TESTS
	bool "Enable extra run-time crypto self tests"
	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
	help
	  Enable extra run-time self tests of registered crypto algorithms,
	  including randomized fuzz tests.

	  This is intended for developer use only, as these tests take much
	  longer to run than the normal self tests.

158
config CRYPTO_GF128MUL
159
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
160
	help
161 162 163 164 165
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
166

L
Linus Torvalds 已提交
167 168
config CRYPTO_NULL
	tristate "Null algorithms"
169
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
170 171 172
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

173
config CRYPTO_NULL2
174
	tristate
175 176 177 178
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

179
config CRYPTO_PCRYPT
180 181
	tristate "Parallel crypto engine"
	depends on SMP
182 183 184 185 186 187 188
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

189 190 191
config CRYPTO_WORKQUEUE
       tristate

192 193 194
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
195
	select CRYPTO_HASH
196
	select CRYPTO_MANAGER
197
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
198
	help
199 200 201
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
202

203 204 205 206 207 208
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
209
	select CRYPTO_NULL
L
Linus Torvalds 已提交
210
	help
211 212
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
213

214 215 216
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
217
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
218
	help
219
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
220

221 222
config CRYPTO_SIMD
	tristate
223 224
	select CRYPTO_CRYPTD

225 226 227
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
228
	select CRYPTO_BLKCIPHER
229

230 231 232
config CRYPTO_ENGINE
	tristate

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
comment "Public-key cryptography"

config CRYPTO_RSA
	tristate "RSA algorithm"
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

251 252 253
config CRYPTO_ECC
	tristate

254 255
config CRYPTO_ECDH
	tristate "ECDH algorithm"
256
	select CRYPTO_ECC
257 258 259 260 261
	select CRYPTO_KPP
	select CRYPTO_RNG_DEFAULT
	help
	  Generic implementation of the ECDH algorithm

262 263 264 265 266
config CRYPTO_ECRDSA
	tristate "EC-RDSA (GOST 34.10) algorithm"
	select CRYPTO_ECC
	select CRYPTO_AKCIPHER
	select CRYPTO_STREEBOG
267 268
	select OID_REGISTRY
	select ASN1
269 270 271 272 273 274
	help
	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
	  standard algorithms (called GOST algorithms). Only signature verification
	  is implemented.

275
comment "Authenticated Encryption with Associated Data"
276

277 278 279
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
280
	select CRYPTO_HASH
281
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
282
	help
283
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
284

285 286 287 288
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
289
	select CRYPTO_GHASH
290
	select CRYPTO_NULL
L
Linus Torvalds 已提交
291
	help
292 293
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
294

295 296 297 298 299 300 301 302 303 304 305 306
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L
	tristate "AEGIS-128L AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256
	tristate "AEGIS-256 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-256 dedicated AEAD algorithm.

328 329 330 331
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
332
	select CRYPTO_SIMD
333
	help
334
	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
335 336 337 338 339

config CRYPTO_AEGIS128L_AESNI_SSE2
	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
340
	select CRYPTO_SIMD
341
	help
342
	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
343 344 345 346 347

config CRYPTO_AEGIS256_AESNI_SSE2
	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
348
	select CRYPTO_SIMD
349
	help
350
	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
351

352 353 354 355 356 357
config CRYPTO_MORUS640
	tristate "MORUS-640 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-640 dedicated AEAD algorithm.

358
config CRYPTO_MORUS640_GLUE
359 360
	tristate
	depends on X86
361
	select CRYPTO_AEAD
362
	select CRYPTO_SIMD
363 364 365 366
	help
	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
	  algorithm.

367 368 369 370 371 372 373 374
config CRYPTO_MORUS640_SSE2
	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS640_GLUE
	help
	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.

375 376 377 378 379 380
config CRYPTO_MORUS1280
	tristate "MORUS-1280 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-1280 dedicated AEAD algorithm.

381
config CRYPTO_MORUS1280_GLUE
382 383
	tristate
	depends on X86
384
	select CRYPTO_AEAD
385
	select CRYPTO_SIMD
386 387
	help
	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	  algorithm.

config CRYPTO_MORUS1280_SSE2
	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
	  algorithm.

config CRYPTO_MORUS1280_AVX2
	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
406 407
	  algorithm.

408 409 410 411
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
412
	select CRYPTO_NULL
413
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
414
	help
415 416
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
417

418 419 420 421
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
422
	select CRYPTO_RNG_DEFAULT
423
	default m
424 425 426 427 428
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

429
comment "Block modes"
430

431 432
config CRYPTO_CBC
	tristate "CBC support"
433
	select CRYPTO_BLKCIPHER
434
	select CRYPTO_MANAGER
435
	help
436 437
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
438

439 440 441 442 443 444 445 446
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

447 448
config CRYPTO_CTR
	tristate "CTR support"
449
	select CRYPTO_BLKCIPHER
450
	select CRYPTO_SEQIV
451
	select CRYPTO_MANAGER
452
	help
453
	  CTR: Counter mode
454 455
	  This block cipher algorithm is required for IPSec.

456 457 458 459 460 461
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
462 463 464
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
465 466 467
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

468 469
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

470 471
config CRYPTO_ECB
	tristate "ECB support"
472 473 474
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
475 476 477
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
478

479
config CRYPTO_LRW
480
	tristate "LRW support"
481 482 483 484 485 486 487 488 489 490
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

491 492 493 494 495 496 497 498 499 500 501 502
config CRYPTO_OFB
	tristate "OFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

503 504 505 506 507 508 509 510
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

511
config CRYPTO_XTS
512
	tristate "XTS support"
513 514
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
515
	select CRYPTO_ECB
516 517 518 519 520
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

521 522 523 524 525 526 527
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

528 529 530 531 532
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
	select CRYPTO_POLY1305

533 534 535 536 537 538 539 540
config CRYPTO_NHPOLY1305_SSE2
	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  SSE2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

541 542 543 544 545 546 547 548
config CRYPTO_NHPOLY1305_AVX2
	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  AVX2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
config CRYPTO_ADIANTUM
	tristate "Adiantum support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_NHPOLY1305
	help
	  Adiantum is a tweakable, length-preserving encryption mode
	  designed for fast and secure disk encryption, especially on
	  CPUs without dedicated crypto instructions.  It encrypts
	  each sector using the XChaCha12 stream cipher, two passes of
	  an ε-almost-∆-universal hash function, and an invocation of
	  the AES-256 block cipher on a single 16-byte block.  On CPUs
	  without AES instructions, Adiantum is much faster than
	  AES-XTS.

	  Adiantum's security is provably reducible to that of its
	  underlying stream and block ciphers, subject to a security
	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
	  mode, so it actually provides an even stronger notion of
	  security than XTS, subject to the security bound.

	  If unsure, say N.

572 573
comment "Hash modes"

574 575 576 577 578 579 580 581 582 583 584
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

585 586 587
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
588 589
	select CRYPTO_MANAGER
	help
590 591
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
592

593 594 595 596
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
597
	help
598 599 600 601
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
602

603 604 605 606 607 608 609 610 611 612 613
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

614
comment "Digest"
M
Mikko Herranen 已提交
615

616 617
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
618
	select CRYPTO_HASH
619
	select CRC32
J
Joy Latten 已提交
620
	help
621 622
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
623
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
624

625 626 627 628 629 630 631 632 633 634 635 636
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

637
config CRYPTO_CRC32C_VPMSUM
638
	tristate "CRC32c CRC algorithm (powerpc64)"
639
	depends on PPC64 && ALTIVEC
640 641 642 643 644 645 646 647
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


648 649 650 651 652 653 654 655 656
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
H
haco 已提交
674
	  instruction. This option will create 'crc32-pclmul' module,
675 676 677
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

678 679 680 681 682 683 684 685 686
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
H
haco 已提交
703
	  'crct10dif-pclmul' module, which is faster when computing the
704 705
	  crct10dif checksum as compared with the generic table implementation.

706 707 708 709 710 711 712 713 714
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

715 716 717 718 719 720 721 722
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

723 724 725
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
726
	select CRYPTO_HASH
727 728 729
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

730 731
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
732
	select CRYPTO_HASH
733 734 735 736 737 738 739
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

740
config CRYPTO_POLY1305_X86_64
741
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
742 743 744 745 746 747 748 749 750 751
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

752 753
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
754
	select CRYPTO_HASH
755
	help
756
	  MD4 message digest algorithm (RFC1320).
757

758 759
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
760
	select CRYPTO_HASH
L
Linus Torvalds 已提交
761
	help
762
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
763

764 765 766 767 768 769 770 771 772
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

773 774 775 776 777 778 779 780
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

781 782 783 784 785 786 787 788 789
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

790 791
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
792
	select CRYPTO_HASH
793
	help
794 795 796 797
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
798

799
config CRYPTO_RMD128
800
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
801
	select CRYPTO_HASH
802 803
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
804

805
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
806
	  be used as a secure replacement for RIPEMD. For other use cases,
807
	  RIPEMD-160 should be used.
808

809
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
810
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
811 812

config CRYPTO_RMD160
813
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
814
	select CRYPTO_HASH
815 816
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
817

818 819 820 821
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
822

823 824
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
825

826
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
827
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
828 829

config CRYPTO_RMD256
830
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
831
	select CRYPTO_HASH
832 833 834 835 836
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
837

838
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
839
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
840 841

config CRYPTO_RMD320
842
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
843
	select CRYPTO_HASH
844 845 846 847 848
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
849

850
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
851
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
852

853 854
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
855
	select CRYPTO_HASH
L
Linus Torvalds 已提交
856
	help
857
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
858

859
config CRYPTO_SHA1_SSSE3
860
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
861 862 863 864 865 866
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
867 868
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
869

870
config CRYPTO_SHA256_SSSE3
871
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
872 873 874 875 876 877 878
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
879 880
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
881 882 883 884 885 886 887 888 889 890

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
891 892
	  version 2 (AVX2) instructions, when available.

893 894 895 896 897 898 899 900 901
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

902 903 904 905 906 907 908 909 910
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

911 912 913 914 915 916 917
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

918 919 920 921 922 923 924
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

925 926
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
927
	select CRYPTO_HASH
L
Linus Torvalds 已提交
928
	help
929
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
930

931 932
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
933

934 935
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
936

937 938 939 940 941 942 943 944 945
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

946 947 948 949 950 951 952 953 954
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

955 956 957 958 959 960 961 962 963
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

964 965
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
966
	select CRYPTO_HASH
967
	help
968
	  SHA512 secure hash standard (DFIPS 180-2).
969

970 971
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
972

973 974
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
975

976 977 978 979 980 981 982 983 984
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

985 986 987 988 989 990 991 992 993
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

994 995 996 997 998 999 1000 1001 1002 1003
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

1027 1028
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
1029
	select CRYPTO_HASH
1030
	help
1031
	  Tiger hash algorithm 192, 160 and 128-bit hashes
1032

1033 1034 1035
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
1036 1037

	  See also:
1038
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1039

1040 1041
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
1042
	select CRYPTO_HASH
L
Linus Torvalds 已提交
1043
	help
1044
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
1045

1046 1047
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
1048 1049

	  See also:
1050
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1051

1052 1053
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
1054
	depends on X86 && 64BIT
1055 1056 1057 1058 1059
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

1060
comment "Ciphers"
L
Linus Torvalds 已提交
1061 1062 1063

config CRYPTO_AES
	tristate "AES cipher algorithms"
1064
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1065
	help
1066
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1067 1068 1069
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1070 1071 1072 1073 1074 1075 1076
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1077

1078
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1079 1080 1081

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1097 1098
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1099

L
Linus Torvalds 已提交
1100 1101
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
1102 1103
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
1104
	select CRYPTO_AES
L
Linus Torvalds 已提交
1105
	help
1106
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1107 1108 1109
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1110 1111 1112 1113 1114 1115 1116
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1117

1118
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
1119 1120 1121 1122 1123

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
1124 1125
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
1126
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
1127
	help
1128
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
1129 1130 1131
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1132 1133 1134
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1146
	depends on X86
H
Herbert Xu 已提交
1147
	select CRYPTO_AEAD
1148 1149
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
1150
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
1151
	select CRYPTO_BLKCIPHER
1152
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1153
	select CRYPTO_SIMD
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1164 1165 1166 1167
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1168

1169
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1170 1171 1172

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1173 1174
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1175
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1176
	  acceleration for CTR.
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1230 1231
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1232 1233 1234

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1235
	select CRYPTO_BLKCIPHER
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1247
	select CRYPTO_BLOWFISH_COMMON
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1258 1259 1260 1261 1262 1263 1264 1265 1266
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1267 1268
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1269
	depends on X86 && 64BIT
1270
	select CRYPTO_BLKCIPHER
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1297 1298
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1299
	depends on X86 && 64BIT
1300
	depends on CRYPTO
1301
	select CRYPTO_BLKCIPHER
1302
	select CRYPTO_GLUE_HELPER_X86
1303 1304 1305 1306 1307 1308 1309 1310 1311
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1312 1313 1314 1315 1316 1317
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1318
	select CRYPTO_BLKCIPHER
1319
	select CRYPTO_CAMELLIA_X86_64
1320 1321
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1332 1333
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1366 1367 1368 1369 1370 1371
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1372 1373
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1374
	select CRYPTO_ALGAPI
1375
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1376 1377 1378 1379
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1380 1381 1382
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1383
	select CRYPTO_BLKCIPHER
1384
	select CRYPTO_CAST5
1385 1386
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1387 1388 1389 1390 1391 1392 1393
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1394 1395
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1396
	select CRYPTO_ALGAPI
1397
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1398 1399 1400 1401
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1402 1403 1404
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1405
	select CRYPTO_BLKCIPHER
1406
	select CRYPTO_CAST6
1407 1408 1409
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1410 1411 1412 1413 1414 1415 1416 1417
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1418 1419
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1420
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1421
	help
1422
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1423

1424 1425
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1426
	depends on SPARC64
1427 1428 1429 1430 1431 1432
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1433 1434 1435
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1436
	select CRYPTO_BLKCIPHER
1437 1438 1439 1440 1441 1442 1443 1444 1445
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1446 1447
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1448
	select CRYPTO_ALGAPI
1449
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1450
	help
1451
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1452 1453 1454

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1455
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460 1461 1462 1463
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1464
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1465

1466
config CRYPTO_SALSA20
1467
	tristate "Salsa20 stream cipher algorithm"
1468 1469 1470 1471 1472 1473
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1474 1475 1476 1477

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1478
config CRYPTO_CHACHA20
1479
	tristate "ChaCha stream cipher algorithms"
1480 1481
	select CRYPTO_BLKCIPHER
	help
1482
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1483 1484 1485

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1486
	  This is the portable C implementation of ChaCha20.  See also:
1487 1488
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1489 1490 1491 1492 1493 1494
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1495 1496 1497 1498
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1499
config CRYPTO_CHACHA20_X86_64
1500
	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1501 1502 1503 1504
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
1505 1506
	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
	  XChaCha20, and XChaCha12 stream ciphers.
1507

1508 1509
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1510
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1511
	help
1512
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1524
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1525
	help
1526
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1527

1528 1529 1530 1531 1532 1533 1534
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1535 1536 1537
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1538
	select CRYPTO_BLKCIPHER
1539
	select CRYPTO_GLUE_HELPER_X86
1540
	select CRYPTO_SERPENT
1541
	select CRYPTO_SIMD
1542 1543 1544 1545 1546 1547
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1548
	  This module provides Serpent cipher algorithm that processes eight
1549 1550 1551 1552 1553
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1554 1555 1556
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1557
	select CRYPTO_BLKCIPHER
1558
	select CRYPTO_GLUE_HELPER_X86
1559
	select CRYPTO_SERPENT
1560
	select CRYPTO_SIMD
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1572 1573 1574 1575

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1576
	select CRYPTO_BLKCIPHER
1577
	select CRYPTO_GLUE_HELPER_X86
1578
	select CRYPTO_SERPENT
1579
	select CRYPTO_SIMD
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1634 1635
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1636
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1637
	help
1638
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1653
	select CRYPTO_ALGAPI
1654
	select CRYPTO_TWOFISH_COMMON
1655
	help
1656
	  Twofish cipher algorithm.
1657

1658 1659 1660 1661
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1684 1685

	  See also:
1686
	  <http://www.schneier.com/twofish.html>
1687

1688 1689 1690
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1691
	select CRYPTO_ALGAPI
1692
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1693
	help
1694
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1695

1696 1697 1698 1699 1700 1701 1702 1703
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1704 1705
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1706
	depends on X86 && 64BIT
1707
	select CRYPTO_BLKCIPHER
1708 1709
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1710
	select CRYPTO_GLUE_HELPER_X86
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1725 1726 1727
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1728
	select CRYPTO_BLKCIPHER
1729
	select CRYPTO_GLUE_HELPER_X86
1730
	select CRYPTO_SIMD
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1748 1749 1750 1751 1752
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1753
	select CRYPTO_ACOMP2
1754 1755
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1756
	help
1757 1758 1759 1760
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1761

1762 1763 1764
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1765
	select CRYPTO_ACOMP2
1766 1767 1768 1769 1770
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1771 1772
config CRYPTO_842
	tristate "842 compression algorithm"
1773
	select CRYPTO_ALGAPI
1774
	select CRYPTO_ACOMP2
1775 1776
	select 842_COMPRESS
	select 842_DECOMPRESS
1777 1778
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1779 1780 1781 1782

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1783
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1784 1785 1786 1787 1788 1789 1790 1791
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1792
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1793 1794 1795 1796
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1797

N
Nick Terrell 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1807 1808 1809 1810 1811 1812 1813 1814 1815
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1816 1817
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1818

1819
menuconfig CRYPTO_DRBG_MENU
1820 1821 1822 1823 1824
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1825
if CRYPTO_DRBG_MENU
1826 1827

config CRYPTO_DRBG_HMAC
1828
	bool
1829 1830
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1831
	select CRYPTO_SHA256
1832 1833 1834

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1835
	select CRYPTO_SHA256
1836 1837 1838 1839 1840 1841
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1842
	depends on CRYPTO_CTR
1843 1844 1845
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1846 1847
config CRYPTO_DRBG
	tristate
1848
	default CRYPTO_DRBG_MENU
1849
	select CRYPTO_RNG
1850
	select CRYPTO_JITTERENTROPY
1851 1852

endif	# if CRYPTO_DRBG_MENU
1853

1854 1855
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1856
	select CRYPTO_RNG
1857 1858 1859 1860 1861 1862 1863
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1864 1865 1866
config CRYPTO_USER_API
	tristate

1867 1868
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1869
	depends on NET
1870 1871 1872 1873 1874 1875
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1876 1877
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1878
	depends on NET
1879 1880 1881 1882 1883 1884
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1885 1886 1887 1888 1889 1890 1891 1892 1893
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1894 1895 1896 1897
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1898 1899
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1900 1901 1902 1903 1904
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1905 1906
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
1907
	depends on CRYPTO_USER
1908 1909 1910 1911 1912 1913 1914 1915 1916
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1917 1918 1919
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1920
source "drivers/crypto/Kconfig"
1921 1922
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
L
Linus Torvalds 已提交
1923

1924
endif	# if CRYPTO