Kconfig 51.5 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29
	help
30 31
	  This option enables the fips boot option which is
	  required if you want the system to operate in a FIPS 200
N
Neil Horman 已提交
32
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106 107
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
108
	select SGL_ALLOC
109 110 111 112 113 114

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

H
Herbert Xu 已提交
115 116
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
117
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
118 119 120 121
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

122 123 124 125 126
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
127
	select CRYPTO_AKCIPHER2
128
	select CRYPTO_KPP2
129
	select CRYPTO_ACOMP2
130

131 132
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
133
	depends on NET
134 135
	select CRYPTO_MANAGER
	help
136
	  Userspace configuration for cryptographic instantiations such as
137 138
	  cbc(aes).

139 140
if CRYPTO_MANAGER2

141 142
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
143
	default y
144
	help
145 146
	  Disable run-time self tests that normally take place at
	  algorithm registration.
147

148 149 150 151 152 153 154 155 156 157
config CRYPTO_MANAGER_EXTRA_TESTS
	bool "Enable extra run-time crypto self tests"
	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
	help
	  Enable extra run-time self tests of registered crypto algorithms,
	  including randomized fuzz tests.

	  This is intended for developer use only, as these tests take much
	  longer to run than the normal self tests.

158 159
endif	# if CRYPTO_MANAGER2

160
config CRYPTO_GF128MUL
161
	tristate
K
Kazunori MIYAZAWA 已提交
162

L
Linus Torvalds 已提交
163 164
config CRYPTO_NULL
	tristate "Null algorithms"
165
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
166 167 168
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

169
config CRYPTO_NULL2
170
	tristate
171 172 173 174
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

175
config CRYPTO_PCRYPT
176 177
	tristate "Parallel crypto engine"
	depends on SMP
178 179 180 181 182 183 184
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

185 186 187
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
188
	select CRYPTO_HASH
189
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
190
	help
191 192 193
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
194

195 196 197 198 199 200
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
201
	select CRYPTO_NULL
L
Linus Torvalds 已提交
202
	help
203 204
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
205

206 207 208
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
209
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
210
	help
211
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
212

213 214
config CRYPTO_SIMD
	tristate
215 216
	select CRYPTO_CRYPTD

217 218 219
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
220
	select CRYPTO_BLKCIPHER
221

222 223 224
config CRYPTO_ENGINE
	tristate

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
comment "Public-key cryptography"

config CRYPTO_RSA
	tristate "RSA algorithm"
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

243 244 245
config CRYPTO_ECC
	tristate

246 247
config CRYPTO_ECDH
	tristate "ECDH algorithm"
248
	select CRYPTO_ECC
249 250 251 252 253
	select CRYPTO_KPP
	select CRYPTO_RNG_DEFAULT
	help
	  Generic implementation of the ECDH algorithm

254 255 256 257 258
config CRYPTO_ECRDSA
	tristate "EC-RDSA (GOST 34.10) algorithm"
	select CRYPTO_ECC
	select CRYPTO_AKCIPHER
	select CRYPTO_STREEBOG
259 260
	select OID_REGISTRY
	select ASN1
261 262 263 264 265 266
	help
	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
	  standard algorithms (called GOST algorithms). Only signature verification
	  is implemented.

267
comment "Authenticated Encryption with Associated Data"
268

269 270 271
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
272
	select CRYPTO_HASH
273
	select CRYPTO_AEAD
274
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
275
	help
276
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
277

278 279 280 281
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
282
	select CRYPTO_GHASH
283
	select CRYPTO_NULL
284
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
285
	help
286 287
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
288

289 290 291 292 293
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
294
	select CRYPTO_MANAGER
295 296 297 298 299 300 301
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

302 303 304 305 306 307 308
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

309 310 311 312 313
config CRYPTO_AEGIS128_SIMD
	bool "Support SIMD acceleration for AEGIS-128"
	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
	default y

314 315 316 317
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
318
	select CRYPTO_SIMD
319
	help
320
	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
321

322 323 324 325
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
326
	select CRYPTO_NULL
327
	select CRYPTO_RNG_DEFAULT
328
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
329
	help
330 331
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
332

333 334 335 336
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
337
	select CRYPTO_RNG_DEFAULT
338
	select CRYPTO_MANAGER
339 340 341 342 343
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

344
comment "Block modes"
345

346 347
config CRYPTO_CBC
	tristate "CBC support"
348
	select CRYPTO_BLKCIPHER
349
	select CRYPTO_MANAGER
350
	help
351 352
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
353

354 355 356 357 358 359 360 361
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

362 363
config CRYPTO_CTR
	tristate "CTR support"
364
	select CRYPTO_BLKCIPHER
365
	select CRYPTO_SEQIV
366
	select CRYPTO_MANAGER
367
	help
368
	  CTR: Counter mode
369 370
	  This block cipher algorithm is required for IPSec.

371 372 373
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
374
	select CRYPTO_MANAGER
375 376 377
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
378 379 380
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
381 382 383
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

384 385
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

386 387
config CRYPTO_ECB
	tristate "ECB support"
388 389 390
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
391 392 393
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
394

395
config CRYPTO_LRW
396
	tristate "LRW support"
397 398 399 400 401 402 403 404 405 406
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

407 408 409 410 411 412 413 414 415 416 417 418
config CRYPTO_OFB
	tristate "OFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

419 420 421 422 423 424 425 426
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

427
config CRYPTO_XTS
428
	tristate "XTS support"
429 430
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
431
	select CRYPTO_ECB
432 433 434 435 436
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

437 438 439
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
440
	select CRYPTO_MANAGER
441 442 443 444
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

445 446 447 448 449
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
	select CRYPTO_POLY1305

450 451 452 453 454 455 456 457
config CRYPTO_NHPOLY1305_SSE2
	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  SSE2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

458 459 460 461 462 463 464 465
config CRYPTO_NHPOLY1305_AVX2
	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  AVX2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

466 467 468 469 470
config CRYPTO_ADIANTUM
	tristate "Adiantum support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_NHPOLY1305
471
	select CRYPTO_MANAGER
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	help
	  Adiantum is a tweakable, length-preserving encryption mode
	  designed for fast and secure disk encryption, especially on
	  CPUs without dedicated crypto instructions.  It encrypts
	  each sector using the XChaCha12 stream cipher, two passes of
	  an ε-almost-∆-universal hash function, and an invocation of
	  the AES-256 block cipher on a single 16-byte block.  On CPUs
	  without AES instructions, Adiantum is much faster than
	  AES-XTS.

	  Adiantum's security is provably reducible to that of its
	  underlying stream and block ciphers, subject to a security
	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
	  mode, so it actually provides an even stronger notion of
	  security than XTS, subject to the security bound.

	  If unsure, say N.

490 491
comment "Hash modes"

492 493 494 495 496 497 498 499 500 501 502
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

503 504 505
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
506 507
	select CRYPTO_MANAGER
	help
508 509
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
510

511 512 513 514
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
515
	help
516 517 518 519
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
520

521 522 523 524 525 526 527 528 529 530 531
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

532
comment "Digest"
M
Mikko Herranen 已提交
533

534 535
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
536
	select CRYPTO_HASH
537
	select CRC32
J
Joy Latten 已提交
538
	help
539 540
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
541
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
542

543 544 545 546 547 548 549 550 551 552 553 554
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

555
config CRYPTO_CRC32C_VPMSUM
556
	tristate "CRC32c CRC algorithm (powerpc64)"
557
	depends on PPC64 && ALTIVEC
558 559 560 561 562 563 564 565
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


566 567 568 569 570 571 572 573 574
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
H
haco 已提交
592
	  instruction. This option will create 'crc32-pclmul' module,
593 594 595
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

596 597 598 599 600 601 602 603 604
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


605 606 607 608 609 610 611 612
config CRYPTO_XXHASH
	tristate "xxHash hash algorithm"
	select CRYPTO_HASH
	select XXHASH
	help
	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
	  speeds close to RAM limits.

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
H
haco 已提交
629
	  'crct10dif-pclmul' module, which is faster when computing the
630 631
	  crct10dif checksum as compared with the generic table implementation.

632 633 634 635 636 637 638 639 640
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

641 642 643 644 645 646 647 648
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

649 650 651
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
652
	select CRYPTO_HASH
653 654 655
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

656 657
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
658
	select CRYPTO_HASH
659 660 661 662 663 664 665
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

666
config CRYPTO_POLY1305_X86_64
667
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
668 669 670 671 672 673 674 675 676 677
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

678 679
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
680
	select CRYPTO_HASH
681
	help
682
	  MD4 message digest algorithm (RFC1320).
683

684 685
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
686
	select CRYPTO_HASH
L
Linus Torvalds 已提交
687
	help
688
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
689

690 691 692 693 694 695 696 697 698
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

699 700 701 702 703 704 705 706
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

707 708 709 710 711 712 713 714 715
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

716 717
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
718
	select CRYPTO_HASH
719
	help
720 721 722 723
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
724

725
config CRYPTO_RMD128
726
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
727
	select CRYPTO_HASH
728 729
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
730

731
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
732
	  be used as a secure replacement for RIPEMD. For other use cases,
733
	  RIPEMD-160 should be used.
734

735
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
736
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
737 738

config CRYPTO_RMD160
739
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
740
	select CRYPTO_HASH
741 742
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
743

744 745 746 747
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
748

749 750
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
751

752
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
753
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
754 755

config CRYPTO_RMD256
756
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
757
	select CRYPTO_HASH
758 759 760 761 762
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
763

764
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
765
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
766 767

config CRYPTO_RMD320
768
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
769
	select CRYPTO_HASH
770 771 772 773 774
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
775

776
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
777
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
778

779 780
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
781
	select CRYPTO_HASH
L
Linus Torvalds 已提交
782
	help
783
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
784

785
config CRYPTO_SHA1_SSSE3
786
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
787 788 789 790 791 792
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
793 794
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
795

796
config CRYPTO_SHA256_SSSE3
797
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
798 799 800 801 802 803 804
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
805 806
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
807 808 809 810 811 812 813 814 815 816

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
817 818
	  version 2 (AVX2) instructions, when available.

819 820 821 822 823 824 825 826 827
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

828 829 830 831 832 833 834 835 836
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

837 838 839 840 841 842 843
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

844 845 846 847 848 849 850
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

851 852
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
853
	select CRYPTO_HASH
L
Linus Torvalds 已提交
854
	help
855
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
856

857 858
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
859

860 861
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
862

863 864 865 866 867 868 869 870 871
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

872 873 874 875 876 877 878 879 880
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

881 882 883 884 885 886 887 888 889
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

890 891
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
892
	select CRYPTO_HASH
893
	help
894
	  SHA512 secure hash standard (DFIPS 180-2).
895

896 897
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
898

899 900
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
901

902 903 904 905 906 907 908 909 910
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

911 912 913 914 915 916 917 918 919
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

920 921 922 923 924 925 926 927 928 929
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

930 931 932 933 934 935 936 937 938 939 940
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

941 942 943 944 945 946 947 948 949 950 951 952
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

953 954
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
955
	select CRYPTO_HASH
956
	help
957
	  Tiger hash algorithm 192, 160 and 128-bit hashes
958

959 960 961
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
962 963

	  See also:
964
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
965

966 967
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
968
	select CRYPTO_HASH
L
Linus Torvalds 已提交
969
	help
970
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
971

972 973
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
974 975

	  See also:
976
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
977

978 979
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
980
	depends on X86 && 64BIT
981 982 983 984 985
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

986
comment "Ciphers"
L
Linus Torvalds 已提交
987

988 989 990
config CRYPTO_LIB_AES
	tristate

L
Linus Torvalds 已提交
991 992
config CRYPTO_AES
	tristate "AES cipher algorithms"
993
	select CRYPTO_ALGAPI
994
	select CRYPTO_LIB_AES
L
Linus Torvalds 已提交
995
	help
996
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
997 998 999
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1000 1001 1002 1003 1004 1005 1006
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1007

1008
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1009 1010 1011

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1012 1013 1014
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
1015
	select CRYPTO_LIB_AES
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1028 1029
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1030

1031 1032
config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1033
	depends on X86
H
Herbert Xu 已提交
1034
	select CRYPTO_AEAD
1035
	select CRYPTO_LIB_AES
1036
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
1037
	select CRYPTO_BLKCIPHER
1038
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1039
	select CRYPTO_SIMD
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1050 1051 1052 1053
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1054

1055
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1056 1057 1058

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1059 1060
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1061
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1062
	  acceleration for CTR.
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1116 1117
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1118

1119 1120 1121
config CRYPTO_LIB_ARC4
	tristate

1122 1123
config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1124
	select CRYPTO_BLKCIPHER
1125
	select CRYPTO_LIB_ARC4
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1137
	select CRYPTO_BLOWFISH_COMMON
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1148 1149 1150 1151 1152 1153 1154 1155 1156
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1157 1158
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1159
	depends on X86 && 64BIT
1160
	select CRYPTO_BLKCIPHER
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1187 1188
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1189
	depends on X86 && 64BIT
1190
	depends on CRYPTO
1191
	select CRYPTO_BLKCIPHER
1192
	select CRYPTO_GLUE_HELPER_X86
1193 1194 1195 1196 1197 1198 1199 1200 1201
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1202 1203 1204 1205 1206 1207
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1208
	select CRYPTO_BLKCIPHER
1209
	select CRYPTO_CAMELLIA_X86_64
1210 1211
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1222 1223
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1256 1257 1258 1259 1260 1261
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1262 1263
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1264
	select CRYPTO_ALGAPI
1265
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1266 1267 1268 1269
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1270 1271 1272
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1273
	select CRYPTO_BLKCIPHER
1274
	select CRYPTO_CAST5
1275 1276
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1277 1278 1279 1280 1281 1282 1283
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1284 1285
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1286
	select CRYPTO_ALGAPI
1287
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1288 1289 1290 1291
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1292 1293 1294
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1295
	select CRYPTO_BLKCIPHER
1296
	select CRYPTO_CAST6
1297 1298 1299
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1300 1301 1302 1303 1304 1305 1306 1307
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1308 1309
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1310
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1311
	help
1312
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1313

1314 1315
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1316
	depends on SPARC64
1317 1318 1319 1320 1321 1322
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1323 1324 1325
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1326
	select CRYPTO_BLKCIPHER
1327 1328 1329 1330 1331 1332 1333 1334 1335
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1336 1337
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1338
	select CRYPTO_ALGAPI
1339
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1340
	help
1341
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1342 1343 1344

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1345
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1346 1347 1348 1349 1350 1351 1352 1353
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1354
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1355

1356
config CRYPTO_SALSA20
1357
	tristate "Salsa20 stream cipher algorithm"
1358 1359 1360 1361 1362 1363
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1364 1365 1366 1367

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1368
config CRYPTO_CHACHA20
1369
	tristate "ChaCha stream cipher algorithms"
1370 1371
	select CRYPTO_BLKCIPHER
	help
1372
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1373 1374 1375

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1376
	  This is the portable C implementation of ChaCha20.  See also:
1377 1378
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1379 1380 1381 1382 1383 1384
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1385 1386 1387 1388
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1389
config CRYPTO_CHACHA20_X86_64
1390
	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1391 1392 1393 1394
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
1395 1396
	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
	  XChaCha20, and XChaCha12 stream ciphers.
1397

1398 1399
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1400
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1401
	help
1402
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1414
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1415
	help
1416
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1417

1418 1419 1420 1421 1422 1423 1424
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1425 1426 1427
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1428
	select CRYPTO_BLKCIPHER
1429
	select CRYPTO_GLUE_HELPER_X86
1430
	select CRYPTO_SERPENT
1431
	select CRYPTO_SIMD
1432 1433 1434 1435 1436 1437
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1438
	  This module provides Serpent cipher algorithm that processes eight
1439 1440 1441 1442 1443
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1444 1445 1446
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1447
	select CRYPTO_BLKCIPHER
1448
	select CRYPTO_GLUE_HELPER_X86
1449
	select CRYPTO_SERPENT
1450
	select CRYPTO_SIMD
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1462 1463 1464 1465

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1466
	select CRYPTO_BLKCIPHER
1467
	select CRYPTO_GLUE_HELPER_X86
1468
	select CRYPTO_SERPENT
1469
	select CRYPTO_SIMD
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1524 1525
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1526
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1527
	help
1528
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1543
	select CRYPTO_ALGAPI
1544
	select CRYPTO_TWOFISH_COMMON
1545
	help
1546
	  Twofish cipher algorithm.
1547

1548 1549 1550 1551
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1574 1575

	  See also:
1576
	  <http://www.schneier.com/twofish.html>
1577

1578 1579 1580
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1581
	select CRYPTO_ALGAPI
1582
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1583
	help
1584
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1585

1586 1587 1588 1589 1590 1591 1592 1593
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1594 1595
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1596
	depends on X86 && 64BIT
1597
	select CRYPTO_BLKCIPHER
1598 1599
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1600
	select CRYPTO_GLUE_HELPER_X86
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1615 1616 1617
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1618
	select CRYPTO_BLKCIPHER
1619
	select CRYPTO_GLUE_HELPER_X86
1620
	select CRYPTO_SIMD
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1638 1639 1640 1641 1642
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1643
	select CRYPTO_ACOMP2
1644 1645
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1646
	help
1647 1648 1649 1650
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1651

1652 1653 1654
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1655
	select CRYPTO_ACOMP2
1656 1657 1658 1659 1660
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1661 1662
config CRYPTO_842
	tristate "842 compression algorithm"
1663
	select CRYPTO_ALGAPI
1664
	select CRYPTO_ACOMP2
1665 1666
	select 842_COMPRESS
	select 842_DECOMPRESS
1667 1668
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1669 1670 1671 1672

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1673
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1674 1675 1676 1677 1678 1679 1680 1681
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1682
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1683 1684 1685 1686
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1687

N
Nick Terrell 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1697 1698 1699 1700 1701 1702 1703 1704 1705
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1706 1707
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1708

1709
menuconfig CRYPTO_DRBG_MENU
1710 1711 1712 1713 1714
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1715
if CRYPTO_DRBG_MENU
1716 1717

config CRYPTO_DRBG_HMAC
1718
	bool
1719 1720
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1721
	select CRYPTO_SHA256
1722 1723 1724

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1725
	select CRYPTO_SHA256
1726 1727 1728 1729 1730 1731
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1732
	depends on CRYPTO_CTR
1733 1734 1735
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1736 1737
config CRYPTO_DRBG
	tristate
1738
	default CRYPTO_DRBG_MENU
1739
	select CRYPTO_RNG
1740
	select CRYPTO_JITTERENTROPY
1741 1742

endif	# if CRYPTO_DRBG_MENU
1743

1744 1745
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1746
	select CRYPTO_RNG
1747 1748 1749 1750 1751 1752 1753
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1754 1755 1756
config CRYPTO_USER_API
	tristate

1757 1758
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1759
	depends on NET
1760 1761 1762 1763 1764 1765
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1766 1767
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1768
	depends on NET
1769 1770 1771 1772 1773 1774
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1775 1776 1777 1778 1779 1780 1781 1782 1783
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1784 1785 1786 1787
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1788 1789
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1790 1791 1792 1793 1794
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1795 1796
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
1797
	depends on CRYPTO_USER
1798 1799 1800 1801 1802 1803 1804 1805 1806
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1807 1808 1809
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1810
source "drivers/crypto/Kconfig"
1811 1812
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
L
Linus Torvalds 已提交
1813

1814
endif	# if CRYPTO