Kconfig 51.4 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29 30 31 32
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64
	select CRYPTO_WORKQUEUE
65

66 67
config CRYPTO_HASH
	tristate
68
	select CRYPTO_HASH2
69 70
	select CRYPTO_ALGAPI

71 72 73 74
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

75 76
config CRYPTO_RNG
	tristate
77
	select CRYPTO_RNG2
78 79
	select CRYPTO_ALGAPI

80 81 82 83
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

84 85 86 87
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
88 89 90 91 92 93 94 95 96
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

97 98 99 100 101 102 103 104 105
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

106 107 108
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
109
	select SGL_ALLOC
110 111 112 113 114 115

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

116 117
config CRYPTO_RSA
	tristate "RSA algorithm"
118
	select CRYPTO_AKCIPHER
119
	select CRYPTO_MANAGER
120 121 122 123 124
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

125 126 127 128 129 130 131
config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

132 133
config CRYPTO_ECDH
	tristate "ECDH algorithm"
134
	select CRYPTO_KPP
135
	select CRYPTO_RNG_DEFAULT
136 137
	help
	  Generic implementation of the ECDH algorithm
138

H
Herbert Xu 已提交
139 140
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
141
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
142 143 144 145
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

146 147 148 149 150
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
151
	select CRYPTO_AKCIPHER2
152
	select CRYPTO_KPP2
153
	select CRYPTO_ACOMP2
154

155 156
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
157
	depends on NET
158 159
	select CRYPTO_MANAGER
	help
160
	  Userspace configuration for cryptographic instantiations such as
161 162
	  cbc(aes).

163 164
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
165 166
	default y
	depends on CRYPTO_MANAGER2
167
	help
168 169
	  Disable run-time self tests that normally take place at
	  algorithm registration.
170

171
config CRYPTO_GF128MUL
172
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
173
	help
174 175 176 177 178
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
179

L
Linus Torvalds 已提交
180 181
config CRYPTO_NULL
	tristate "Null algorithms"
182
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
183 184 185
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

186
config CRYPTO_NULL2
187
	tristate
188 189 190 191
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

192
config CRYPTO_PCRYPT
193 194
	tristate "Parallel crypto engine"
	depends on SMP
195 196 197 198 199 200 201
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

202 203 204
config CRYPTO_WORKQUEUE
       tristate

205 206 207
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
208
	select CRYPTO_HASH
209
	select CRYPTO_MANAGER
210
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
211
	help
212 213 214
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
215

216 217 218 219 220 221
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
222
	select CRYPTO_NULL
L
Linus Torvalds 已提交
223
	help
224 225
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
226

227 228 229
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
230
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
231
	help
232
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
233

234 235
config CRYPTO_SIMD
	tristate
236 237
	select CRYPTO_CRYPTD

238 239 240
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
241
	select CRYPTO_BLKCIPHER
242

243 244 245
config CRYPTO_ENGINE
	tristate

246
comment "Authenticated Encryption with Associated Data"
247

248 249 250
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
251
	select CRYPTO_HASH
252
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
253
	help
254
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
255

256 257 258 259
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
260
	select CRYPTO_GHASH
261
	select CRYPTO_NULL
L
Linus Torvalds 已提交
262
	help
263 264
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
265

266 267 268 269 270 271 272 273 274 275 276 277
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L
	tristate "AEGIS-128L AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256
	tristate "AEGIS-256 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-256 dedicated AEAD algorithm.

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L_AESNI_SSE2
	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256_AESNI_SSE2
	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.

323 324 325 326 327 328
config CRYPTO_MORUS640
	tristate "MORUS-640 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-640 dedicated AEAD algorithm.

329
config CRYPTO_MORUS640_GLUE
330 331
	tristate
	depends on X86
332 333 334 335 336 337
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
	  algorithm.

338 339 340 341 342 343 344 345
config CRYPTO_MORUS640_SSE2
	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS640_GLUE
	help
	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.

346 347 348 349 350 351
config CRYPTO_MORUS1280
	tristate "MORUS-1280 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-1280 dedicated AEAD algorithm.

352
config CRYPTO_MORUS1280_GLUE
353 354
	tristate
	depends on X86
355 356 357 358
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	  algorithm.

config CRYPTO_MORUS1280_SSE2
	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
	  algorithm.

config CRYPTO_MORUS1280_AVX2
	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
377 378
	  algorithm.

379 380 381 382
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
383
	select CRYPTO_NULL
384
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
385
	help
386 387
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
388

389 390 391 392
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
393
	select CRYPTO_RNG_DEFAULT
394
	default m
395 396 397 398 399
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

400
comment "Block modes"
401

402 403
config CRYPTO_CBC
	tristate "CBC support"
404
	select CRYPTO_BLKCIPHER
405
	select CRYPTO_MANAGER
406
	help
407 408
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
409

410 411 412 413 414 415 416 417
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

418 419
config CRYPTO_CTR
	tristate "CTR support"
420
	select CRYPTO_BLKCIPHER
421
	select CRYPTO_SEQIV
422
	select CRYPTO_MANAGER
423
	help
424
	  CTR: Counter mode
425 426
	  This block cipher algorithm is required for IPSec.

427 428 429 430 431 432 433 434 435 436 437 438 439
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
440 441 442
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
443 444 445
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
446

447
config CRYPTO_LRW
448
	tristate "LRW support"
449 450 451 452 453 454 455 456 457 458
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

459 460 461 462 463 464 465 466
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

467
config CRYPTO_XTS
468
	tristate "XTS support"
469 470
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
471
	select CRYPTO_ECB
472 473 474 475 476
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

477 478 479 480 481 482 483
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

484 485
comment "Hash modes"

486 487 488 489 490 491 492 493 494 495 496
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

497 498 499
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
500 501
	select CRYPTO_MANAGER
	help
502 503
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
504

505 506 507 508
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
509
	help
510 511 512 513
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
514

515 516 517 518 519 520 521 522 523 524 525
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

526
comment "Digest"
M
Mikko Herranen 已提交
527

528 529
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
530
	select CRYPTO_HASH
531
	select CRC32
J
Joy Latten 已提交
532
	help
533 534
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
535
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
536

537 538 539 540 541 542 543 544 545 546 547 548
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

549
config CRYPTO_CRC32C_VPMSUM
550
	tristate "CRC32c CRC algorithm (powerpc64)"
551
	depends on PPC64 && ALTIVEC
552 553 554 555 556 557 558 559
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


560 561 562 563 564 565 566 567 568
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

590 591 592 593 594 595 596 597 598
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

618 619 620 621 622 623 624 625 626
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

627 628 629 630 631 632 633 634
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

635 636 637
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
638
	select CRYPTO_HASH
639 640 641
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

642 643
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
644
	select CRYPTO_HASH
645 646 647 648 649 650 651
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

652
config CRYPTO_POLY1305_X86_64
653
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
654 655 656 657 658 659 660 661 662 663
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

664 665
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
666
	select CRYPTO_HASH
667
	help
668
	  MD4 message digest algorithm (RFC1320).
669

670 671
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
672
	select CRYPTO_HASH
L
Linus Torvalds 已提交
673
	help
674
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
675

676 677 678 679 680 681 682 683 684
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

685 686 687 688 689 690 691 692
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

693 694 695 696 697 698 699 700 701
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

702 703
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
704
	select CRYPTO_HASH
705
	help
706 707 708 709
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
710

711
config CRYPTO_RMD128
712
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
713
	select CRYPTO_HASH
714 715
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
716

717
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
718
	  be used as a secure replacement for RIPEMD. For other use cases,
719
	  RIPEMD-160 should be used.
720

721
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
722
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
723 724

config CRYPTO_RMD160
725
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
726
	select CRYPTO_HASH
727 728
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
729

730 731 732 733
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
734

735 736
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
737

738
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
739
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
740 741

config CRYPTO_RMD256
742
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
743
	select CRYPTO_HASH
744 745 746 747 748
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
749

750
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
751
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
752 753

config CRYPTO_RMD320
754
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
755
	select CRYPTO_HASH
756 757 758 759 760
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
761

762
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
763
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
764

765 766
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
767
	select CRYPTO_HASH
L
Linus Torvalds 已提交
768
	help
769
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
770

771
config CRYPTO_SHA1_SSSE3
772
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
773 774 775 776 777 778
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
779 780
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
781

782
config CRYPTO_SHA256_SSSE3
783
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
784 785 786 787 788 789 790
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
791 792
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
793 794 795 796 797 798 799 800 801 802

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
803 804
	  version 2 (AVX2) instructions, when available.

805 806 807 808 809 810 811 812 813
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

814 815 816 817 818 819 820 821 822
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

823 824 825 826 827 828 829
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

830 831 832 833 834 835 836
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

837 838
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
839
	select CRYPTO_HASH
L
Linus Torvalds 已提交
840
	help
841
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
842

843 844
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
845

846 847
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
848

849 850 851 852 853 854 855 856 857
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

858 859 860 861 862 863 864 865 866
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

867 868 869 870 871 872 873 874 875
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

876 877
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
878
	select CRYPTO_HASH
879
	help
880
	  SHA512 secure hash standard (DFIPS 180-2).
881

882 883
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
884

885 886
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
887

888 889 890 891 892 893 894 895 896
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

897 898 899 900 901 902 903 904 905
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

906 907 908 909 910 911 912 913 914 915
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

916 917 918 919 920 921 922 923 924 925 926
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

927 928
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
929
	select CRYPTO_HASH
930
	help
931
	  Tiger hash algorithm 192, 160 and 128-bit hashes
932

933 934 935
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
936 937

	  See also:
938
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
939

940 941
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
942
	select CRYPTO_HASH
L
Linus Torvalds 已提交
943
	help
944
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
945

946 947
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
948 949

	  See also:
950
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
951

952 953
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
954
	depends on X86 && 64BIT
955 956 957 958 959
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

960
comment "Ciphers"
L
Linus Torvalds 已提交
961 962 963

config CRYPTO_AES
	tristate "AES cipher algorithms"
964
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
965
	help
966
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
967 968 969
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
970 971 972 973 974 975 976
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
977

978
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
979 980 981

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
	  block.

L
Linus Torvalds 已提交
999 1000
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
1001 1002
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
1003
	select CRYPTO_AES
L
Linus Torvalds 已提交
1004
	help
1005
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1006 1007 1008
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1009 1010 1011 1012 1013 1014 1015
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1016

1017
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
1018 1019 1020 1021 1022

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
1023 1024
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
1025
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
1026
	help
1027
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
1028 1029 1030
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1031 1032 1033
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1045
	depends on X86
H
Herbert Xu 已提交
1046
	select CRYPTO_AEAD
1047 1048
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
1049
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
1050
	select CRYPTO_BLKCIPHER
1051
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1052
	select CRYPTO_SIMD
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1063 1064 1065 1066
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1067

1068
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1069 1070 1071

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1072 1073 1074 1075
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1129 1130
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1131 1132 1133

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1134
	select CRYPTO_BLKCIPHER
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1146
	select CRYPTO_BLOWFISH_COMMON
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1157 1158 1159 1160 1161 1162 1163 1164 1165
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1166 1167
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1168
	depends on X86 && 64BIT
1169
	select CRYPTO_BLKCIPHER
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1196 1197
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1198
	depends on X86 && 64BIT
1199
	depends on CRYPTO
1200
	select CRYPTO_BLKCIPHER
1201
	select CRYPTO_GLUE_HELPER_X86
1202 1203 1204 1205 1206 1207 1208 1209 1210
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1211 1212 1213 1214 1215 1216
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1217
	select CRYPTO_BLKCIPHER
1218
	select CRYPTO_CAMELLIA_X86_64
1219 1220
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1231 1232
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1265 1266 1267 1268 1269 1270
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1271 1272
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1273
	select CRYPTO_ALGAPI
1274
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1275 1276 1277 1278
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1279 1280 1281
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1282
	select CRYPTO_BLKCIPHER
1283
	select CRYPTO_CAST5
1284 1285
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1286 1287 1288 1289 1290 1291 1292
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1293 1294
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1295
	select CRYPTO_ALGAPI
1296
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1297 1298 1299 1300
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1301 1302 1303
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1304
	select CRYPTO_BLKCIPHER
1305
	select CRYPTO_CAST6
1306 1307 1308
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1309 1310 1311 1312 1313 1314 1315 1316
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1317 1318
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1319
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1320
	help
1321
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1322

1323 1324
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1325
	depends on SPARC64
1326 1327 1328 1329 1330 1331
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1332 1333 1334
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1335
	select CRYPTO_BLKCIPHER
1336 1337 1338 1339 1340 1341 1342 1343 1344
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1345 1346
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1347
	select CRYPTO_ALGAPI
1348
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1349
	help
1350
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1351 1352 1353

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1354
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1355 1356 1357 1358 1359 1360 1361 1362
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1363
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1364

1365
config CRYPTO_SALSA20
1366
	tristate "Salsa20 stream cipher algorithm"
1367 1368 1369 1370 1371 1372
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1373 1374 1375 1376

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1390
config CRYPTO_CHACHA20_X86_64
1391
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1405 1406
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1407
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1408
	help
1409
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1421
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1422
	help
1423
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1424

1425 1426 1427 1428 1429 1430 1431
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1432 1433 1434
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1435
	select CRYPTO_BLKCIPHER
1436
	select CRYPTO_GLUE_HELPER_X86
1437
	select CRYPTO_SERPENT
1438
	select CRYPTO_SIMD
1439 1440 1441 1442 1443 1444
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1445
	  This module provides Serpent cipher algorithm that processes eight
1446 1447 1448 1449 1450
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1451 1452 1453
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1454
	select CRYPTO_BLKCIPHER
1455
	select CRYPTO_GLUE_HELPER_X86
1456
	select CRYPTO_SERPENT
1457
	select CRYPTO_SIMD
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1469 1470 1471 1472

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1473
	select CRYPTO_BLKCIPHER
1474
	select CRYPTO_GLUE_HELPER_X86
1475
	select CRYPTO_SERPENT
1476
	select CRYPTO_SIMD
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1531 1532
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1533
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1534
	help
1535
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1550
	select CRYPTO_ALGAPI
1551
	select CRYPTO_TWOFISH_COMMON
1552
	help
1553
	  Twofish cipher algorithm.
1554

1555 1556 1557 1558
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1559

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1581 1582

	  See also:
1583
	  <http://www.schneier.com/twofish.html>
1584

1585 1586 1587
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1588
	select CRYPTO_ALGAPI
1589
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1590
	help
1591
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1592

1593 1594 1595 1596 1597 1598 1599 1600
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1601 1602
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1603
	depends on X86 && 64BIT
1604
	select CRYPTO_BLKCIPHER
1605 1606
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1607
	select CRYPTO_GLUE_HELPER_X86
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1622 1623 1624
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1625
	select CRYPTO_BLKCIPHER
1626
	select CRYPTO_GLUE_HELPER_X86
1627
	select CRYPTO_SIMD
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1645 1646 1647 1648 1649
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1650
	select CRYPTO_ACOMP2
1651 1652
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1653
	help
1654 1655 1656 1657
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1658

1659 1660 1661
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1662
	select CRYPTO_ACOMP2
1663 1664 1665 1666 1667
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1668 1669
config CRYPTO_842
	tristate "842 compression algorithm"
1670
	select CRYPTO_ALGAPI
1671
	select CRYPTO_ACOMP2
1672 1673
	select 842_COMPRESS
	select 842_DECOMPRESS
1674 1675
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1676 1677 1678 1679

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1680
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1681 1682 1683 1684 1685 1686 1687 1688
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1689
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1690 1691 1692 1693
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1694

N
Nick Terrell 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1704 1705 1706 1707 1708 1709 1710 1711 1712
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1713 1714
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1715

1716
menuconfig CRYPTO_DRBG_MENU
1717 1718 1719 1720 1721
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1722
if CRYPTO_DRBG_MENU
1723 1724

config CRYPTO_DRBG_HMAC
1725
	bool
1726 1727
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1728
	select CRYPTO_SHA256
1729 1730 1731

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1732
	select CRYPTO_SHA256
1733 1734 1735 1736 1737 1738
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1739
	depends on CRYPTO_CTR
1740 1741 1742
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1743 1744
config CRYPTO_DRBG
	tristate
1745
	default CRYPTO_DRBG_MENU
1746
	select CRYPTO_RNG
1747
	select CRYPTO_JITTERENTROPY
1748 1749

endif	# if CRYPTO_DRBG_MENU
1750

1751 1752
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1753
	select CRYPTO_RNG
1754 1755 1756 1757 1758 1759 1760
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1761 1762 1763
config CRYPTO_USER_API
	tristate

1764 1765
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1766
	depends on NET
1767 1768 1769 1770 1771 1772
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1773 1774
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1775
	depends on NET
1776 1777 1778 1779 1780 1781
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1782 1783 1784 1785 1786 1787 1788 1789 1790
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1791 1792 1793 1794
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1795 1796
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1797 1798 1799 1800 1801
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1813 1814 1815
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1816
source "drivers/crypto/Kconfig"
1817
source crypto/asymmetric_keys/Kconfig
1818
source certs/Kconfig
L
Linus Torvalds 已提交
1819

1820
endif	# if CRYPTO