Kconfig 54.8 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29
	help
30 31
	  This option enables the fips boot option which is
	  required if you want the system to operate in a FIPS 200
N
Neil Horman 已提交
32
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64
	select CRYPTO_WORKQUEUE
65

66 67
config CRYPTO_HASH
	tristate
68
	select CRYPTO_HASH2
69 70
	select CRYPTO_ALGAPI

71 72 73 74
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

75 76
config CRYPTO_RNG
	tristate
77
	select CRYPTO_RNG2
78 79
	select CRYPTO_ALGAPI

80 81 82 83
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

84 85 86 87
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
88 89 90 91 92 93 94 95 96
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

97 98 99 100 101 102 103 104 105
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

106 107 108
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
109
	select SGL_ALLOC
110 111 112 113 114 115

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

H
Herbert Xu 已提交
116 117
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
118
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
119 120 121 122
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

123 124 125 126 127
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
128
	select CRYPTO_AKCIPHER2
129
	select CRYPTO_KPP2
130
	select CRYPTO_ACOMP2
131

132 133
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
134
	depends on NET
135 136
	select CRYPTO_MANAGER
	help
137
	  Userspace configuration for cryptographic instantiations such as
138 139
	  cbc(aes).

140 141
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
142 143
	default y
	depends on CRYPTO_MANAGER2
144
	help
145 146
	  Disable run-time self tests that normally take place at
	  algorithm registration.
147

148 149 150 151 152 153 154 155 156 157
config CRYPTO_MANAGER_EXTRA_TESTS
	bool "Enable extra run-time crypto self tests"
	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
	help
	  Enable extra run-time self tests of registered crypto algorithms,
	  including randomized fuzz tests.

	  This is intended for developer use only, as these tests take much
	  longer to run than the normal self tests.

158
config CRYPTO_GF128MUL
159
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
160
	help
161 162 163 164 165
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
166

L
Linus Torvalds 已提交
167 168
config CRYPTO_NULL
	tristate "Null algorithms"
169
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
170 171 172
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

173
config CRYPTO_NULL2
174
	tristate
175 176 177 178
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

179
config CRYPTO_PCRYPT
180 181
	tristate "Parallel crypto engine"
	depends on SMP
182 183 184 185 186 187 188
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

189 190 191
config CRYPTO_WORKQUEUE
       tristate

192 193 194
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
195
	select CRYPTO_HASH
196
	select CRYPTO_MANAGER
197
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
198
	help
199 200 201
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
202

203 204 205 206 207 208
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
209
	select CRYPTO_NULL
L
Linus Torvalds 已提交
210
	help
211 212
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
213

214 215 216
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
217
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
218
	help
219
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
220

221 222
config CRYPTO_SIMD
	tristate
223 224
	select CRYPTO_CRYPTD

225 226 227
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
228
	select CRYPTO_BLKCIPHER
229

230 231 232
config CRYPTO_ENGINE
	tristate

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
comment "Public-key cryptography"

config CRYPTO_RSA
	tristate "RSA algorithm"
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

config CRYPTO_ECDH
	tristate "ECDH algorithm"
	select CRYPTO_KPP
	select CRYPTO_RNG_DEFAULT
	help
	  Generic implementation of the ECDH algorithm

258
comment "Authenticated Encryption with Associated Data"
259

260 261 262
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
263
	select CRYPTO_HASH
264
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
265
	help
266
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
267

268 269 270 271
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
272
	select CRYPTO_GHASH
273
	select CRYPTO_NULL
L
Linus Torvalds 已提交
274
	help
275 276
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
277

278 279 280 281 282 283 284 285 286 287 288 289
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L
	tristate "AEGIS-128L AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256
	tristate "AEGIS-256 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-256 dedicated AEAD algorithm.

311 312 313 314
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
315
	select CRYPTO_SIMD
316
	help
317
	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
318 319 320 321 322

config CRYPTO_AEGIS128L_AESNI_SSE2
	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
323
	select CRYPTO_SIMD
324
	help
325
	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
326 327 328 329 330

config CRYPTO_AEGIS256_AESNI_SSE2
	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
331
	select CRYPTO_SIMD
332
	help
333
	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
334

335 336 337 338 339 340
config CRYPTO_MORUS640
	tristate "MORUS-640 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-640 dedicated AEAD algorithm.

341
config CRYPTO_MORUS640_GLUE
342 343
	tristate
	depends on X86
344
	select CRYPTO_AEAD
345
	select CRYPTO_SIMD
346 347 348 349
	help
	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
	  algorithm.

350 351 352 353 354 355 356 357
config CRYPTO_MORUS640_SSE2
	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS640_GLUE
	help
	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.

358 359 360 361 362 363
config CRYPTO_MORUS1280
	tristate "MORUS-1280 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-1280 dedicated AEAD algorithm.

364
config CRYPTO_MORUS1280_GLUE
365 366
	tristate
	depends on X86
367
	select CRYPTO_AEAD
368
	select CRYPTO_SIMD
369 370
	help
	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	  algorithm.

config CRYPTO_MORUS1280_SSE2
	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
	  algorithm.

config CRYPTO_MORUS1280_AVX2
	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
389 390
	  algorithm.

391 392 393 394
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
395
	select CRYPTO_NULL
396
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
397
	help
398 399
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
400

401 402 403 404
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
405
	select CRYPTO_RNG_DEFAULT
406
	default m
407 408 409 410 411
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

412
comment "Block modes"
413

414 415
config CRYPTO_CBC
	tristate "CBC support"
416
	select CRYPTO_BLKCIPHER
417
	select CRYPTO_MANAGER
418
	help
419 420
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
421

422 423 424 425 426 427 428 429
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

430 431
config CRYPTO_CTR
	tristate "CTR support"
432
	select CRYPTO_BLKCIPHER
433
	select CRYPTO_SEQIV
434
	select CRYPTO_MANAGER
435
	help
436
	  CTR: Counter mode
437 438
	  This block cipher algorithm is required for IPSec.

439 440 441 442 443 444
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
445 446 447
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
448 449 450
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

451 452
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

453 454
config CRYPTO_ECB
	tristate "ECB support"
455 456 457
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
458 459 460
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
461

462
config CRYPTO_LRW
463
	tristate "LRW support"
464 465 466 467 468 469 470 471 472 473
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

474 475 476 477 478 479 480 481 482 483 484 485
config CRYPTO_OFB
	tristate "OFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

486 487 488 489 490 491 492 493
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

494
config CRYPTO_XTS
495
	tristate "XTS support"
496 497
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
498
	select CRYPTO_ECB
499 500 501 502 503
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

504 505 506 507 508 509 510
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

511 512 513 514 515
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
	select CRYPTO_POLY1305

516 517 518 519 520 521 522 523
config CRYPTO_NHPOLY1305_SSE2
	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  SSE2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

524 525 526 527 528 529 530 531
config CRYPTO_NHPOLY1305_AVX2
	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  AVX2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
config CRYPTO_ADIANTUM
	tristate "Adiantum support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_NHPOLY1305
	help
	  Adiantum is a tweakable, length-preserving encryption mode
	  designed for fast and secure disk encryption, especially on
	  CPUs without dedicated crypto instructions.  It encrypts
	  each sector using the XChaCha12 stream cipher, two passes of
	  an ε-almost-∆-universal hash function, and an invocation of
	  the AES-256 block cipher on a single 16-byte block.  On CPUs
	  without AES instructions, Adiantum is much faster than
	  AES-XTS.

	  Adiantum's security is provably reducible to that of its
	  underlying stream and block ciphers, subject to a security
	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
	  mode, so it actually provides an even stronger notion of
	  security than XTS, subject to the security bound.

	  If unsure, say N.

555 556
comment "Hash modes"

557 558 559 560 561 562 563 564 565 566 567
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

568 569 570
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
571 572
	select CRYPTO_MANAGER
	help
573 574
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
575

576 577 578 579
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
580
	help
581 582 583 584
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
585

586 587 588 589 590 591 592 593 594 595 596
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

597
comment "Digest"
M
Mikko Herranen 已提交
598

599 600
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
601
	select CRYPTO_HASH
602
	select CRC32
J
Joy Latten 已提交
603
	help
604 605
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
606
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
607

608 609 610 611 612 613 614 615 616 617 618 619
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

620
config CRYPTO_CRC32C_VPMSUM
621
	tristate "CRC32c CRC algorithm (powerpc64)"
622
	depends on PPC64 && ALTIVEC
623 624 625 626 627 628 629 630
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


631 632 633 634 635 636 637 638 639
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
H
haco 已提交
657
	  instruction. This option will create 'crc32-pclmul' module,
658 659 660
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

661 662 663 664 665 666 667 668 669
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
H
haco 已提交
686
	  'crct10dif-pclmul' module, which is faster when computing the
687 688
	  crct10dif checksum as compared with the generic table implementation.

689 690 691 692 693 694 695 696 697
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

698 699 700 701 702 703 704 705
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

706 707 708
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
709
	select CRYPTO_HASH
710 711 712
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

713 714
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
715
	select CRYPTO_HASH
716 717 718 719 720 721 722
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

723
config CRYPTO_POLY1305_X86_64
724
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
725 726 727 728 729 730 731 732 733 734
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

735 736
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
737
	select CRYPTO_HASH
738
	help
739
	  MD4 message digest algorithm (RFC1320).
740

741 742
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
743
	select CRYPTO_HASH
L
Linus Torvalds 已提交
744
	help
745
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
746

747 748 749 750 751 752 753 754 755
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

756 757 758 759 760 761 762 763
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

764 765 766 767 768 769 770 771 772
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

773 774
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
775
	select CRYPTO_HASH
776
	help
777 778 779 780
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
781

782
config CRYPTO_RMD128
783
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
784
	select CRYPTO_HASH
785 786
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
787

788
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
789
	  be used as a secure replacement for RIPEMD. For other use cases,
790
	  RIPEMD-160 should be used.
791

792
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
793
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
794 795

config CRYPTO_RMD160
796
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
797
	select CRYPTO_HASH
798 799
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
800

801 802 803 804
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
805

806 807
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
808

809
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
810
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
811 812

config CRYPTO_RMD256
813
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
814
	select CRYPTO_HASH
815 816 817 818 819
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
820

821
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
822
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
823 824

config CRYPTO_RMD320
825
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
826
	select CRYPTO_HASH
827 828 829 830 831
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
832

833
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
834
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
835

836 837
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
838
	select CRYPTO_HASH
L
Linus Torvalds 已提交
839
	help
840
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
841

842
config CRYPTO_SHA1_SSSE3
843
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
844 845 846 847 848 849
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
850 851
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
852

853
config CRYPTO_SHA256_SSSE3
854
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
855 856 857 858 859 860 861
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
862 863
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
864 865 866 867 868 869 870 871 872 873

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
874 875
	  version 2 (AVX2) instructions, when available.

876 877 878 879 880 881 882 883 884
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

885 886 887 888 889 890 891 892 893
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

894 895 896 897 898 899 900
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

901 902 903 904 905 906 907
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

908 909
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
910
	select CRYPTO_HASH
L
Linus Torvalds 已提交
911
	help
912
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
913

914 915
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
916

917 918
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
919

920 921 922 923 924 925 926 927 928
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

929 930 931 932 933 934 935 936 937
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

938 939 940 941 942 943 944 945 946
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

947 948
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
949
	select CRYPTO_HASH
950
	help
951
	  SHA512 secure hash standard (DFIPS 180-2).
952

953 954
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
955

956 957
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
958

959 960 961 962 963 964 965 966 967
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

968 969 970 971 972 973 974 975 976
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

977 978 979 980 981 982 983 984 985 986
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

987 988 989 990 991 992 993 994 995 996 997
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

1010 1011
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
1012
	select CRYPTO_HASH
1013
	help
1014
	  Tiger hash algorithm 192, 160 and 128-bit hashes
1015

1016 1017 1018
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
1019 1020

	  See also:
1021
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1022

1023 1024
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
1025
	select CRYPTO_HASH
L
Linus Torvalds 已提交
1026
	help
1027
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
1028

1029 1030
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
1031 1032

	  See also:
1033
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1034

1035 1036
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
1037
	depends on X86 && 64BIT
1038 1039 1040 1041 1042
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

1043
comment "Ciphers"
L
Linus Torvalds 已提交
1044 1045 1046

config CRYPTO_AES
	tristate "AES cipher algorithms"
1047
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1048
	help
1049
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1050 1051 1052
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1053 1054 1055 1056 1057 1058 1059
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1060

1061
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1062 1063 1064

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1080 1081
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1082

L
Linus Torvalds 已提交
1083 1084
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
1085 1086
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
1087
	select CRYPTO_AES
L
Linus Torvalds 已提交
1088
	help
1089
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1090 1091 1092
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1093 1094 1095 1096 1097 1098 1099
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1100

1101
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
1102 1103 1104 1105 1106

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
1107 1108
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
1109
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
1110
	help
1111
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
1112 1113 1114
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1115 1116 1117
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1129
	depends on X86
H
Herbert Xu 已提交
1130
	select CRYPTO_AEAD
1131 1132
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
1133
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
1134
	select CRYPTO_BLKCIPHER
1135
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1136
	select CRYPTO_SIMD
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1147 1148 1149 1150
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1151

1152
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1153 1154 1155

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1156 1157
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1158
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1159
	  acceleration for CTR.
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1213 1214
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1215 1216 1217

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1218
	select CRYPTO_BLKCIPHER
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1230
	select CRYPTO_BLOWFISH_COMMON
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1241 1242 1243 1244 1245 1246 1247 1248 1249
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1250 1251
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1252
	depends on X86 && 64BIT
1253
	select CRYPTO_BLKCIPHER
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1280 1281
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1282
	depends on X86 && 64BIT
1283
	depends on CRYPTO
1284
	select CRYPTO_BLKCIPHER
1285
	select CRYPTO_GLUE_HELPER_X86
1286 1287 1288 1289 1290 1291 1292 1293 1294
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1295 1296 1297 1298 1299 1300
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1301
	select CRYPTO_BLKCIPHER
1302
	select CRYPTO_CAMELLIA_X86_64
1303 1304
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1315 1316
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1349 1350 1351 1352 1353 1354
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1355 1356
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1357
	select CRYPTO_ALGAPI
1358
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1359 1360 1361 1362
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1363 1364 1365
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1366
	select CRYPTO_BLKCIPHER
1367
	select CRYPTO_CAST5
1368 1369
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1370 1371 1372 1373 1374 1375 1376
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1377 1378
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1379
	select CRYPTO_ALGAPI
1380
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1381 1382 1383 1384
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1385 1386 1387
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1388
	select CRYPTO_BLKCIPHER
1389
	select CRYPTO_CAST6
1390 1391 1392
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1393 1394 1395 1396 1397 1398 1399 1400
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1401 1402
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1403
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1404
	help
1405
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1406

1407 1408
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1409
	depends on SPARC64
1410 1411 1412 1413 1414 1415
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1416 1417 1418
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1419
	select CRYPTO_BLKCIPHER
1420 1421 1422 1423 1424 1425 1426 1427 1428
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1429 1430
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1431
	select CRYPTO_ALGAPI
1432
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1433
	help
1434
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1435 1436 1437

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1438
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1439 1440 1441 1442 1443 1444 1445 1446
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1447
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1448

1449
config CRYPTO_SALSA20
1450
	tristate "Salsa20 stream cipher algorithm"
1451 1452 1453 1454 1455 1456
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1457 1458 1459 1460

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1461
config CRYPTO_CHACHA20
1462
	tristate "ChaCha stream cipher algorithms"
1463 1464
	select CRYPTO_BLKCIPHER
	help
1465
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1466 1467 1468

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1469
	  This is the portable C implementation of ChaCha20.  See also:
1470 1471
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1472 1473 1474 1475 1476 1477
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1478 1479 1480 1481
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1482
config CRYPTO_CHACHA20_X86_64
1483
	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1484 1485 1486 1487
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
1488 1489
	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
	  XChaCha20, and XChaCha12 stream ciphers.
1490

1491 1492
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1493
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1494
	help
1495
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1496

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1507
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1508
	help
1509
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1510

1511 1512 1513 1514 1515 1516 1517
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1518 1519 1520
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1521
	select CRYPTO_BLKCIPHER
1522
	select CRYPTO_GLUE_HELPER_X86
1523
	select CRYPTO_SERPENT
1524
	select CRYPTO_SIMD
1525 1526 1527 1528 1529 1530
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1531
	  This module provides Serpent cipher algorithm that processes eight
1532 1533 1534 1535 1536
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1537 1538 1539
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1540
	select CRYPTO_BLKCIPHER
1541
	select CRYPTO_GLUE_HELPER_X86
1542
	select CRYPTO_SERPENT
1543
	select CRYPTO_SIMD
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1555 1556 1557 1558

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1559
	select CRYPTO_BLKCIPHER
1560
	select CRYPTO_GLUE_HELPER_X86
1561
	select CRYPTO_SERPENT
1562
	select CRYPTO_SIMD
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1617 1618
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1619
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1620
	help
1621
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1636
	select CRYPTO_ALGAPI
1637
	select CRYPTO_TWOFISH_COMMON
1638
	help
1639
	  Twofish cipher algorithm.
1640

1641 1642 1643 1644
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1667 1668

	  See also:
1669
	  <http://www.schneier.com/twofish.html>
1670

1671 1672 1673
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1674
	select CRYPTO_ALGAPI
1675
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1676
	help
1677
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1678

1679 1680 1681 1682 1683 1684 1685 1686
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1687 1688
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1689
	depends on X86 && 64BIT
1690
	select CRYPTO_BLKCIPHER
1691 1692
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1693
	select CRYPTO_GLUE_HELPER_X86
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1708 1709 1710
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1711
	select CRYPTO_BLKCIPHER
1712
	select CRYPTO_GLUE_HELPER_X86
1713
	select CRYPTO_SIMD
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1731 1732 1733 1734 1735
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1736
	select CRYPTO_ACOMP2
1737 1738
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1739
	help
1740 1741 1742 1743
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1744

1745 1746 1747
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1748
	select CRYPTO_ACOMP2
1749 1750 1751 1752 1753
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1754 1755
config CRYPTO_842
	tristate "842 compression algorithm"
1756
	select CRYPTO_ALGAPI
1757
	select CRYPTO_ACOMP2
1758 1759
	select 842_COMPRESS
	select 842_DECOMPRESS
1760 1761
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1762 1763 1764 1765

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1766
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1767 1768 1769 1770 1771 1772 1773 1774
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1775
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1776 1777 1778 1779
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1780

N
Nick Terrell 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1790 1791 1792 1793 1794 1795 1796 1797 1798
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1799 1800
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1801

1802
menuconfig CRYPTO_DRBG_MENU
1803 1804 1805 1806 1807
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1808
if CRYPTO_DRBG_MENU
1809 1810

config CRYPTO_DRBG_HMAC
1811
	bool
1812 1813
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1814
	select CRYPTO_SHA256
1815 1816 1817

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1818
	select CRYPTO_SHA256
1819 1820 1821 1822 1823 1824
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1825
	depends on CRYPTO_CTR
1826 1827 1828
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1829 1830
config CRYPTO_DRBG
	tristate
1831
	default CRYPTO_DRBG_MENU
1832
	select CRYPTO_RNG
1833
	select CRYPTO_JITTERENTROPY
1834 1835

endif	# if CRYPTO_DRBG_MENU
1836

1837 1838
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1839
	select CRYPTO_RNG
1840 1841 1842 1843 1844 1845 1846
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1847 1848 1849
config CRYPTO_USER_API
	tristate

1850 1851
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1852
	depends on NET
1853 1854 1855 1856 1857 1858
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1859 1860
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1861
	depends on NET
1862 1863 1864 1865 1866 1867
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1868 1869 1870 1871 1872 1873 1874 1875 1876
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1877 1878 1879 1880
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1881 1882
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1883 1884 1885 1886 1887
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1888 1889
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
1890
	depends on CRYPTO_USER
1891 1892 1893 1894 1895 1896 1897 1898 1899
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1900 1901 1902
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1903
source "drivers/crypto/Kconfig"
1904 1905
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
L
Linus Torvalds 已提交
1906

1907
endif	# if CRYPTO