Kconfig 51.5 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29 30 31 32
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64
	select CRYPTO_WORKQUEUE
65

66 67
config CRYPTO_HASH
	tristate
68
	select CRYPTO_HASH2
69 70
	select CRYPTO_ALGAPI

71 72 73 74
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

75 76
config CRYPTO_RNG
	tristate
77
	select CRYPTO_RNG2
78 79
	select CRYPTO_ALGAPI

80 81 82 83
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

84 85 86 87
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
88 89 90 91 92 93 94 95 96
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

97 98 99 100 101 102 103 104 105
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

106 107 108
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
109
	select SGL_ALLOC
110 111 112 113 114 115

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

116 117
config CRYPTO_RSA
	tristate "RSA algorithm"
118
	select CRYPTO_AKCIPHER
119
	select CRYPTO_MANAGER
120 121 122 123 124
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

125 126 127 128 129 130 131
config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

132 133
config CRYPTO_ECDH
	tristate "ECDH algorithm"
134
	select CRYPTO_KPP
135
	select CRYPTO_RNG_DEFAULT
136 137
	help
	  Generic implementation of the ECDH algorithm
138

H
Herbert Xu 已提交
139 140
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
141
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
142 143 144 145
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

146 147 148 149 150
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
151
	select CRYPTO_AKCIPHER2
152
	select CRYPTO_KPP2
153
	select CRYPTO_ACOMP2
154

155 156
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
157
	depends on NET
158 159
	select CRYPTO_MANAGER
	help
160
	  Userspace configuration for cryptographic instantiations such as
161 162
	  cbc(aes).

163 164
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
165 166
	default y
	depends on CRYPTO_MANAGER2
167
	help
168 169
	  Disable run-time self tests that normally take place at
	  algorithm registration.
170

171
config CRYPTO_GF128MUL
172
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
173
	help
174 175 176 177 178
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
179

L
Linus Torvalds 已提交
180 181
config CRYPTO_NULL
	tristate "Null algorithms"
182
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
183 184 185
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

186
config CRYPTO_NULL2
187
	tristate
188 189 190 191
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

192
config CRYPTO_PCRYPT
193 194
	tristate "Parallel crypto engine"
	depends on SMP
195 196 197 198 199 200 201
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

202 203 204
config CRYPTO_WORKQUEUE
       tristate

205 206 207
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
208
	select CRYPTO_HASH
209
	select CRYPTO_MANAGER
210
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
211
	help
212 213 214
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
215

216 217 218 219 220 221 222 223 224 225 226 227
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
228
	  their crypto request asynchronously to be processed by this daemon.
229

230 231 232 233 234 235
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
236
	select CRYPTO_NULL
L
Linus Torvalds 已提交
237
	help
238 239
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
240

241 242 243
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
244
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
245
	help
246
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
247

248
config CRYPTO_ABLK_HELPER
249
	tristate
250 251 252 253
	select CRYPTO_CRYPTD

config CRYPTO_SIMD
	tristate
254 255
	select CRYPTO_CRYPTD

256 257 258
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
259
	select CRYPTO_BLKCIPHER
260

261 262 263
config CRYPTO_ENGINE
	tristate

264
comment "Authenticated Encryption with Associated Data"
265

266 267 268
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
269
	select CRYPTO_HASH
270
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
271
	help
272
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
273

274 275 276 277
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
278
	select CRYPTO_GHASH
279
	select CRYPTO_NULL
L
Linus Torvalds 已提交
280
	help
281 282
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
283

284 285 286 287 288 289 290 291 292 293 294 295
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

296 297 298 299
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
300
	select CRYPTO_NULL
301
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
302
	help
303 304
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
305

306 307 308 309
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
310
	select CRYPTO_RNG_DEFAULT
311
	default m
312 313 314 315 316
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

317
comment "Block modes"
318

319 320
config CRYPTO_CBC
	tristate "CBC support"
321
	select CRYPTO_BLKCIPHER
322
	select CRYPTO_MANAGER
323
	help
324 325
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
326

327 328
config CRYPTO_CTR
	tristate "CTR support"
329
	select CRYPTO_BLKCIPHER
330
	select CRYPTO_SEQIV
331
	select CRYPTO_MANAGER
332
	help
333
	  CTR: Counter mode
334 335
	  This block cipher algorithm is required for IPSec.

336 337 338 339 340 341 342 343 344 345 346 347 348
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
349 350 351
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
352 353 354
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
355

356
config CRYPTO_LRW
357
	tristate "LRW support"
358 359 360 361 362 363 364 365 366 367
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

368 369 370 371 372 373 374 375
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

376
config CRYPTO_XTS
377
	tristate "XTS support"
378 379
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
380
	select CRYPTO_ECB
381 382 383 384 385
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

386 387 388 389 390 391 392
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

393 394
comment "Hash modes"

395 396 397 398 399 400 401 402 403 404 405
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

406 407 408
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
409 410
	select CRYPTO_MANAGER
	help
411 412
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
413

414 415 416 417
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
418
	help
419 420 421 422
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
423

424 425 426 427 428 429 430 431 432 433 434
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

435
comment "Digest"
M
Mikko Herranen 已提交
436

437 438
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
439
	select CRYPTO_HASH
440
	select CRC32
J
Joy Latten 已提交
441
	help
442 443
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
444
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
445

446 447 448 449 450 451 452 453 454 455 456 457
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

458
config CRYPTO_CRC32C_VPMSUM
459
	tristate "CRC32c CRC algorithm (powerpc64)"
460
	depends on PPC64 && ALTIVEC
461 462 463 464 465 466 467 468
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


469 470 471 472 473 474 475 476 477
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

518 519 520 521 522 523 524 525 526
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

527 528 529 530 531 532 533 534
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

535 536 537
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
538
	select CRYPTO_HASH
539 540 541
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

542 543
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
544
	select CRYPTO_HASH
545 546 547 548 549 550 551
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

552
config CRYPTO_POLY1305_X86_64
553
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
554 555 556 557 558 559 560 561 562 563
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

564 565
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
566
	select CRYPTO_HASH
567
	help
568
	  MD4 message digest algorithm (RFC1320).
569

570 571
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
572
	select CRYPTO_HASH
L
Linus Torvalds 已提交
573
	help
574
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
575

576 577 578 579 580 581 582 583 584
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

585 586 587 588 589 590 591 592
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

593 594 595 596 597 598 599 600 601
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

602 603
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
604
	select CRYPTO_HASH
605
	help
606 607 608 609
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
610

611
config CRYPTO_RMD128
612
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
613
	select CRYPTO_HASH
614 615
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
616

617
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
618
	  be used as a secure replacement for RIPEMD. For other use cases,
619
	  RIPEMD-160 should be used.
620

621
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
622
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
623 624

config CRYPTO_RMD160
625
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
626
	select CRYPTO_HASH
627 628
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
629

630 631 632 633
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
634

635 636
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
637

638
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
639
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
640 641

config CRYPTO_RMD256
642
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
643
	select CRYPTO_HASH
644 645 646 647 648
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
649

650
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
651
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
652 653

config CRYPTO_RMD320
654
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
655
	select CRYPTO_HASH
656 657 658 659 660
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
661

662
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
663
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
664

665 666
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
667
	select CRYPTO_HASH
L
Linus Torvalds 已提交
668
	help
669
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
670

671
config CRYPTO_SHA1_SSSE3
672
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
673 674 675 676 677 678
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
679 680
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
681

682
config CRYPTO_SHA256_SSSE3
683
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
684 685 686 687 688 689 690
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
691 692
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
693 694 695 696 697 698 699 700 701 702

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
703 704
	  version 2 (AVX2) instructions, when available.

705 706 707 708 709 710 711 712 713
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

714 715 716 717 718 719 720 721 722
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

723 724 725 726 727 728 729
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

730 731 732 733 734 735 736
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
config CRYPTO_SHA256_MB
	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
config CRYPTO_SHA512_MB
        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
        depends on X86 && 64BIT
        select CRYPTO_SHA512
        select CRYPTO_HASH
        select CRYPTO_MCRYPTD
        help
          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
          using multi-buffer technique.  This algorithm computes on
          multiple data lanes concurrently with SIMD instructions for
          better throughput.  It should not be enabled by default but
          used when there is significant amount of work to keep the keep
          the data lanes filled to get performance benefit.  If the data
          lanes remain unfilled, a flush operation will be initiated to
          process the crypto jobs, adding a slight latency.

785 786
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
787
	select CRYPTO_HASH
L
Linus Torvalds 已提交
788
	help
789
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
790

791 792
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
793

794 795
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
796

797 798 799 800 801 802 803 804 805
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

806 807 808 809 810 811 812 813 814
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

815 816 817 818 819 820 821 822 823
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

824 825
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
826
	select CRYPTO_HASH
827
	help
828
	  SHA512 secure hash standard (DFIPS 180-2).
829

830 831
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
832

833 834
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
835

836 837 838 839 840 841 842 843 844
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

845 846 847 848 849 850 851 852 853
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

854 855 856 857 858 859 860 861 862 863
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

864 865 866 867 868 869 870 871 872 873 874
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

875 876
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
877
	select CRYPTO_HASH
878
	help
879
	  Tiger hash algorithm 192, 160 and 128-bit hashes
880

881 882 883
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
884 885

	  See also:
886
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
887

888 889
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
890
	select CRYPTO_HASH
L
Linus Torvalds 已提交
891
	help
892
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
893

894 895
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
896 897

	  See also:
898
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
899

900 901
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
902
	depends on X86 && 64BIT
903 904 905 906 907
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

908
comment "Ciphers"
L
Linus Torvalds 已提交
909 910 911

config CRYPTO_AES
	tristate "AES cipher algorithms"
912
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
913
	help
914
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
915 916 917
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
918 919 920 921 922 923 924
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
925

926
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
927 928 929

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
	  block.

L
Linus Torvalds 已提交
947 948
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
949 950
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
951
	select CRYPTO_AES
L
Linus Torvalds 已提交
952
	help
953
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
954 955 956
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
957 958 959 960 961 962 963
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
964

965
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
966 967 968 969 970

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
971 972
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
973
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
974
	help
975
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
976 977 978
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
979 980 981
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
982 983 984 985 986 987 988 989 990 991 992
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
993
	depends on X86
H
Herbert Xu 已提交
994
	select CRYPTO_AEAD
995 996
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
997
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
998
	select CRYPTO_BLKCIPHER
999
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1000
	select CRYPTO_SIMD
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1011 1012 1013 1014
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1015

1016
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1017 1018 1019

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1020 1021 1022 1023
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1077 1078
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1079 1080 1081

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1082
	select CRYPTO_BLKCIPHER
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1094
	select CRYPTO_BLOWFISH_COMMON
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1105 1106 1107 1108 1109 1110 1111 1112 1113
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1114 1115
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1116
	depends on X86 && 64BIT
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1144 1145
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1146
	depends on X86 && 64BIT
1147 1148
	depends on CRYPTO
	select CRYPTO_ALGAPI
1149
	select CRYPTO_GLUE_HELPER_X86
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1161 1162 1163 1164 1165 1166 1167 1168
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1169
	select CRYPTO_ABLK_HELPER
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1183 1184
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1185 1186 1187 1188 1189 1190
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1191
	select CRYPTO_ABLK_HELPER
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1224 1225 1226 1227 1228 1229
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1230 1231
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1232
	select CRYPTO_ALGAPI
1233
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1234 1235 1236 1237
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1238 1239 1240 1241 1242
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1243
	select CRYPTO_ABLK_HELPER
1244
	select CRYPTO_CAST_COMMON
1245 1246 1247 1248 1249 1250 1251 1252
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1253 1254
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1255
	select CRYPTO_ALGAPI
1256
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1257 1258 1259 1260
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1261 1262 1263 1264 1265
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1266
	select CRYPTO_ABLK_HELPER
1267
	select CRYPTO_GLUE_HELPER_X86
1268
	select CRYPTO_CAST_COMMON
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1279 1280
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1281
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1282
	help
1283
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1284

1285 1286
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1287
	depends on SPARC64
1288 1289 1290 1291 1292 1293
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1307 1308
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1309
	select CRYPTO_ALGAPI
1310
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1311
	help
1312
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1313 1314 1315

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1316
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1317 1318 1319 1320 1321 1322 1323 1324
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1325
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1326

1327
config CRYPTO_SALSA20
1328
	tristate "Salsa20 stream cipher algorithm"
1329 1330 1331 1332 1333 1334
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1335 1336 1337 1338 1339

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1340
	tristate "Salsa20 stream cipher algorithm (i586)"
1341 1342
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
1343
	select CRYPTO_SALSA20
1344 1345 1346 1347 1348
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1349 1350 1351 1352 1353

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1354
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1355 1356
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
1357
	select CRYPTO_SALSA20
1358 1359 1360 1361 1362
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1363 1364 1365

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1380
config CRYPTO_CHACHA20_X86_64
1381
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1395 1396
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1397
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1398
	help
1399
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1411
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1412
	help
1413
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1414

1415 1416 1417 1418 1419 1420 1421
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1422 1423 1424
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1425
	select CRYPTO_BLKCIPHER
1426
	select CRYPTO_GLUE_HELPER_X86
1427
	select CRYPTO_SERPENT
1428
	select CRYPTO_SIMD
1429 1430 1431 1432 1433 1434
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1435
	  This module provides Serpent cipher algorithm that processes eight
1436 1437 1438 1439 1440
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1441 1442 1443
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1444
	select CRYPTO_BLKCIPHER
1445
	select CRYPTO_GLUE_HELPER_X86
1446
	select CRYPTO_SERPENT
1447
	select CRYPTO_SIMD
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1459 1460 1461 1462 1463 1464

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1465
	select CRYPTO_ABLK_HELPER
1466
	select CRYPTO_GLUE_HELPER_X86
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	select CRYPTO_SERPENT
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1480

1481 1482 1483 1484 1485
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1486
	select CRYPTO_ABLK_HELPER
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
config CRYPTO_SPECK
	tristate "Speck cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Speck is a lightweight block cipher that is tuned for optimal
	  performance in software (rather than hardware).

	  Speck may not be as secure as AES, and should only be used on systems
	  where AES is not fast enough.

	  See also: <https://eprint.iacr.org/2013/404.pdf>

	  If unsure, say N.

1517 1518
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1519
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1520
	help
1521
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1536
	select CRYPTO_ALGAPI
1537
	select CRYPTO_TWOFISH_COMMON
1538
	help
1539
	  Twofish cipher algorithm.
1540

1541 1542 1543 1544
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1567 1568

	  See also:
1569
	  <http://www.schneier.com/twofish.html>
1570

1571 1572 1573
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1574
	select CRYPTO_ALGAPI
1575
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1576
	help
1577
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1578

1579 1580 1581 1582 1583 1584 1585 1586
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1587 1588
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1589
	depends on X86 && 64BIT
1590 1591 1592
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1593
	select CRYPTO_GLUE_HELPER_X86
1594 1595
	select CRYPTO_LRW
	select CRYPTO_XTS
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1610 1611 1612 1613 1614
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1615
	select CRYPTO_ABLK_HELPER
1616
	select CRYPTO_GLUE_HELPER_X86
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1636 1637 1638 1639 1640
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1641
	select CRYPTO_ACOMP2
1642 1643
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1644
	help
1645 1646 1647 1648
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1649

1650 1651 1652
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1653
	select CRYPTO_ACOMP2
1654 1655 1656 1657 1658
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1659 1660
config CRYPTO_842
	tristate "842 compression algorithm"
1661
	select CRYPTO_ALGAPI
1662
	select CRYPTO_ACOMP2
1663 1664
	select 842_COMPRESS
	select 842_DECOMPRESS
1665 1666
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1667 1668 1669 1670

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1671
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1672 1673 1674 1675 1676 1677 1678 1679
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1680
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1681 1682 1683 1684
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1695 1696
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1697

1698
menuconfig CRYPTO_DRBG_MENU
1699 1700 1701 1702 1703
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1704
if CRYPTO_DRBG_MENU
1705 1706

config CRYPTO_DRBG_HMAC
1707
	bool
1708 1709
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1710
	select CRYPTO_SHA256
1711 1712 1713

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1714
	select CRYPTO_SHA256
1715 1716 1717 1718 1719 1720
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1721
	depends on CRYPTO_CTR
1722 1723 1724
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1725 1726
config CRYPTO_DRBG
	tristate
1727
	default CRYPTO_DRBG_MENU
1728
	select CRYPTO_RNG
1729
	select CRYPTO_JITTERENTROPY
1730 1731

endif	# if CRYPTO_DRBG_MENU
1732

1733 1734
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1735
	select CRYPTO_RNG
1736 1737 1738 1739 1740 1741 1742
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1743 1744 1745
config CRYPTO_USER_API
	tristate

1746 1747
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1748
	depends on NET
1749 1750 1751 1752 1753 1754
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1755 1756
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1757
	depends on NET
1758 1759 1760 1761 1762 1763
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1764 1765 1766 1767 1768 1769 1770 1771 1772
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1773 1774 1775 1776
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1777 1778
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1779 1780 1781 1782 1783
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1784 1785 1786
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1787
source "drivers/crypto/Kconfig"
1788
source crypto/asymmetric_keys/Kconfig
1789
source certs/Kconfig
L
Linus Torvalds 已提交
1790

1791
endif	# if CRYPTO