Kconfig 53.8 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29
	help
30 31
	  This option enables the fips boot option which is
	  required if you want the system to operate in a FIPS 200
N
Neil Horman 已提交
32
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55
config CRYPTO_SKCIPHER
56
	tristate
57
	select CRYPTO_SKCIPHER2
58
	select CRYPTO_ALGAPI
59

60
config CRYPTO_SKCIPHER2
61 62 63
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106 107
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
108
	select SGL_ALLOC
109 110 111 112 113 114

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

H
Herbert Xu 已提交
115 116
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
117
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
118 119 120 121
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

122 123 124 125
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
126
	select CRYPTO_SKCIPHER2
127
	select CRYPTO_AKCIPHER2
128
	select CRYPTO_KPP2
129
	select CRYPTO_ACOMP2
130

131 132
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
133
	depends on NET
134 135
	select CRYPTO_MANAGER
	help
136
	  Userspace configuration for cryptographic instantiations such as
137 138
	  cbc(aes).

139 140
if CRYPTO_MANAGER2

141 142
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
143
	default y
144
	help
145 146
	  Disable run-time self tests that normally take place at
	  algorithm registration.
147

148 149 150 151 152 153 154 155 156 157
config CRYPTO_MANAGER_EXTRA_TESTS
	bool "Enable extra run-time crypto self tests"
	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
	help
	  Enable extra run-time self tests of registered crypto algorithms,
	  including randomized fuzz tests.

	  This is intended for developer use only, as these tests take much
	  longer to run than the normal self tests.

158 159
endif	# if CRYPTO_MANAGER2

160
config CRYPTO_GF128MUL
161
	tristate
K
Kazunori MIYAZAWA 已提交
162

L
Linus Torvalds 已提交
163 164
config CRYPTO_NULL
	tristate "Null algorithms"
165
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
166 167 168
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

169
config CRYPTO_NULL2
170
	tristate
171
	select CRYPTO_ALGAPI2
172
	select CRYPTO_SKCIPHER2
173 174
	select CRYPTO_HASH2

175
config CRYPTO_PCRYPT
176 177
	tristate "Parallel crypto engine"
	depends on SMP
178 179 180 181 182 183 184
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

185 186
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
187
	select CRYPTO_SKCIPHER
188
	select CRYPTO_HASH
189
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
190
	help
191 192 193
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
194

195 196 197
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
198
	select CRYPTO_SKCIPHER
199 200
	select CRYPTO_MANAGER
	select CRYPTO_HASH
201
	select CRYPTO_NULL
L
Linus Torvalds 已提交
202
	help
203 204
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
205

206 207 208
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
209
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
210
	help
211
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
212

213 214
config CRYPTO_SIMD
	tristate
215 216
	select CRYPTO_CRYPTD

217 218 219
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
220
	select CRYPTO_SKCIPHER
221

222 223 224
config CRYPTO_ENGINE
	tristate

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
comment "Public-key cryptography"

config CRYPTO_RSA
	tristate "RSA algorithm"
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

243 244 245
config CRYPTO_ECC
	tristate

246 247
config CRYPTO_ECDH
	tristate "ECDH algorithm"
248
	select CRYPTO_ECC
249 250 251 252 253
	select CRYPTO_KPP
	select CRYPTO_RNG_DEFAULT
	help
	  Generic implementation of the ECDH algorithm

254 255 256 257 258
config CRYPTO_ECRDSA
	tristate "EC-RDSA (GOST 34.10) algorithm"
	select CRYPTO_ECC
	select CRYPTO_AKCIPHER
	select CRYPTO_STREEBOG
259 260
	select OID_REGISTRY
	select ASN1
261 262 263 264 265 266
	help
	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
	  standard algorithms (called GOST algorithms). Only signature verification
	  is implemented.

267
comment "Authenticated Encryption with Associated Data"
268

269 270 271
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
272
	select CRYPTO_HASH
273
	select CRYPTO_AEAD
274
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
275
	help
276
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
277

278 279 280 281
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
282
	select CRYPTO_GHASH
283
	select CRYPTO_NULL
284
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
285
	help
286 287
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
288

289 290 291 292 293
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
294
	select CRYPTO_MANAGER
295 296 297 298 299 300 301
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

302 303 304 305 306 307 308
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

309 310 311
config CRYPTO_AEGIS128_SIMD
	bool "Support SIMD acceleration for AEGIS-128"
	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
312
	depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800
313 314
	default y

315 316 317 318
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
319
	select CRYPTO_SIMD
320
	help
321
	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
322

323 324 325
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
326
	select CRYPTO_SKCIPHER
327
	select CRYPTO_NULL
328
	select CRYPTO_RNG_DEFAULT
329
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
330
	help
331 332
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
333

334 335 336 337
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
338
	select CRYPTO_RNG_DEFAULT
339
	select CRYPTO_MANAGER
340 341 342 343 344
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

345
comment "Block modes"
346

347 348
config CRYPTO_CBC
	tristate "CBC support"
349
	select CRYPTO_SKCIPHER
350
	select CRYPTO_MANAGER
351
	help
352 353
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
354

355 356
config CRYPTO_CFB
	tristate "CFB support"
357
	select CRYPTO_SKCIPHER
358 359 360 361 362
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

363 364
config CRYPTO_CTR
	tristate "CTR support"
365
	select CRYPTO_SKCIPHER
366
	select CRYPTO_SEQIV
367
	select CRYPTO_MANAGER
368
	help
369
	  CTR: Counter mode
370 371
	  This block cipher algorithm is required for IPSec.

372 373
config CRYPTO_CTS
	tristate "CTS support"
374
	select CRYPTO_SKCIPHER
375
	select CRYPTO_MANAGER
376 377 378
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
379 380 381
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
382 383 384
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

385 386
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

387 388
config CRYPTO_ECB
	tristate "ECB support"
389
	select CRYPTO_SKCIPHER
390 391
	select CRYPTO_MANAGER
	help
392 393 394
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
395

396
config CRYPTO_LRW
397
	tristate "LRW support"
398
	select CRYPTO_SKCIPHER
399 400 401 402 403 404 405 406 407
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

408 409
config CRYPTO_OFB
	tristate "OFB support"
410
	select CRYPTO_SKCIPHER
411 412 413 414 415 416 417 418 419
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

420 421
config CRYPTO_PCBC
	tristate "PCBC support"
422
	select CRYPTO_SKCIPHER
423 424 425 426 427
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

428
config CRYPTO_XTS
429
	tristate "XTS support"
430
	select CRYPTO_SKCIPHER
431
	select CRYPTO_MANAGER
M
Milan Broz 已提交
432
	select CRYPTO_ECB
433 434 435 436 437
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

438 439
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
440
	select CRYPTO_SKCIPHER
441
	select CRYPTO_MANAGER
442 443 444 445
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

446 447 448
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
449
	select CRYPTO_LIB_POLY1305_GENERIC
450

451 452 453 454 455 456 457 458
config CRYPTO_NHPOLY1305_SSE2
	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  SSE2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

459 460 461 462 463 464 465 466
config CRYPTO_NHPOLY1305_AVX2
	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  AVX2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

467 468 469
config CRYPTO_ADIANTUM
	tristate "Adiantum support"
	select CRYPTO_CHACHA20
470
	select CRYPTO_LIB_POLY1305_GENERIC
471
	select CRYPTO_NHPOLY1305
472
	select CRYPTO_MANAGER
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	help
	  Adiantum is a tweakable, length-preserving encryption mode
	  designed for fast and secure disk encryption, especially on
	  CPUs without dedicated crypto instructions.  It encrypts
	  each sector using the XChaCha12 stream cipher, two passes of
	  an ε-almost-∆-universal hash function, and an invocation of
	  the AES-256 block cipher on a single 16-byte block.  On CPUs
	  without AES instructions, Adiantum is much faster than
	  AES-XTS.

	  Adiantum's security is provably reducible to that of its
	  underlying stream and block ciphers, subject to a security
	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
	  mode, so it actually provides an even stronger notion of
	  security than XTS, subject to the security bound.

	  If unsure, say N.

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
config CRYPTO_ESSIV
	tristate "ESSIV support for block encryption"
	select CRYPTO_AUTHENC
	help
	  Encrypted salt-sector initialization vector (ESSIV) is an IV
	  generation method that is used in some cases by fscrypt and/or
	  dm-crypt. It uses the hash of the block encryption key as the
	  symmetric key for a block encryption pass applied to the input
	  IV, making low entropy IV sources more suitable for block
	  encryption.

	  This driver implements a crypto API template that can be
	  instantiated either as a skcipher or as a aead (depending on the
	  type of the first template argument), and which defers encryption
	  and decryption requests to the encapsulated cipher after applying
	  ESSIV to the input IV. Note that in the aead case, it is assumed
	  that the keys are presented in the same format used by the authenc
	  template, and that the IV appears at the end of the authenticated
	  associated data (AAD) region (which is how dm-crypt uses it.)

	  Note that the use of ESSIV is not recommended for new deployments,
	  and so this only needs to be enabled when interoperability with
	  existing encrypted volumes of filesystems is required, or when
	  building for a particular system that requires it (e.g., when
	  the SoC in question has accelerated CBC but not XTS, making CBC
	  combined with ESSIV the only feasible mode for h/w accelerated
	  block encryption)

519 520
comment "Hash modes"

521 522 523 524 525 526 527 528 529 530 531
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

532 533 534
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
535 536
	select CRYPTO_MANAGER
	help
537 538
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
539

540 541 542 543
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
544
	help
545 546 547 548
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
549

550 551 552 553 554 555 556 557 558 559 560
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

561
comment "Digest"
M
Mikko Herranen 已提交
562

563 564
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
565
	select CRYPTO_HASH
566
	select CRC32
J
Joy Latten 已提交
567
	help
568 569
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
570
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
571

572 573 574 575 576 577 578 579 580 581 582 583
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

584
config CRYPTO_CRC32C_VPMSUM
585
	tristate "CRC32c CRC algorithm (powerpc64)"
586
	depends on PPC64 && ALTIVEC
587 588 589 590 591 592 593 594
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


595 596 597 598 599 600 601 602 603
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
H
haco 已提交
621
	  instruction. This option will create 'crc32-pclmul' module,
622 623 624
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

625 626 627 628 629 630 631 632 633
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


634 635 636 637 638 639 640 641
config CRYPTO_XXHASH
	tristate "xxHash hash algorithm"
	select CRYPTO_HASH
	select XXHASH
	help
	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
	  speeds close to RAM limits.

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
config CRYPTO_BLAKE2B
	tristate "BLAKE2b digest algorithm"
	select CRYPTO_HASH
	help
	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
	  optimized for 64bit platforms and can produce digests of any size
	  between 1 to 64.  The keyed hash is also implemented.

	  This module provides the following algorithms:

	  - blake2b-160
	  - blake2b-256
	  - blake2b-384
	  - blake2b-512

	  See https://blake2.net for further information.

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
H
haco 已提交
675
	  'crct10dif-pclmul' module, which is faster when computing the
676 677
	  crct10dif checksum as compared with the generic table implementation.

678 679 680 681 682 683 684 685 686
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

687 688 689 690 691 692 693 694
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

695
config CRYPTO_GHASH
696
	tristate "GHASH hash function"
697
	select CRYPTO_GF128MUL
698
	select CRYPTO_HASH
699
	help
700 701
	  GHASH is the hash function used in GCM (Galois/Counter Mode).
	  It is not a general-purpose cryptographic hash function.
702

703 704
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
705
	select CRYPTO_HASH
706
	select CRYPTO_LIB_POLY1305_GENERIC
707 708 709 710 711 712 713
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

714
config CRYPTO_POLY1305_X86_64
715
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
716
	depends on X86 && 64BIT
717
	select CRYPTO_LIB_POLY1305_GENERIC
718
	select CRYPTO_ARCH_HAVE_LIB_POLY1305
719 720 721 722 723 724 725 726
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

727 728
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
729
	select CRYPTO_HASH
730
	help
731
	  MD4 message digest algorithm (RFC1320).
732

733 734
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
735
	select CRYPTO_HASH
L
Linus Torvalds 已提交
736
	help
737
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
738

739 740 741 742 743 744 745 746 747
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

748 749 750 751 752 753 754 755
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

756 757 758 759 760 761 762 763 764
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

765 766
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
767
	select CRYPTO_HASH
768
	help
769 770 771 772
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
773

774
config CRYPTO_RMD128
775
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
776
	select CRYPTO_HASH
777 778
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
779

780
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
781
	  be used as a secure replacement for RIPEMD. For other use cases,
782
	  RIPEMD-160 should be used.
783

784
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
785
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
786 787

config CRYPTO_RMD160
788
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
789
	select CRYPTO_HASH
790 791
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
792

793 794 795 796
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
797

798 799
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
800

801
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
802
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
803 804

config CRYPTO_RMD256
805
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
806
	select CRYPTO_HASH
807 808 809 810 811
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
812

813
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
814
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
815 816

config CRYPTO_RMD320
817
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
818
	select CRYPTO_HASH
819 820 821 822 823
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
824

825
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
826
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
827

828 829
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
830
	select CRYPTO_HASH
L
Linus Torvalds 已提交
831
	help
832
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
833

834
config CRYPTO_SHA1_SSSE3
835
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
836 837 838 839 840 841
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
842 843
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
844

845
config CRYPTO_SHA256_SSSE3
846
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
847 848 849 850 851 852 853
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
854 855
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
856 857 858 859 860 861 862 863 864 865

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
866 867
	  version 2 (AVX2) instructions, when available.

868 869 870 871 872 873 874 875 876
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

877 878 879 880 881 882 883 884 885
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

886 887 888 889 890 891 892
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

893 894 895 896 897 898 899
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

900 901
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
902
	select CRYPTO_HASH
903
	select CRYPTO_LIB_SHA256
L
Linus Torvalds 已提交
904
	help
905
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
906

907 908
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
909

910 911
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
912

913 914 915 916 917 918 919 920 921
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

922 923 924 925 926 927 928 929 930
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

931 932 933 934 935 936 937 938 939
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

940 941
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
942
	select CRYPTO_HASH
943
	help
944
	  SHA512 secure hash standard (DFIPS 180-2).
945

946 947
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
948

949 950
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
951

952 953 954 955 956 957 958 959 960
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

961 962 963 964 965 966 967 968 969
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

970 971 972 973 974 975 976 977 978 979
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

980 981 982 983 984 985 986 987 988 989 990
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

991 992 993 994 995 996 997 998 999 1000 1001 1002
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

1003 1004
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
1005
	select CRYPTO_HASH
1006
	help
1007
	  Tiger hash algorithm 192, 160 and 128-bit hashes
1008

1009 1010 1011
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
1012 1013

	  See also:
1014
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1015

1016 1017
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
1018
	select CRYPTO_HASH
L
Linus Torvalds 已提交
1019
	help
1020
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
1021

1022 1023
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
1024 1025

	  See also:
1026
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1027

1028
config CRYPTO_GHASH_CLMUL_NI_INTEL
1029
	tristate "GHASH hash function (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
1030
	depends on X86 && 64BIT
1031 1032
	select CRYPTO_CRYPTD
	help
1033 1034
	  This is the x86_64 CLMUL-NI accelerated implementation of
	  GHASH, the hash function used in GCM (Galois/Counter mode).
1035

1036
comment "Ciphers"
L
Linus Torvalds 已提交
1037 1038 1039

config CRYPTO_AES
	tristate "AES cipher algorithms"
1040
	select CRYPTO_ALGAPI
1041
	select CRYPTO_LIB_AES
L
Linus Torvalds 已提交
1042
	help
1043
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1044 1045 1046
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1047 1048 1049 1050 1051 1052 1053
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1054

1055
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1056 1057 1058

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1059 1060 1061
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
1062
	select CRYPTO_LIB_AES
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1075 1076
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1077

1078 1079
config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1080
	depends on X86
H
Herbert Xu 已提交
1081
	select CRYPTO_AEAD
1082
	select CRYPTO_LIB_AES
1083
	select CRYPTO_ALGAPI
1084
	select CRYPTO_SKCIPHER
1085
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1086
	select CRYPTO_SIMD
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1097 1098 1099 1100
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1101

1102
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1103 1104 1105

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1106 1107
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1108
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1109
	  acceleration for CTR.
1110

1111 1112 1113
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
1114
	select CRYPTO_SKCIPHER
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1138 1139 1140
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
1141
	select CRYPTO_SKCIPHER
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1163 1164
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1165 1166 1167

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1168
	select CRYPTO_SKCIPHER
1169
	select CRYPTO_LIB_ARC4
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1181
	select CRYPTO_BLOWFISH_COMMON
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1192 1193 1194 1195 1196 1197 1198 1199 1200
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1201 1202
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1203
	depends on X86 && 64BIT
1204
	select CRYPTO_SKCIPHER
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1231 1232
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1233
	depends on X86 && 64BIT
1234
	depends on CRYPTO
1235
	select CRYPTO_SKCIPHER
1236
	select CRYPTO_GLUE_HELPER_X86
1237 1238 1239 1240 1241 1242 1243 1244 1245
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1246 1247 1248 1249 1250 1251
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1252
	select CRYPTO_SKCIPHER
1253
	select CRYPTO_CAMELLIA_X86_64
1254 1255
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1266 1267
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1284 1285 1286 1287 1288
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
1289
	select CRYPTO_SKCIPHER
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1301 1302 1303 1304 1305 1306
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1307 1308
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1309
	select CRYPTO_ALGAPI
1310
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1311 1312 1313 1314
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1315 1316 1317
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1318
	select CRYPTO_SKCIPHER
1319
	select CRYPTO_CAST5
1320 1321
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1322 1323 1324 1325 1326 1327 1328
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1329 1330
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1331
	select CRYPTO_ALGAPI
1332
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1333 1334 1335 1336
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1337 1338 1339
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1340
	select CRYPTO_SKCIPHER
1341
	select CRYPTO_CAST6
1342 1343 1344
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1345 1346 1347 1348 1349 1350 1351 1352
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1353 1354
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1355
	select CRYPTO_ALGAPI
1356
	select CRYPTO_LIB_DES
L
Linus Torvalds 已提交
1357
	help
1358
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1359

1360 1361
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1362
	depends on SPARC64
1363
	select CRYPTO_ALGAPI
1364
	select CRYPTO_LIB_DES
1365
	select CRYPTO_SKCIPHER
1366 1367 1368 1369
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1370 1371 1372
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1373
	select CRYPTO_SKCIPHER
1374
	select CRYPTO_LIB_DES
1375 1376 1377 1378 1379 1380 1381 1382
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1383 1384
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1385
	select CRYPTO_ALGAPI
1386
	select CRYPTO_SKCIPHER
L
Linus Torvalds 已提交
1387
	help
1388
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1389 1390 1391

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1392
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1393 1394 1395 1396 1397 1398 1399 1400
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1401
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1402

1403
config CRYPTO_SALSA20
1404
	tristate "Salsa20 stream cipher algorithm"
1405
	select CRYPTO_SKCIPHER
1406 1407 1408 1409 1410
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1411 1412 1413 1414

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1415
config CRYPTO_CHACHA20
1416
	tristate "ChaCha stream cipher algorithms"
1417
	select CRYPTO_LIB_CHACHA_GENERIC
1418
	select CRYPTO_SKCIPHER
1419
	help
1420
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1421 1422 1423

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1424
	  This is the portable C implementation of ChaCha20.  See also:
1425 1426
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1427 1428 1429 1430 1431 1432
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1433 1434 1435 1436
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1437
config CRYPTO_CHACHA20_X86_64
1438
	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1439
	depends on X86 && 64BIT
1440
	select CRYPTO_SKCIPHER
1441
	select CRYPTO_LIB_CHACHA_GENERIC
1442
	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1443
	help
1444 1445
	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
	  XChaCha20, and XChaCha12 stream ciphers.
1446

1447 1448 1449 1450 1451 1452
config CRYPTO_CHACHA_MIPS
	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
	depends on CPU_MIPS32_R2
	select CRYPTO_BLKCIPHER
	select CRYPTO_ARCH_HAVE_LIB_CHACHA

1453 1454
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1455
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1456
	help
1457
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1469
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1470
	help
1471
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1472

1473 1474 1475 1476 1477 1478 1479
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1480 1481 1482
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1483
	select CRYPTO_SKCIPHER
1484
	select CRYPTO_GLUE_HELPER_X86
1485
	select CRYPTO_SERPENT
1486
	select CRYPTO_SIMD
1487 1488 1489 1490 1491 1492
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1493
	  This module provides Serpent cipher algorithm that processes eight
1494 1495 1496 1497 1498
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1499 1500 1501
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1502
	select CRYPTO_SKCIPHER
1503
	select CRYPTO_GLUE_HELPER_X86
1504
	select CRYPTO_SERPENT
1505
	select CRYPTO_SIMD
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1517 1518 1519 1520

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1521
	select CRYPTO_SKCIPHER
1522
	select CRYPTO_GLUE_HELPER_X86
1523
	select CRYPTO_SERPENT
1524
	select CRYPTO_SIMD
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1579 1580
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1581
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1582
	help
1583
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1598
	select CRYPTO_ALGAPI
1599
	select CRYPTO_TWOFISH_COMMON
1600
	help
1601
	  Twofish cipher algorithm.
1602

1603 1604 1605 1606
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1629 1630

	  See also:
1631
	  <http://www.schneier.com/twofish.html>
1632

1633 1634 1635
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1636
	select CRYPTO_ALGAPI
1637
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1638
	help
1639
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1640

1641 1642 1643 1644 1645 1646 1647 1648
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1649 1650
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1651
	depends on X86 && 64BIT
1652
	select CRYPTO_SKCIPHER
1653 1654
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1655
	select CRYPTO_GLUE_HELPER_X86
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1670 1671 1672
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1673
	select CRYPTO_SKCIPHER
1674
	select CRYPTO_GLUE_HELPER_X86
1675
	select CRYPTO_SIMD
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1693 1694 1695 1696 1697
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1698
	select CRYPTO_ACOMP2
1699 1700
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1701
	help
1702 1703 1704 1705
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1706

1707 1708 1709
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1710
	select CRYPTO_ACOMP2
1711 1712 1713 1714 1715
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1716 1717
config CRYPTO_842
	tristate "842 compression algorithm"
1718
	select CRYPTO_ALGAPI
1719
	select CRYPTO_ACOMP2
1720 1721
	select 842_COMPRESS
	select 842_DECOMPRESS
1722 1723
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1724 1725 1726 1727

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1728
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1729 1730 1731 1732 1733 1734 1735 1736
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1737
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1738 1739 1740 1741
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1742

N
Nick Terrell 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1752 1753 1754 1755 1756 1757 1758 1759 1760
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1761 1762
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1763

1764
menuconfig CRYPTO_DRBG_MENU
1765 1766 1767 1768 1769
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1770
if CRYPTO_DRBG_MENU
1771 1772

config CRYPTO_DRBG_HMAC
1773
	bool
1774 1775
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1776
	select CRYPTO_SHA256
1777 1778 1779

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1780
	select CRYPTO_SHA256
1781 1782 1783 1784 1785 1786
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1787
	depends on CRYPTO_CTR
1788 1789 1790
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1791 1792
config CRYPTO_DRBG
	tristate
1793
	default CRYPTO_DRBG_MENU
1794
	select CRYPTO_RNG
1795
	select CRYPTO_JITTERENTROPY
1796 1797

endif	# if CRYPTO_DRBG_MENU
1798

1799 1800
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1801
	select CRYPTO_RNG
1802 1803 1804 1805 1806 1807 1808
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1809 1810 1811
config CRYPTO_USER_API
	tristate

1812 1813
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1814
	depends on NET
1815 1816 1817 1818 1819 1820
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1821 1822
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1823
	depends on NET
1824
	select CRYPTO_SKCIPHER
1825 1826 1827 1828 1829
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1830 1831 1832 1833 1834 1835 1836 1837 1838
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1839 1840 1841 1842
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1843
	select CRYPTO_SKCIPHER
1844
	select CRYPTO_NULL
1845 1846 1847 1848 1849
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1850 1851
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
1852
	depends on CRYPTO_USER
1853 1854 1855 1856 1857 1858 1859 1860 1861
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1862 1863 1864
config CRYPTO_HASH_INFO
	bool

1865
source "lib/crypto/Kconfig"
L
Linus Torvalds 已提交
1866
source "drivers/crypto/Kconfig"
1867 1868
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
L
Linus Torvalds 已提交
1869

1870
endif	# if CRYPTO