Kconfig 46.8 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
51 52
	select CRYPTO_NULL2
	select CRYPTO_RNG2
53

54 55
config CRYPTO_BLKCIPHER
	tristate
56
	select CRYPTO_BLKCIPHER2
57
	select CRYPTO_ALGAPI
58 59 60 61 62

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
63
	select CRYPTO_WORKQUEUE
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

87
config CRYPTO_PCOMP
88 89 90 91 92
	tristate
	select CRYPTO_PCOMP2
	select CRYPTO_ALGAPI

config CRYPTO_PCOMP2
93 94 95
	tristate
	select CRYPTO_ALGAPI2

T
Tadeusz Struk 已提交
96 97 98 99 100 101 102 103 104
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

105 106
config CRYPTO_RSA
	tristate "RSA algorithm"
107
	select CRYPTO_AKCIPHER
108 109 110 111 112
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

H
Herbert Xu 已提交
113 114
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
115
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
116 117 118 119
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

120 121 122 123 124
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
125
	select CRYPTO_PCOMP2
126
	select CRYPTO_AKCIPHER2
127

128 129
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
130
	depends on NET
131 132
	select CRYPTO_MANAGER
	help
133
	  Userspace configuration for cryptographic instantiations such as
134 135
	  cbc(aes).

136 137
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
138 139
	default y
	depends on CRYPTO_MANAGER2
140
	help
141 142
	  Disable run-time self tests that normally take place at
	  algorithm registration.
143

144
config CRYPTO_GF128MUL
145
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
146
	help
147 148 149 150 151
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
152

L
Linus Torvalds 已提交
153 154
config CRYPTO_NULL
	tristate "Null algorithms"
155
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
156 157 158
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

159
config CRYPTO_NULL2
160
	tristate
161 162 163 164
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

165
config CRYPTO_PCRYPT
166 167
	tristate "Parallel crypto engine"
	depends on SMP
168 169 170 171 172 173 174
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

175 176 177
config CRYPTO_WORKQUEUE
       tristate

178 179 180
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
181
	select CRYPTO_HASH
182
	select CRYPTO_MANAGER
183
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
184
	help
185 186 187
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
188

189 190 191 192 193 194 195 196 197 198 199 200
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
201
	  their crypto request asynchronously to be processed by this daemon.
202

203 204 205 206 207 208
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
209
	select CRYPTO_NULL
L
Linus Torvalds 已提交
210
	help
211 212
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
213

214 215 216
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
217
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
218
	help
219
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
220

221
config CRYPTO_ABLK_HELPER
222 223 224
	tristate
	select CRYPTO_CRYPTD

225 226 227 228 229
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

230
comment "Authenticated Encryption with Associated Data"
231

232 233 234 235
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
236
	help
237
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
238

239 240 241 242
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
243
	select CRYPTO_GHASH
244
	select CRYPTO_NULL
L
Linus Torvalds 已提交
245
	help
246 247
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
248

249 250 251 252 253 254 255 256 257 258 259 260
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

261 262 263 264
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
265
	select CRYPTO_NULL
266
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
267
	help
268 269
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
270

271 272 273 274
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
275
	select CRYPTO_RNG_DEFAULT
276
	default m
277 278 279 280 281
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

282
comment "Block modes"
283

284 285
config CRYPTO_CBC
	tristate "CBC support"
286
	select CRYPTO_BLKCIPHER
287
	select CRYPTO_MANAGER
288
	help
289 290
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
291

292 293
config CRYPTO_CTR
	tristate "CTR support"
294
	select CRYPTO_BLKCIPHER
295
	select CRYPTO_SEQIV
296
	select CRYPTO_MANAGER
297
	help
298
	  CTR: Counter mode
299 300
	  This block cipher algorithm is required for IPSec.

301 302 303 304 305 306 307 308 309 310 311 312 313
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
314 315 316
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
317 318 319
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
320

321
config CRYPTO_LRW
322
	tristate "LRW support"
323 324 325 326 327 328 329 330 331 332
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

333 334 335 336 337 338 339 340
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

341
config CRYPTO_XTS
342
	tristate "XTS support"
343 344 345 346 347 348 349 350
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

351 352 353 354 355 356 357
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

358 359
comment "Hash modes"

360 361 362 363 364 365 366 367 368 369 370
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

371 372 373
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
374 375
	select CRYPTO_MANAGER
	help
376 377
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
378

379 380 381 382
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
383
	help
384 385 386 387
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
388

389 390 391 392 393 394 395 396 397 398 399
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

400
comment "Digest"
M
Mikko Herranen 已提交
401

402 403
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
404
	select CRYPTO_HASH
405
	select CRC32
J
Joy Latten 已提交
406
	help
407 408
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
409
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
410

411 412 413 414 415 416 417 418 419 420 421 422
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

423 424 425 426 427 428 429 430 431
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

472 473 474 475 476 477
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

478 479 480 481 482 483 484 485 486
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

487
config CRYPTO_POLY1305_X86_64
488
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
489 490 491 492 493 494 495 496 497 498
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

499 500
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
501
	select CRYPTO_HASH
502
	help
503
	  MD4 message digest algorithm (RFC1320).
504

505 506
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
507
	select CRYPTO_HASH
L
Linus Torvalds 已提交
508
	help
509
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
510

511 512 513 514 515 516 517 518 519
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

520 521 522 523 524 525 526 527
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

528 529 530 531 532 533 534 535 536
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

537 538
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
539
	select CRYPTO_HASH
540
	help
541 542 543 544
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
545

546
config CRYPTO_RMD128
547
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
548
	select CRYPTO_HASH
549 550
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
551

552
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
553
	  be used as a secure replacement for RIPEMD. For other use cases,
554
	  RIPEMD-160 should be used.
555

556
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
557
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
558 559

config CRYPTO_RMD160
560
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
561
	select CRYPTO_HASH
562 563
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
564

565 566 567 568
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
569

570 571
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
572

573
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
574
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
575 576

config CRYPTO_RMD256
577
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
578
	select CRYPTO_HASH
579 580 581 582 583
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
584

585
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
586
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
587 588

config CRYPTO_RMD320
589
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
590
	select CRYPTO_HASH
591 592 593 594 595
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
596

597
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
598
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
599

600 601
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
602
	select CRYPTO_HASH
L
Linus Torvalds 已提交
603
	help
604
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
605

606
config CRYPTO_SHA1_SSSE3
607
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
608 609 610 611 612 613
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
614 615
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
616

617
config CRYPTO_SHA256_SSSE3
618
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
619 620 621 622 623 624 625
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
626 627
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
628 629 630 631 632 633 634 635 636 637

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
638 639
	  version 2 (AVX2) instructions, when available.

640 641 642 643 644 645 646 647 648
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

649 650 651 652 653 654 655 656 657
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

658 659 660 661 662 663 664
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

665 666 667 668 669 670 671
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

688 689
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
690
	select CRYPTO_HASH
L
Linus Torvalds 已提交
691
	help
692
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
693

694 695
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
696

697 698
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
699

700 701 702 703 704 705 706 707 708
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

709 710 711 712 713 714 715 716 717
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

718 719 720 721 722 723 724 725 726
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

727 728
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
729
	select CRYPTO_HASH
730
	help
731
	  SHA512 secure hash standard (DFIPS 180-2).
732

733 734
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
735

736 737
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
738

739 740 741 742 743 744 745 746 747
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

748 749 750 751 752 753 754 755 756
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

757 758
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
759
	select CRYPTO_HASH
760
	help
761
	  Tiger hash algorithm 192, 160 and 128-bit hashes
762

763 764 765
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
766 767

	  See also:
768
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
769

770 771
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
772
	select CRYPTO_HASH
L
Linus Torvalds 已提交
773
	help
774
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
775

776 777
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
778 779

	  See also:
780
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
781

782 783
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
784
	depends on X86 && 64BIT
785 786 787 788 789
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

790
comment "Ciphers"
L
Linus Torvalds 已提交
791 792 793

config CRYPTO_AES
	tristate "AES cipher algorithms"
794
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
795
	help
796
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
797 798 799
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
800 801 802 803 804 805 806
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
807

808
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
809 810 811 812 813

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
814 815
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
816
	select CRYPTO_AES
L
Linus Torvalds 已提交
817
	help
818
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
819 820 821
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
822 823 824 825 826 827 828
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
829

830
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
831 832 833 834 835

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
836 837
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
838
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
839
	help
840
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
841 842 843
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
844 845 846
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
847 848 849 850 851 852 853 854 855 856 857
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
858
	depends on X86
859 860
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
861
	select CRYPTO_CRYPTD
862
	select CRYPTO_ABLK_HELPER
863
	select CRYPTO_ALGAPI
864
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
865 866
	select CRYPTO_LRW
	select CRYPTO_XTS
867 868 869 870 871 872 873 874 875 876
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
877 878 879 880
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
881

882
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
883 884 885

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

886 887 888 889
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
890

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

919 920 921 922 923 924 925 926 927 928 929 930 931
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

932 933 934 935 936 937 938 939 940 941 942
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
943 944
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
945 946 947

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
948
	select CRYPTO_BLKCIPHER
949 950 951 952 953 954 955 956 957 958 959
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
960
	select CRYPTO_BLOWFISH_COMMON
961 962 963 964 965 966 967 968 969 970
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

971 972 973 974 975 976 977 978 979
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

980 981
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
982
	depends on X86 && 64BIT
983 984 985 986 987 988 989 990 991 992 993 994
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1010 1011
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1012
	depends on X86 && 64BIT
1013 1014
	depends on CRYPTO
	select CRYPTO_ALGAPI
1015
	select CRYPTO_GLUE_HELPER_X86
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1027 1028 1029 1030 1031 1032 1033 1034
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1035
	select CRYPTO_ABLK_HELPER
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1049 1050
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1051 1052 1053 1054 1055 1056
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1057
	select CRYPTO_ABLK_HELPER
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1090 1091 1092 1093 1094 1095
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1096 1097
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1098
	select CRYPTO_ALGAPI
1099
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1100 1101 1102 1103
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1104 1105 1106 1107 1108
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1109
	select CRYPTO_ABLK_HELPER
1110
	select CRYPTO_CAST_COMMON
1111 1112 1113 1114 1115 1116 1117 1118
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1119 1120
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1121
	select CRYPTO_ALGAPI
1122
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1123 1124 1125 1126
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1127 1128 1129 1130 1131
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1132
	select CRYPTO_ABLK_HELPER
1133
	select CRYPTO_GLUE_HELPER_X86
1134
	select CRYPTO_CAST_COMMON
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1145 1146
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1147
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1148
	help
1149
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1150

1151 1152
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1153
	depends on SPARC64
1154 1155 1156 1157 1158 1159
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1173 1174
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1175
	select CRYPTO_ALGAPI
1176
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1177
	help
1178
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1179 1180 1181

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1182
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1183 1184 1185 1186 1187 1188 1189 1190
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1191
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1192

1193
config CRYPTO_SALSA20
1194
	tristate "Salsa20 stream cipher algorithm"
1195 1196 1197 1198 1199 1200
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1201 1202 1203 1204 1205

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1206
	tristate "Salsa20 stream cipher algorithm (i586)"
1207 1208 1209 1210 1211 1212 1213
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1214 1215 1216 1217 1218

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1219
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1220 1221 1222 1223 1224 1225 1226
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1227 1228 1229

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1244
config CRYPTO_CHACHA20_X86_64
1245
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1259 1260
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1261
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1262
	help
1263
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1275
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1276
	help
1277
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1278

1279 1280 1281 1282 1283 1284 1285
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1286 1287 1288 1289
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1290
	select CRYPTO_CRYPTD
1291
	select CRYPTO_ABLK_HELPER
1292
	select CRYPTO_GLUE_HELPER_X86
1293
	select CRYPTO_SERPENT
1294 1295
	select CRYPTO_LRW
	select CRYPTO_XTS
1296 1297 1298 1299 1300 1301
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1302
	  This module provides Serpent cipher algorithm that processes eight
1303 1304 1305 1306 1307
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1308 1309 1310 1311
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1312
	select CRYPTO_CRYPTD
1313
	select CRYPTO_ABLK_HELPER
1314
	select CRYPTO_GLUE_HELPER_X86
1315
	select CRYPTO_SERPENT
1316 1317
	select CRYPTO_LRW
	select CRYPTO_XTS
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1329 1330 1331 1332 1333 1334

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1335
	select CRYPTO_ABLK_HELPER
1336
	select CRYPTO_GLUE_HELPER_X86
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1351

1352 1353 1354 1355 1356
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1357
	select CRYPTO_ABLK_HELPER
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1375 1376
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1377
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1378
	help
1379
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1394
	select CRYPTO_ALGAPI
1395
	select CRYPTO_TWOFISH_COMMON
1396
	help
1397
	  Twofish cipher algorithm.
1398

1399 1400 1401 1402
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1425 1426

	  See also:
1427
	  <http://www.schneier.com/twofish.html>
1428

1429 1430 1431
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1432
	select CRYPTO_ALGAPI
1433
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1434
	help
1435
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1436

1437 1438 1439 1440 1441 1442 1443 1444
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1445 1446
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1447
	depends on X86 && 64BIT
1448 1449 1450
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1451
	select CRYPTO_GLUE_HELPER_X86
1452 1453
	select CRYPTO_LRW
	select CRYPTO_XTS
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1468 1469 1470 1471 1472
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1473
	select CRYPTO_ABLK_HELPER
1474
	select CRYPTO_GLUE_HELPER_X86
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1494 1495 1496 1497 1498 1499 1500
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1501
	help
1502 1503 1504 1505
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515
config CRYPTO_ZLIB
	tristate "Zlib compression algorithm"
	select CRYPTO_PCOMP
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
	select NLATTR
	help
	  This is the zlib algorithm.

1516 1517 1518 1519 1520 1521 1522 1523
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1524 1525
config CRYPTO_842
	tristate "842 compression algorithm"
1526 1527 1528
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1529 1530
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1557 1558
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1559

1560
menuconfig CRYPTO_DRBG_MENU
1561 1562 1563 1564 1565
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1566
if CRYPTO_DRBG_MENU
1567 1568

config CRYPTO_DRBG_HMAC
1569
	bool
1570 1571
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1572
	select CRYPTO_SHA256
1573 1574 1575

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1576
	select CRYPTO_SHA256
1577 1578 1579 1580 1581 1582 1583 1584 1585
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1586 1587
config CRYPTO_DRBG
	tristate
1588
	default CRYPTO_DRBG_MENU
1589
	select CRYPTO_RNG
1590
	select CRYPTO_JITTERENTROPY
1591 1592

endif	# if CRYPTO_DRBG_MENU
1593

1594 1595 1596 1597 1598 1599 1600 1601 1602
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1603 1604 1605
config CRYPTO_USER_API
	tristate

1606 1607
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1608
	depends on NET
1609 1610 1611 1612 1613 1614
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1615 1616
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1617
	depends on NET
1618 1619 1620 1621 1622 1623
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1624 1625 1626 1627 1628 1629 1630 1631 1632
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1633 1634 1635 1636 1637 1638 1639 1640 1641
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1642 1643 1644
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1645
source "drivers/crypto/Kconfig"
1646
source crypto/asymmetric_keys/Kconfig
1647
source certs/Kconfig
L
Linus Torvalds 已提交
1648

1649
endif	# if CRYPTO