Kconfig 55.2 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29
	help
30 31
	  This option enables the fips boot option which is
	  required if you want the system to operate in a FIPS 200
N
Neil Horman 已提交
32
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106 107
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
108
	select SGL_ALLOC
109 110 111 112 113 114

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

H
Herbert Xu 已提交
115 116
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
117
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
118 119 120 121
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

122 123 124 125 126
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
127
	select CRYPTO_AKCIPHER2
128
	select CRYPTO_KPP2
129
	select CRYPTO_ACOMP2
130

131 132
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
133
	depends on NET
134 135
	select CRYPTO_MANAGER
	help
136
	  Userspace configuration for cryptographic instantiations such as
137 138
	  cbc(aes).

139 140
if CRYPTO_MANAGER2

141 142
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
143
	default y
144
	help
145 146
	  Disable run-time self tests that normally take place at
	  algorithm registration.
147

148 149 150 151 152 153 154 155 156 157
config CRYPTO_MANAGER_EXTRA_TESTS
	bool "Enable extra run-time crypto self tests"
	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
	help
	  Enable extra run-time self tests of registered crypto algorithms,
	  including randomized fuzz tests.

	  This is intended for developer use only, as these tests take much
	  longer to run than the normal self tests.

158 159
endif	# if CRYPTO_MANAGER2

160
config CRYPTO_GF128MUL
161
	tristate
K
Kazunori MIYAZAWA 已提交
162

L
Linus Torvalds 已提交
163 164
config CRYPTO_NULL
	tristate "Null algorithms"
165
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
166 167 168
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

169
config CRYPTO_NULL2
170
	tristate
171 172 173 174
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

175
config CRYPTO_PCRYPT
176 177
	tristate "Parallel crypto engine"
	depends on SMP
178 179 180 181 182 183 184
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

185 186 187
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
188
	select CRYPTO_HASH
189
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
190
	help
191 192 193
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
194

195 196 197 198 199 200
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
201
	select CRYPTO_NULL
L
Linus Torvalds 已提交
202
	help
203 204
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
205

206 207 208
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
209
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
210
	help
211
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
212

213 214
config CRYPTO_SIMD
	tristate
215 216
	select CRYPTO_CRYPTD

217 218 219
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
220
	select CRYPTO_BLKCIPHER
221

222 223 224
config CRYPTO_ENGINE
	tristate

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
comment "Public-key cryptography"

config CRYPTO_RSA
	tristate "RSA algorithm"
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

243 244 245
config CRYPTO_ECC
	tristate

246 247
config CRYPTO_ECDH
	tristate "ECDH algorithm"
248
	select CRYPTO_ECC
249 250 251 252 253
	select CRYPTO_KPP
	select CRYPTO_RNG_DEFAULT
	help
	  Generic implementation of the ECDH algorithm

254 255 256 257 258
config CRYPTO_ECRDSA
	tristate "EC-RDSA (GOST 34.10) algorithm"
	select CRYPTO_ECC
	select CRYPTO_AKCIPHER
	select CRYPTO_STREEBOG
259 260
	select OID_REGISTRY
	select ASN1
261 262 263 264 265 266
	help
	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
	  standard algorithms (called GOST algorithms). Only signature verification
	  is implemented.

267
comment "Authenticated Encryption with Associated Data"
268

269 270 271
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
272
	select CRYPTO_HASH
273
	select CRYPTO_AEAD
274
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
275
	help
276
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
277

278 279 280 281
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
282
	select CRYPTO_GHASH
283
	select CRYPTO_NULL
284
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
285
	help
286 287
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
288

289 290 291 292 293
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
294
	select CRYPTO_MANAGER
295 296 297 298 299 300 301
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L
	tristate "AEGIS-128L AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256
	tristate "AEGIS-256 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-256 dedicated AEAD algorithm.

323 324 325 326
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
327
	select CRYPTO_SIMD
328
	help
329
	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
330 331 332 333 334

config CRYPTO_AEGIS128L_AESNI_SSE2
	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
335
	select CRYPTO_SIMD
336
	help
337
	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
338 339 340 341 342

config CRYPTO_AEGIS256_AESNI_SSE2
	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
343
	select CRYPTO_SIMD
344
	help
345
	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
346

347 348 349 350 351 352
config CRYPTO_MORUS640
	tristate "MORUS-640 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-640 dedicated AEAD algorithm.

353
config CRYPTO_MORUS640_GLUE
354 355
	tristate
	depends on X86
356
	select CRYPTO_AEAD
357
	select CRYPTO_SIMD
358 359 360 361
	help
	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
	  algorithm.

362 363 364 365 366 367 368 369
config CRYPTO_MORUS640_SSE2
	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS640_GLUE
	help
	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.

370 371 372 373 374 375
config CRYPTO_MORUS1280
	tristate "MORUS-1280 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-1280 dedicated AEAD algorithm.

376
config CRYPTO_MORUS1280_GLUE
377 378
	tristate
	depends on X86
379
	select CRYPTO_AEAD
380
	select CRYPTO_SIMD
381 382
	help
	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	  algorithm.

config CRYPTO_MORUS1280_SSE2
	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
	  algorithm.

config CRYPTO_MORUS1280_AVX2
	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
401 402
	  algorithm.

403 404 405 406
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
407
	select CRYPTO_NULL
408
	select CRYPTO_RNG_DEFAULT
409
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
410
	help
411 412
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
413

414 415 416 417
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
418
	select CRYPTO_RNG_DEFAULT
419
	select CRYPTO_MANAGER
420 421 422 423 424
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

425
comment "Block modes"
426

427 428
config CRYPTO_CBC
	tristate "CBC support"
429
	select CRYPTO_BLKCIPHER
430
	select CRYPTO_MANAGER
431
	help
432 433
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
434

435 436 437 438 439 440 441 442
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

443 444
config CRYPTO_CTR
	tristate "CTR support"
445
	select CRYPTO_BLKCIPHER
446
	select CRYPTO_SEQIV
447
	select CRYPTO_MANAGER
448
	help
449
	  CTR: Counter mode
450 451
	  This block cipher algorithm is required for IPSec.

452 453 454
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
455
	select CRYPTO_MANAGER
456 457 458
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
459 460 461
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
462 463 464
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

465 466
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

467 468
config CRYPTO_ECB
	tristate "ECB support"
469 470 471
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
472 473 474
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
475

476
config CRYPTO_LRW
477
	tristate "LRW support"
478 479 480 481 482 483 484 485 486 487
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

488 489 490 491 492 493 494 495 496 497 498 499
config CRYPTO_OFB
	tristate "OFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

500 501 502 503 504 505 506 507
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

508
config CRYPTO_XTS
509
	tristate "XTS support"
510 511
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
M
Milan Broz 已提交
512
	select CRYPTO_ECB
513 514 515 516 517
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

518 519 520
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
521
	select CRYPTO_MANAGER
522 523 524 525
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

526 527 528 529 530
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
	select CRYPTO_POLY1305

531 532 533 534 535 536 537 538
config CRYPTO_NHPOLY1305_SSE2
	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  SSE2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

539 540 541 542 543 544 545 546
config CRYPTO_NHPOLY1305_AVX2
	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  AVX2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

547 548 549 550 551
config CRYPTO_ADIANTUM
	tristate "Adiantum support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_NHPOLY1305
552
	select CRYPTO_MANAGER
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	help
	  Adiantum is a tweakable, length-preserving encryption mode
	  designed for fast and secure disk encryption, especially on
	  CPUs without dedicated crypto instructions.  It encrypts
	  each sector using the XChaCha12 stream cipher, two passes of
	  an ε-almost-∆-universal hash function, and an invocation of
	  the AES-256 block cipher on a single 16-byte block.  On CPUs
	  without AES instructions, Adiantum is much faster than
	  AES-XTS.

	  Adiantum's security is provably reducible to that of its
	  underlying stream and block ciphers, subject to a security
	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
	  mode, so it actually provides an even stronger notion of
	  security than XTS, subject to the security bound.

	  If unsure, say N.

571 572
comment "Hash modes"

573 574 575 576 577 578 579 580 581 582 583
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

584 585 586
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
587 588
	select CRYPTO_MANAGER
	help
589 590
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
591

592 593 594 595
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
596
	help
597 598 599 600
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
601

602 603 604 605 606 607 608 609 610 611 612
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

613
comment "Digest"
M
Mikko Herranen 已提交
614

615 616
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
617
	select CRYPTO_HASH
618
	select CRC32
J
Joy Latten 已提交
619
	help
620 621
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
622
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
623

624 625 626 627 628 629 630 631 632 633 634 635
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

636
config CRYPTO_CRC32C_VPMSUM
637
	tristate "CRC32c CRC algorithm (powerpc64)"
638
	depends on PPC64 && ALTIVEC
639 640 641 642 643 644 645 646
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


647 648 649 650 651 652 653 654 655
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
H
haco 已提交
673
	  instruction. This option will create 'crc32-pclmul' module,
674 675 676
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

677 678 679 680 681 682 683 684 685
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


686 687 688 689 690 691 692 693
config CRYPTO_XXHASH
	tristate "xxHash hash algorithm"
	select CRYPTO_HASH
	select XXHASH
	help
	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
	  speeds close to RAM limits.

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
H
haco 已提交
710
	  'crct10dif-pclmul' module, which is faster when computing the
711 712
	  crct10dif checksum as compared with the generic table implementation.

713 714 715 716 717 718 719 720 721
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

722 723 724 725 726 727 728 729
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

730 731 732
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
733
	select CRYPTO_HASH
734 735 736
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

737 738
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
739
	select CRYPTO_HASH
740 741 742 743 744 745 746
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

747
config CRYPTO_POLY1305_X86_64
748
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
749 750 751 752 753 754 755 756 757 758
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

759 760
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
761
	select CRYPTO_HASH
762
	help
763
	  MD4 message digest algorithm (RFC1320).
764

765 766
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
767
	select CRYPTO_HASH
L
Linus Torvalds 已提交
768
	help
769
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
770

771 772 773 774 775 776 777 778 779
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

780 781 782 783 784 785 786 787
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

788 789 790 791 792 793 794 795 796
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

797 798
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
799
	select CRYPTO_HASH
800
	help
801 802 803 804
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
805

806
config CRYPTO_RMD128
807
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
808
	select CRYPTO_HASH
809 810
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
811

812
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
813
	  be used as a secure replacement for RIPEMD. For other use cases,
814
	  RIPEMD-160 should be used.
815

816
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
817
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
818 819

config CRYPTO_RMD160
820
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
821
	select CRYPTO_HASH
822 823
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
824

825 826 827 828
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
829

830 831
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
832

833
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
834
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
835 836

config CRYPTO_RMD256
837
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
838
	select CRYPTO_HASH
839 840 841 842 843
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
844

845
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
846
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
847 848

config CRYPTO_RMD320
849
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
850
	select CRYPTO_HASH
851 852 853 854 855
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
856

857
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
858
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
859

860 861
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
862
	select CRYPTO_HASH
L
Linus Torvalds 已提交
863
	help
864
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
865

866
config CRYPTO_SHA1_SSSE3
867
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
868 869 870 871 872 873
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
874 875
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
876

877
config CRYPTO_SHA256_SSSE3
878
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
879 880 881 882 883 884 885
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
886 887
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
888 889 890 891 892 893 894 895 896 897

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
898 899
	  version 2 (AVX2) instructions, when available.

900 901 902 903 904 905 906 907 908
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

909 910 911 912 913 914 915 916 917
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

918 919 920 921 922 923 924
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

925 926 927 928 929 930 931
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

932 933
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
934
	select CRYPTO_HASH
L
Linus Torvalds 已提交
935
	help
936
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
937

938 939
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
940

941 942
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
943

944 945 946 947 948 949 950 951 952
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

953 954 955 956 957 958 959 960 961
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

962 963 964 965 966 967 968 969 970
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

971 972
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
973
	select CRYPTO_HASH
974
	help
975
	  SHA512 secure hash standard (DFIPS 180-2).
976

977 978
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
979

980 981
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
982

983 984 985 986 987 988 989 990 991
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

992 993 994 995 996 997 998 999 1000
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

1034 1035
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
1036
	select CRYPTO_HASH
1037
	help
1038
	  Tiger hash algorithm 192, 160 and 128-bit hashes
1039

1040 1041 1042
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
1043 1044

	  See also:
1045
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1046

1047 1048
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
1049
	select CRYPTO_HASH
L
Linus Torvalds 已提交
1050
	help
1051
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
1052

1053 1054
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
1055 1056

	  See also:
1057
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1058

1059 1060
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
1061
	depends on X86 && 64BIT
1062 1063 1064 1065 1066
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

1067
comment "Ciphers"
L
Linus Torvalds 已提交
1068 1069 1070

config CRYPTO_AES
	tristate "AES cipher algorithms"
1071
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1072
	help
1073
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1074 1075 1076
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1077 1078 1079 1080 1081 1082 1083
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1084

1085
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1086 1087 1088

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1104 1105
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1106

L
Linus Torvalds 已提交
1107 1108
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
1109 1110
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
1111
	select CRYPTO_AES
L
Linus Torvalds 已提交
1112
	help
1113
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1114 1115 1116
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1117 1118 1119 1120 1121 1122 1123
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1124

1125
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
1126 1127 1128 1129 1130

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
1131 1132
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
1133
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
1134
	help
1135
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
1136 1137 1138
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1139 1140 1141
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1153
	depends on X86
H
Herbert Xu 已提交
1154
	select CRYPTO_AEAD
1155 1156
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
1157
	select CRYPTO_ALGAPI
H
Herbert Xu 已提交
1158
	select CRYPTO_BLKCIPHER
1159
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1160
	select CRYPTO_SIMD
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1171 1172 1173 1174
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1175

1176
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1177 1178 1179

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1180 1181
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1182
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1183
	  acceleration for CTR.
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1237 1238
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1239 1240 1241

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1242
	select CRYPTO_BLKCIPHER
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1254
	select CRYPTO_BLOWFISH_COMMON
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1265 1266 1267 1268 1269 1270 1271 1272 1273
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1274 1275
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1276
	depends on X86 && 64BIT
1277
	select CRYPTO_BLKCIPHER
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1304 1305
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1306
	depends on X86 && 64BIT
1307
	depends on CRYPTO
1308
	select CRYPTO_BLKCIPHER
1309
	select CRYPTO_GLUE_HELPER_X86
1310 1311 1312 1313 1314 1315 1316 1317 1318
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1319 1320 1321 1322 1323 1324
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1325
	select CRYPTO_BLKCIPHER
1326
	select CRYPTO_CAMELLIA_X86_64
1327 1328
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1339 1340
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1373 1374 1375 1376 1377 1378
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1379 1380
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1381
	select CRYPTO_ALGAPI
1382
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1383 1384 1385 1386
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1387 1388 1389
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1390
	select CRYPTO_BLKCIPHER
1391
	select CRYPTO_CAST5
1392 1393
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1394 1395 1396 1397 1398 1399 1400
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1401 1402
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1403
	select CRYPTO_ALGAPI
1404
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1405 1406 1407 1408
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1409 1410 1411
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1412
	select CRYPTO_BLKCIPHER
1413
	select CRYPTO_CAST6
1414 1415 1416
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1417 1418 1419 1420 1421 1422 1423 1424
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1425 1426
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1427
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1428
	help
1429
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1430

1431 1432
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1433
	depends on SPARC64
1434 1435 1436 1437 1438 1439
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1440 1441 1442
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1443
	select CRYPTO_BLKCIPHER
1444 1445 1446 1447 1448 1449 1450 1451 1452
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1453 1454
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1455
	select CRYPTO_ALGAPI
1456
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1457
	help
1458
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1459 1460 1461

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1462
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1463 1464 1465 1466 1467 1468 1469 1470
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1471
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1472

1473
config CRYPTO_SALSA20
1474
	tristate "Salsa20 stream cipher algorithm"
1475 1476 1477 1478 1479 1480
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1481 1482 1483 1484

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1485
config CRYPTO_CHACHA20
1486
	tristate "ChaCha stream cipher algorithms"
1487 1488
	select CRYPTO_BLKCIPHER
	help
1489
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1490 1491 1492

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1493
	  This is the portable C implementation of ChaCha20.  See also:
1494 1495
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1496 1497 1498 1499 1500 1501
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1502 1503 1504 1505
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1506
config CRYPTO_CHACHA20_X86_64
1507
	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1508 1509 1510 1511
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
1512 1513
	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
	  XChaCha20, and XChaCha12 stream ciphers.
1514

1515 1516
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1517
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1518
	help
1519
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1531
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1532
	help
1533
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1534

1535 1536 1537 1538 1539 1540 1541
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1542 1543 1544
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1545
	select CRYPTO_BLKCIPHER
1546
	select CRYPTO_GLUE_HELPER_X86
1547
	select CRYPTO_SERPENT
1548
	select CRYPTO_SIMD
1549 1550 1551 1552 1553 1554
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1555
	  This module provides Serpent cipher algorithm that processes eight
1556 1557 1558 1559 1560
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1561 1562 1563
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1564
	select CRYPTO_BLKCIPHER
1565
	select CRYPTO_GLUE_HELPER_X86
1566
	select CRYPTO_SERPENT
1567
	select CRYPTO_SIMD
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1579 1580 1581 1582

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1583
	select CRYPTO_BLKCIPHER
1584
	select CRYPTO_GLUE_HELPER_X86
1585
	select CRYPTO_SERPENT
1586
	select CRYPTO_SIMD
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1641 1642
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1643
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1644
	help
1645
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1660
	select CRYPTO_ALGAPI
1661
	select CRYPTO_TWOFISH_COMMON
1662
	help
1663
	  Twofish cipher algorithm.
1664

1665 1666 1667 1668
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1691 1692

	  See also:
1693
	  <http://www.schneier.com/twofish.html>
1694

1695 1696 1697
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1698
	select CRYPTO_ALGAPI
1699
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1700
	help
1701
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1702

1703 1704 1705 1706 1707 1708 1709 1710
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1711 1712
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1713
	depends on X86 && 64BIT
1714
	select CRYPTO_BLKCIPHER
1715 1716
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1717
	select CRYPTO_GLUE_HELPER_X86
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1732 1733 1734
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1735
	select CRYPTO_BLKCIPHER
1736
	select CRYPTO_GLUE_HELPER_X86
1737
	select CRYPTO_SIMD
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1755 1756 1757 1758 1759
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1760
	select CRYPTO_ACOMP2
1761 1762
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1763
	help
1764 1765 1766 1767
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1768

1769 1770 1771
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1772
	select CRYPTO_ACOMP2
1773 1774 1775 1776 1777
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1778 1779
config CRYPTO_842
	tristate "842 compression algorithm"
1780
	select CRYPTO_ALGAPI
1781
	select CRYPTO_ACOMP2
1782 1783
	select 842_COMPRESS
	select 842_DECOMPRESS
1784 1785
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1786 1787 1788 1789

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1790
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1791 1792 1793 1794 1795 1796 1797 1798
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1799
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1800 1801 1802 1803
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1804

N
Nick Terrell 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1814 1815 1816 1817 1818 1819 1820 1821 1822
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1823 1824
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1825

1826
menuconfig CRYPTO_DRBG_MENU
1827 1828 1829 1830 1831
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1832
if CRYPTO_DRBG_MENU
1833 1834

config CRYPTO_DRBG_HMAC
1835
	bool
1836 1837
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1838
	select CRYPTO_SHA256
1839 1840 1841

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1842
	select CRYPTO_SHA256
1843 1844 1845 1846 1847 1848
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1849
	depends on CRYPTO_CTR
1850 1851 1852
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1853 1854
config CRYPTO_DRBG
	tristate
1855
	default CRYPTO_DRBG_MENU
1856
	select CRYPTO_RNG
1857
	select CRYPTO_JITTERENTROPY
1858 1859

endif	# if CRYPTO_DRBG_MENU
1860

1861 1862
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1863
	select CRYPTO_RNG
1864 1865 1866 1867 1868 1869 1870
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1871 1872 1873
config CRYPTO_USER_API
	tristate

1874 1875
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1876
	depends on NET
1877 1878 1879 1880 1881 1882
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1883 1884
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1885
	depends on NET
1886 1887 1888 1889 1890 1891
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1892 1893 1894 1895 1896 1897 1898 1899 1900
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1901 1902 1903 1904
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1905 1906
	select CRYPTO_BLKCIPHER
	select CRYPTO_NULL
1907 1908 1909 1910 1911
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1912 1913
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
1914
	depends on CRYPTO_USER
1915 1916 1917 1918 1919 1920 1921 1922 1923
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1924 1925 1926
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1927
source "drivers/crypto/Kconfig"
1928 1929
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
L
Linus Torvalds 已提交
1930

1931
endif	# if CRYPTO