entry_64.S 43.4 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include "calling.h"
27
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
28 29 30 31
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
32
#include <asm/page_types.h>
33
#include <asm/irqflags.h>
34
#include <asm/paravirt.h>
35
#include <asm/percpu.h>
36
#include <asm/asm.h>
37
#include <asm/smap.h>
38
#include <asm/pgtable_types.h>
39
#include <asm/export.h>
40
#include <asm/frame.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
.code64
.section .entry.text, "ax"
45

46
#ifdef CONFIG_PARAVIRT
47
ENTRY(native_usergs_sysret64)
48
	UNWIND_HINT_EMPTY
49 50
	swapgs
	sysretq
51
END(native_usergs_sysret64)
52 53
#endif /* CONFIG_PARAVIRT */

54
.macro TRACE_IRQS_IRETQ
55
#ifdef CONFIG_TRACE_IRQFLAGS
56 57
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
58 59 60 61 62
	TRACE_IRQS_ON
1:
#endif
.endm

63 64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
77
	call	debug_stack_set_zero
78
	TRACE_IRQS_OFF
79
	call	debug_stack_reset
80 81 82
.endm

.macro TRACE_IRQS_ON_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_ON
85
	call	debug_stack_reset
86 87
.endm

88
.macro TRACE_IRQS_IRETQ_DEBUG
89 90
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
91 92 93 94 95
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
96 97 98
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
99 100
#endif

L
Linus Torvalds 已提交
101
/*
102
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
103
 *
104 105 106 107 108 109 110 111 112 113
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
114
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
115 116 117 118 119 120
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
121
 * rax  system call number
122 123
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
124 125
 * rdi  arg0
 * rsi  arg1
126
 * rdx  arg2
127
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
128 129
 * r8   arg4
 * r9   arg5
130
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
131
 *
L
Linus Torvalds 已提交
132 133
 * Only called from user space.
 *
134
 * When user can change pt_regs->foo always force IRET. That is because
135 136
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
137
 */
L
Linus Torvalds 已提交
138

139
ENTRY(entry_SYSCALL_64)
140
	UNWIND_HINT_EMPTY
141 142 143 144 145
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
146

147
	swapgs
148 149
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
150

151 152
	TRACE_IRQS_OFF

153
	/* Construct struct pt_regs on stack */
154 155 156 157 158
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
159
GLOBAL(entry_SYSCALL_64_after_hwframe)
160 161 162 163 164 165 166 167 168 169 170
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
171
	UNWIND_HINT_REGS extra=0
172

173 174 175 176
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
177 178
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179 180
	jnz	entry_SYSCALL64_slow_path

181
entry_SYSCALL_64_fastpath:
182 183 184 185 186 187 188
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
189
#if __SYSCALL_MASK == ~0
190
	cmpq	$__NR_syscall_max, %rax
191
#else
192 193
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
194
#endif
195 196
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
197 198 199

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
200 201
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
202
	 */
203
	call	*sys_call_table(, %rax, 8)
204 205
.Lentry_SYSCALL_64_after_fastpath_call:

206
	movq	%rax, RAX(%rsp)
207
1:
208 209

	/*
210 211 212
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
213
	 */
214
	DISABLE_INTERRUPTS(CLBR_ANY)
215
	TRACE_IRQS_OFF
216 217
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218
	jnz	1f
219

220 221
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
222 223 224
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
225
	movq	RSP(%rsp), %rsp
226
	UNWIND_HINT_EMPTY
227
	USERGS_SYSRET64
L
Linus Torvalds 已提交
228

229 230 231 232 233 234
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
235
	TRACE_IRQS_ON
236
	ENABLE_INTERRUPTS(CLBR_ANY)
237
	SAVE_EXTRA_REGS
238
	movq	%rsp, %rdi
239 240
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
241

242 243
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
244
	SAVE_EXTRA_REGS
245
	movq	%rsp, %rdi
246 247 248
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
249
	RESTORE_EXTRA_REGS
250
	TRACE_IRQS_IRETQ		/* we're about to change IF */
251 252 253 254 255

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
256 257 258 259
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
260 261 262 263

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
264
	 * the kernel, since userspace controls RSP.
265
	 *
266
	 * If width of "canonical tail" ever becomes variable, this will need
267
	 * to be updated to remain correct on both old and new CPUs.
268
	 *
269 270
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
271
	 */
272 273
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
274

275 276 277
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
278

279 280
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
281

282 283 284
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
285 286

	/*
287 288 289 290 291 292 293 294 295
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
296
	 *
297
	 *           movq	$stuck_here, %rcx
298 299 300 301 302 303
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
304 305
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
306 307 308

	/* nothing to check for RSP */

309 310
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
311 312

	/*
313 314
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
315 316
	 */
syscall_return_via_sysret:
317 318
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
319
	movq	RSP(%rsp), %rsp
320
	UNWIND_HINT_EMPTY
321 322 323 324 325
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
326
END(entry_SYSCALL_64)
327

328 329 330
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
331 332 333
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
334 335
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
336
	 * IRQs are on.
337 338 339 340
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

341 342 343 344
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
345
	DISABLE_INTERRUPTS(CLBR_ANY)
346
	TRACE_IRQS_OFF
347
	popq	%rax
348
	UNWIND_HINT_REGS extra=0
349
	jmp	entry_SYSCALL64_slow_path
350 351

1:
352
	jmp	*%rax				/* Called from C */
353 354 355 356
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
357
	UNWIND_HINT_FUNC
358 359 360 361 362 363 364 365 366 367
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
368

369 370 371 372 373
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
374
	UNWIND_HINT_FUNC
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

406 407 408
/*
 * A newly forked process directly context switches into this address.
 *
409
 * rax: prev task we switched from
410 411
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
412 413
 */
ENTRY(ret_from_fork)
414
	UNWIND_HINT_EMPTY
415
	movq	%rax, %rdi
416
	call	schedule_tail			/* rdi: 'prev' task parameter */
417

418 419
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
420

421
2:
422
	UNWIND_HINT_REGS
423
	movq	%rsp, %rdi
424 425 426 427
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
428 429 430 431 432 433 434 435 436 437 438 439

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
440 441
END(ret_from_fork)

442
/*
443 444
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
445
 */
446
	.align 8
447
ENTRY(irq_entries_start)
448 449
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
450
	UNWIND_HINT_IRET_REGS
451
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
452 453
	jmp	common_interrupt
	.align	8
454
	vector=vector+1
455
    .endr
456 457
END(irq_entries_start)

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
	pushfq
	testl $X86_EFLAGS_IF, (%rsp)
	jz .Lokay_\@
	ud2
.Lokay_\@:
	addq $8, %rsp
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
476
.macro ENTER_IRQ_STACK regs=1 old_rsp
477 478
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
479 480 481 482 483

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

484
	incl	PER_CPU_VAR(irq_count)
485
	jnz	.Lirq_stack_push_old_rsp_\@
486 487 488 489 490 491 492 493 494

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
511
	 */
512 513 514 515 516
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
517

518
.Lirq_stack_push_old_rsp_\@:
519
	pushq	\old_rsp
520 521 522 523

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
524 525 526 527 528
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
529
.macro LEAVE_IRQ_STACK regs=1
530 531 532 533
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

534 535 536 537
	.if \regs
	UNWIND_HINT_REGS
	.endif

538 539 540 541 542 543 544 545
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

546
/*
L
Linus Torvalds 已提交
547 548 549
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
550 551 552
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
553

554
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
555
	.macro interrupt func
556
	cld
557 558 559
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
560
	ENCODE_FRAME_POINTER
561

562
	testb	$3, CS(%rsp)
563
	jz	1f
564 565 566 567 568

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
569
	SWAPGS
570 571 572 573 574 575 576 577 578 579 580

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

581
	CALL_enter_from_user_mode
582

583
1:
584
	ENTER_IRQ_STACK old_rsp=%rdi
585 586 587
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

588
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
589 590
	.endm

591 592 593 594
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
595 596
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
597
	ASM_CLAC
598
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
599
	interrupt do_IRQ
600
	/* 0(%rsp): old RSP */
601
ret_from_intr:
602
	DISABLE_INTERRUPTS(CLBR_ANY)
603
	TRACE_IRQS_OFF
604

605
	LEAVE_IRQ_STACK
606

607
	testb	$3, CS(%rsp)
608
	jz	retint_kernel
609

610 611 612 613
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
614
	TRACE_IRQS_IRETQ
615
	SWAPGS
616
	jmp	restore_regs_and_iret
617

618
/* Returning to kernel space */
619
retint_kernel:
620 621 622
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
623
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
624
	jnc	1f
625
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
626
	jnz	1f
627
	call	preempt_schedule_irq
628
	jmp	0b
629
1:
630
#endif
631 632 633 634
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
635 636 637 638 639

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
640
GLOBAL(restore_regs_and_iret)
641
	RESTORE_EXTRA_REGS
642
restore_c_regs_and_iret:
643 644
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
645 646 647
	INTERRUPT_RETURN

ENTRY(native_iret)
648
	UNWIND_HINT_IRET_REGS
649 650 651 652
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
653
#ifdef CONFIG_X86_ESPFIX64
654 655
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
656
#endif
657

658
.global native_irq_return_iret
659
native_irq_return_iret:
A
Andy Lutomirski 已提交
660 661 662 663 664 665
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
666
	iretq
I
Ingo Molnar 已提交
667

668
#ifdef CONFIG_X86_ESPFIX64
669
native_irq_return_ldt:
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
692
	SWAPGS
693
	movq	PER_CPU_VAR(espfix_waddr), %rdi
694 695
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
696
	movq	%rax, (1*8)(%rdi)
697
	movq	(2*8)(%rsp), %rax		/* user CS */
698
	movq	%rax, (2*8)(%rdi)
699
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
700
	movq	%rax, (3*8)(%rdi)
701
	movq	(5*8)(%rsp), %rax		/* user SS */
702
	movq	%rax, (5*8)(%rdi)
703
	movq	(4*8)(%rsp), %rax		/* user RSP */
704
	movq	%rax, (4*8)(%rdi)
705 706 707 708 709 710 711 712 713 714 715 716 717
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
718
	orq	PER_CPU_VAR(espfix_stack), %rax
719
	SWAPGS
720
	movq	%rax, %rsp
721
	UNWIND_HINT_IRET_REGS offset=8
722 723 724 725 726 727 728 729 730 731 732 733

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
734
	jmp	native_irq_return_iret
735
#endif
736
END(common_interrupt)
737

L
Linus Torvalds 已提交
738 739
/*
 * APIC interrupts.
740
 */
741
.macro apicinterrupt3 num sym do_sym
742
ENTRY(\sym)
743
	UNWIND_HINT_IRET_REGS
744
	ASM_CLAC
745
	pushq	$~(\num)
746
.Lcommon_\sym:
747
	interrupt \do_sym
748
	jmp	ret_from_intr
749 750
END(\sym)
.endm
L
Linus Torvalds 已提交
751

752
/* Make sure APIC interrupt handlers end up in the irqentry section: */
753 754
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
755

756
.macro apicinterrupt num sym do_sym
757
PUSH_SECTION_IRQENTRY
758
apicinterrupt3 \num \sym \do_sym
759
POP_SECTION_IRQENTRY
760 761
.endm

762
#ifdef CONFIG_SMP
763 764
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
765
#endif
L
Linus Torvalds 已提交
766

N
Nick Piggin 已提交
767
#ifdef CONFIG_X86_UV
768
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
769
#endif
770 771 772

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
773

774
#ifdef CONFIG_HAVE_KVM
775 776
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
777
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
778 779
#endif

780
#ifdef CONFIG_X86_MCE_THRESHOLD
781
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
782 783
#endif

784
#ifdef CONFIG_X86_MCE_AMD
785
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
786 787
#endif

788
#ifdef CONFIG_X86_THERMAL_VECTOR
789
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
790
#endif
791

792
#ifdef CONFIG_SMP
793 794 795
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
796
#endif
L
Linus Torvalds 已提交
797

798 799
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
800

801
#ifdef CONFIG_IRQ_WORK
802
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
803 804
#endif

L
Linus Torvalds 已提交
805 806
/*
 * Exception entry points.
807
 */
808
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
809 810

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
811
ENTRY(\sym)
812 813
	UNWIND_HINT_IRET_REGS offset=8

814 815 816 817 818
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

819
	ASM_CLAC
820 821

	.ifeq \has_error_code
822
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
823 824
	.endif

825
	ALLOC_PT_GPREGS_ON_STACK
826 827

	.if \paranoid
828
	.if \paranoid == 1
829 830
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
831
	.endif
832
	call	paranoid_entry
833
	.else
834
	call	error_entry
835
	.endif
836
	UNWIND_HINT_REGS
837
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
838 839

	.if \paranoid
840
	.if \shift_ist != -1
841
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
842
	.else
843
	TRACE_IRQS_OFF
844
	.endif
845
	.endif
846

847
	movq	%rsp, %rdi			/* pt_regs pointer */
848 849

	.if \has_error_code
850 851
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
852
	.else
853
	xorl	%esi, %esi			/* no error code */
854 855
	.endif

856
	.if \shift_ist != -1
857
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
858 859
	.endif

860
	call	\do_sym
861

862
	.if \shift_ist != -1
863
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
864 865
	.endif

866
	/* these procedures expect "no swapgs" flag in ebx */
867
	.if \paranoid
868
	jmp	paranoid_exit
869
	.else
870
	jmp	error_exit
871 872
	.endif

873 874 875 876 877 878 879
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
880
	call	error_entry
881 882


883 884 885
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
886

887
	movq	%rsp, %rdi			/* pt_regs pointer */
888 889

	.if \has_error_code
890 891
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
892
	.else
893
	xorl	%esi, %esi			/* no error code */
894 895
	.endif

896
	call	\do_sym
897

898
	jmp	error_exit			/* %ebx: no swapgs flag */
899
	.endif
900
END(\sym)
901
.endm
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
922
ENTRY(native_load_gs_index)
923
	FRAME_BEGIN
924
	pushfq
925
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
926
	SWAPGS
927
.Lgs_change:
928
	movl	%edi, %gs
929
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
930
	SWAPGS
931
	popfq
932
	FRAME_END
933
	ret
934
ENDPROC(native_load_gs_index)
935
EXPORT_SYMBOL(native_load_gs_index)
936

937
	_ASM_EXTABLE(.Lgs_change, bad_gs)
938
	.section .fixup, "ax"
L
Linus Torvalds 已提交
939
	/* running with kernelgs */
940
bad_gs:
941
	SWAPGS					/* switch back to user gs */
942 943 944 945 946 947
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
948 949 950
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
951
	.previous
952

953
/* Call softirq on interrupt stack. Interrupts are off. */
954
ENTRY(do_softirq_own_stack)
955 956
	pushq	%rbp
	mov	%rsp, %rbp
957
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
958
	call	__do_softirq
959
	LEAVE_IRQ_STACK regs=0
960
	leaveq
961
	ret
962
ENDPROC(do_softirq_own_stack)
963

964
#ifdef CONFIG_XEN
965
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
966 967

/*
968 969 970 971 972 973 974 975 976 977 978 979
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
980 981
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

982 983 984 985
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
986
	UNWIND_HINT_FUNC
987
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
988
	UNWIND_HINT_REGS
989 990

	ENTER_IRQ_STACK old_rsp=%r10
991
	call	xen_evtchn_do_upcall
992 993
	LEAVE_IRQ_STACK

994
#ifndef CONFIG_PREEMPT
995
	call	xen_maybe_preempt_hcall
996
#endif
997
	jmp	error_exit
998
END(xen_do_hypervisor_callback)
999 1000

/*
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1013
ENTRY(xen_failsafe_callback)
1014
	UNWIND_HINT_EMPTY
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1027
	/* All segments match their saved values => Category 2 (Bad IRET). */
1028 1029 1030 1031
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1032
	UNWIND_HINT_IRET_REGS offset=8
1033
	jmp	general_protection
1034
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1035 1036 1037
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1038
	UNWIND_HINT_IRET_REGS
1039
	pushq	$-1 /* orig_ax = -1 => not a system call */
1040 1041 1042
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1043
	ENCODE_FRAME_POINTER
1044
	jmp	error_exit
1045 1046
END(xen_failsafe_callback)

1047
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1048 1049
	xen_hvm_callback_vector xen_evtchn_do_upcall

1050
#endif /* CONFIG_XEN */
1051

1052
#if IS_ENABLED(CONFIG_HYPERV)
1053
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1054 1055 1056
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1057 1058 1059 1060
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1061
#ifdef CONFIG_XEN
1062 1063
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1064
#endif
1065 1066

idtentry general_protection	do_general_protection	has_error_code=1
1067
idtentry page_fault		do_page_fault		has_error_code=1
1068

G
Gleb Natapov 已提交
1069
#ifdef CONFIG_KVM_GUEST
1070
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1071
#endif
1072

1073
#ifdef CONFIG_X86_MCE
1074
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1075 1076
#endif

1077 1078 1079 1080 1081 1082
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1083
	UNWIND_HINT_FUNC
1084 1085 1086
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1087
	ENCODE_FRAME_POINTER 8
1088 1089
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1090
	rdmsr
1091 1092
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1093
	SWAPGS
1094
	xorl	%ebx, %ebx
1095
1:	ret
1096
END(paranoid_entry)
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1107 1108
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1109
 */
1110
ENTRY(paranoid_exit)
1111
	UNWIND_HINT_REGS
1112
	DISABLE_INTERRUPTS(CLBR_ANY)
1113
	TRACE_IRQS_OFF_DEBUG
1114 1115
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1116
	TRACE_IRQS_IRETQ
1117
	SWAPGS_UNSAFE_STACK
1118
	jmp	paranoid_exit_restore
1119
paranoid_exit_no_swapgs:
1120
	TRACE_IRQS_IRETQ_DEBUG
1121
paranoid_exit_restore:
1122 1123 1124
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1125
	INTERRUPT_RETURN
1126 1127 1128
END(paranoid_exit)

/*
1129
 * Save all registers in pt_regs, and switch gs if needed.
1130
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1131 1132
 */
ENTRY(error_entry)
1133
	UNWIND_HINT_FUNC
1134
	cld
1135 1136
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1137
	ENCODE_FRAME_POINTER 8
1138
	xorl	%ebx, %ebx
1139
	testb	$3, CS+8(%rsp)
1140
	jz	.Lerror_kernelspace
1141

1142 1143 1144 1145
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1146
	SWAPGS
1147

1148
.Lerror_entry_from_usermode_after_swapgs:
1149 1150 1151 1152 1153 1154
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1155
	CALL_enter_from_user_mode
1156
	ret
1157

1158
.Lerror_entry_done:
1159 1160 1161
	TRACE_IRQS_OFF
	ret

1162 1163 1164 1165 1166 1167
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1168
.Lerror_kernelspace:
1169 1170 1171
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1172
	je	.Lerror_bad_iret
1173 1174
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1175
	je	.Lbstep_iret
1176
	cmpq	$.Lgs_change, RIP+8(%rsp)
1177
	jne	.Lerror_entry_done
1178 1179

	/*
1180
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1181
	 * gsbase and proceed.  We'll fix up the exception and land in
1182
	 * .Lgs_change's error handler with kernel gsbase.
1183
	 */
1184 1185
	SWAPGS
	jmp .Lerror_entry_done
1186

1187
.Lbstep_iret:
1188
	/* Fix truncated RIP */
1189
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1190 1191
	/* fall through */

1192
.Lerror_bad_iret:
1193 1194 1195 1196
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1197
	SWAPGS
1198 1199 1200 1201 1202 1203

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1204 1205 1206
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1207
	decl	%ebx
1208
	jmp	.Lerror_entry_from_usermode_after_swapgs
1209 1210 1211
END(error_entry)


1212
/*
1213
 * On entry, EBX is a "return to kernel mode" flag:
1214 1215 1216
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1217
ENTRY(error_exit)
1218
	UNWIND_HINT_REGS
1219
	DISABLE_INTERRUPTS(CLBR_ANY)
1220
	TRACE_IRQS_OFF
1221
	testl	%ebx, %ebx
1222 1223
	jnz	retint_kernel
	jmp	retint_user
1224 1225
END(error_exit)

1226
/* Runs on exception stack */
1227
/* XXX: broken on Xen PV */
1228
ENTRY(nmi)
1229
	UNWIND_HINT_IRET_REGS
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1247 1248 1249
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1250 1251
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1252
	 *    o Modify the "iret" location to jump to the repeat_nmi
1253 1254 1255 1256 1257 1258 1259 1260
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1261 1262 1263 1264 1265
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1266 1267
	 */

1268 1269
	ASM_CLAC

1270
	/* Use %rdx as our temp variable throughout */
1271
	pushq	%rdx
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1282 1283 1284
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1285 1286
	 */

1287
	SWAPGS_UNSAFE_STACK
1288 1289 1290
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1291
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1292 1293 1294 1295 1296
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1297
	UNWIND_HINT_IRET_REGS
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1314
	UNWIND_HINT_REGS
1315
	ENCODE_FRAME_POINTER
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1327
	/*
1328
	 * Return back to user mode.  We must *not* do the normal exit
1329
	 * work, because we don't want to enable interrupts.
1330
	 */
1331
	SWAPGS
1332
	jmp	restore_regs_and_iret
1333

1334
.Lnmi_from_kernel:
1335
	/*
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1376
	/*
1377 1378
	 * Determine whether we're a nested NMI.
	 *
1379 1380 1381 1382 1383 1384
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1385
	 */
1386 1387 1388 1389 1390 1391 1392 1393

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1394

1395
	/*
1396
	 * Now check "NMI executing".  If it's set, then we're nested.
1397 1398
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1399
	 */
1400 1401
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1402 1403

	/*
1404 1405
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1406 1407 1408 1409 1410 1411 1412 1413
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1414
	 */
1415 1416 1417 1418 1419
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1420

1421 1422 1423 1424
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1425 1426 1427 1428 1429 1430 1431

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1432

1433 1434
nested_nmi:
	/*
1435 1436
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1437
	 */
1438
	subq	$8, %rsp
1439 1440 1441
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1442
	pushfq
1443 1444
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1445 1446

	/* Put stack back */
1447
	addq	$(6*8), %rsp
1448 1449

nested_nmi_out:
1450
	popq	%rdx
1451

1452
	/* We are returning to kernel mode, so this cannot result in a fault. */
1453 1454 1455
	INTERRUPT_RETURN

first_nmi:
1456
	/* Restore rdx. */
1457
	movq	(%rsp), %rdx
1458

1459 1460
	/* Make room for "NMI executing". */
	pushq	$0
1461

1462
	/* Leave room for the "iret" frame */
1463
	subq	$(5*8), %rsp
1464

1465
	/* Copy the "original" frame to the "outermost" frame */
1466
	.rept 5
1467
	pushq	11*8(%rsp)
1468
	.endr
1469
	UNWIND_HINT_IRET_REGS
1470

1471 1472
	/* Everything up to here is safe from nested NMIs */

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1485
	UNWIND_HINT_IRET_REGS
1486 1487 1488
1:
#endif

1489
repeat_nmi:
1490 1491 1492 1493 1494 1495 1496 1497
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1498 1499 1500 1501
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1502 1503
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1504
	 */
1505
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1506

1507
	/*
1508 1509 1510
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1511
	 */
1512
	addq	$(10*8), %rsp
1513
	.rept 5
1514
	pushq	-6*8(%rsp)
1515
	.endr
1516
	subq	$(5*8), %rsp
1517
end_repeat_nmi:
1518 1519

	/*
1520 1521 1522
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1523
	 */
1524
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1525 1526
	ALLOC_PT_GPREGS_ON_STACK

1527
	/*
1528
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1529 1530 1531 1532 1533
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1534
	call	paranoid_entry
1535
	UNWIND_HINT_REGS
1536

1537
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1538 1539 1540
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1541

1542 1543
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1544 1545 1546
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1547 1548
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1549 1550

	/* Point RSP at the "iret" frame. */
1551
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1563 1564 1565 1566 1567 1568

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1569
	INTERRUPT_RETURN
1570 1571 1572
END(nmi)

ENTRY(ignore_sysret)
1573
	UNWIND_HINT_EMPTY
1574
	mov	$-ENOSYS, %eax
1575 1576
	sysret
END(ignore_sysret)
1577 1578

ENTRY(rewind_stack_do_exit)
1579
	UNWIND_HINT_FUNC
1580 1581 1582 1583
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1584 1585
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1586 1587 1588

	call	do_exit
END(rewind_stack_do_exit)