iommu.c 143.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
26
#include <linux/dma-map-ops.h>
27
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
34
#include <linux/dma-iommu.h>
K
Kay, Allen M 已提交
35
#include <linux/intel-iommu.h>
36
#include <linux/syscore_ops.h>
37
#include <linux/tboot.h>
38
#include <linux/dmi.h>
39
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
40
#include <linux/memblock.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <asm/irq_remapping.h>
45
#include <asm/cacheflush.h>
46
#include <asm/iommu.h>
47

48
#include "../irq_remapping.h"
49
#include "pasid.h"
50
#include "cap_audit.h"
51

F
Fenghua Yu 已提交
52 53 54
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

55
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
57
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
58
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
59 60 61 62 63

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

64
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
65

F
Fenghua Yu 已提交
66
#define MAX_AGAW_WIDTH 64
67
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
68

69 70
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
71 72 73 74 75 76

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
77

78 79 80
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

81
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
82

83 84 85 86
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

105 106 107 108 109 110 111
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
112
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
113 114 115 116
}

static inline int width_to_agaw(int width)
{
117
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
118 119 120 121 122 123 124
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

125
static inline int pfn_level_offset(u64 pfn, int level)
126 127 128 129
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

130
static inline u64 level_mask(int level)
131
{
132
	return -1ULL << level_to_offset_bits(level);
133 134
}

135
static inline u64 level_size(int level)
136
{
137
	return 1ULL << level_to_offset_bits(level);
138 139
}

140
static inline u64 align_to_level(u64 pfn, int level)
141 142 143
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
144

145 146
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
147
	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
148 149
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
170 171 172
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

173
static void __init check_tylersburg_isoch(void);
174 175
static int rwbf_quirk;

176 177 178 179 180
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
181
static int intel_iommu_tboot_noforce;
182
static int no_platform_optin;
183

184 185
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
206

207 208
	return re->hi & VTD_PAGE_MASK;
}
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
231 232 233
{
	return (context->lo & 1);
}
234

235
bool context_present(struct context_entry *context)
236 237 238 239 240 241
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
262
	context->lo &= ~VTD_PAGE_MASK;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

278 279 280 281 282
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

283 284 285 286 287
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
288

289 290 291 292 293 294
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
295 296
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
297

298 299 300 301
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

302 303 304 305 306
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
307
	struct dmar_dev_scope *devices;	/* target devices */
308 309 310 311 312 313
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
314
	struct dmar_dev_scope *devices;	/* target devices */
315 316 317 318 319 320 321 322 323 324
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
325 326 327
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

328
static void domain_exit(struct dmar_domain *domain);
329
static void domain_remove_dev_info(struct dmar_domain *domain);
330
static void dmar_remove_one_dev_info(struct device *dev);
331
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
332 333
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
334 335
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
336

337
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
338 339 340
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
341
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
342

343
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
344 345
int intel_iommu_sm = 1;
#else
346
int intel_iommu_sm;
347
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
348

349 350 351
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

352
static int dmar_map_gfx = 1;
353
static int dmar_forcedac;
M
mark gross 已提交
354
static int intel_iommu_strict;
355
static int intel_iommu_superpage = 1;
356
static int iommu_identity_mapping;
357
static int iommu_skip_te_disable;
358

359 360
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
361

362 363 364
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

365
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
366 367 368 369 370 371 372
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

373
	info = dev_iommu_priv_get(dev);
374
	if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO))
375 376 377 378 379
		return NULL;

	return info;
}

380
DEFINE_SPINLOCK(device_domain_lock);
381 382
static LIST_HEAD(device_domain_list);

383 384
/*
 * Iterate over elements in device_domain_list and call the specified
385
 * callback @fn against each element.
386 387 388 389 390
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
391
	unsigned long flags;
392 393
	struct device_domain_info *info;

394
	spin_lock_irqsave(&device_domain_lock, flags);
395 396
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
397 398
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
399
			return ret;
400
		}
401
	}
402
	spin_unlock_irqrestore(&device_domain_lock, flags);
403 404 405 406

	return 0;
}

407
const struct iommu_ops intel_iommu_ops;
408

409 410 411 412 413
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

414 415 416 417 418
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

419 420 421 422 423 424 425 426 427
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

428 429 430 431 432
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
433 434
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
435
			pr_info("IOMMU enabled\n");
436
		} else if (!strncmp(str, "off", 3)) {
437
			dmar_disabled = 1;
438
			no_platform_optin = 1;
J
Joerg Roedel 已提交
439
			pr_info("IOMMU disabled\n");
440 441
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
442
			pr_info("Disable GFX device mapping\n");
443
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
444
			pr_info("Forcing DAC for PCI devices\n");
445
			dmar_forcedac = 1;
M
mark gross 已提交
446
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
447
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
448
			intel_iommu_strict = 1;
449
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
450
			pr_info("Disable supported super page\n");
451
			intel_iommu_superpage = 0;
452 453 454
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
455
		} else if (!strncmp(str, "tboot_noforce", 13)) {
456
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
457
			intel_iommu_tboot_noforce = 1;
458 459 460 461 462 463 464 465 466 467 468 469 470
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

471 472
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
473 474 475 476 477 478 479 480
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
481 482 483 484 485
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
486 487 488 489 490 491 492 493 494 495 496 497 498
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
499 500
}

501
void *alloc_pgtable_page(int node)
502
{
503 504
	struct page *page;
	void *vaddr = NULL;
505

506 507 508
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
509
	return vaddr;
510 511
}

512
void free_pgtable_page(void *vaddr)
513 514 515 516 517 518
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
519
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
520 521
}

K
Kay, Allen M 已提交
522
static void free_domain_mem(void *vaddr)
523 524 525 526 527 528
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
529
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
530 531 532 533 534 535 536
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

537 538 539 540 541
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

542 543 544 545 546
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

547 548 549 550 551 552 553 554
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
555
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
556 557 558 559 560
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
561
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
562 563 564 565 566 567 568 569
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

588
/* This functionin only returns single iommu in a domain */
589
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
590 591 592
{
	int iommu_id;

593
	/* si_domain and vm domain should not get here. */
594 595 596
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

597 598 599
	for_each_domain_iommu(iommu_id, domain)
		break;

600 601 602 603 604 605
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

606 607 608 609 610 611
static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
{
	return sm_supported(iommu) ?
			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
}

W
Weidong Han 已提交
612 613
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
614 615
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
616 617
	bool found = false;
	int i;
618

619
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
620

621
	for_each_domain_iommu(i, domain) {
622
		found = true;
623
		if (!iommu_paging_structure_coherency(g_iommus[i])) {
W
Weidong Han 已提交
624 625 626 627
			domain->iommu_coherency = 0;
			break;
		}
	}
628 629 630 631 632 633
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
634
		if (!iommu_paging_structure_coherency(iommu)) {
635 636 637 638 639
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
640 641
}

642
static int domain_update_iommu_snooping(struct intel_iommu *skip)
643
{
644 645 646
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
647

648 649 650 651 652 653 654
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
655 656
		}
	}
657 658 659
	rcu_read_unlock();

	return ret;
660 661
}

662 663
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
664
{
665
	struct dmar_drhd_unit *drhd;
666
	struct intel_iommu *iommu;
667
	int mask = 0x3;
668 669

	if (!intel_iommu_superpage) {
670
		return 0;
671 672
	}

673
	/* set iommu_superpage to the smallest common denominator */
674
	rcu_read_lock();
675
	for_each_active_iommu(iommu, drhd) {
676
		if (iommu != skip) {
677 678 679 680 681 682 683
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

684 685
			if (!mask)
				break;
686 687
		}
	}
688 689
	rcu_read_unlock();

690
	return fls(mask);
691 692
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static int domain_update_device_node(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	int nid = NUMA_NO_NODE;

	assert_spin_locked(&device_domain_lock);

	if (list_empty(&domain->devices))
		return NUMA_NO_NODE;

	list_for_each_entry(info, &domain->devices, link) {
		if (!info->dev)
			continue;

		/*
		 * There could possibly be multiple device numa nodes as devices
		 * within the same domain may sit behind different IOMMUs. There
		 * isn't perfect answer in such situation, so we select first
		 * come first served policy.
		 */
		nid = dev_to_node(info->dev);
		if (nid != NUMA_NO_NODE)
			break;
	}

	return nid;
}

721 722
static void domain_update_iotlb(struct dmar_domain *domain);

723 724 725 726
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
727
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
728
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
729 730 731 732 733 734 735

	/*
	 * If RHSA is missing, we should default to the device numa domain
	 * as fall back.
	 */
	if (domain->nid == NUMA_NO_NODE)
		domain->nid = domain_update_device_node(domain);
736 737 738 739 740 741 742 743 744 745 746 747

	/*
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
	else
		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
748 749

	domain_update_iotlb(domain);
750 751
}

752 753
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
754 755 756 757 758
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

759
	entry = &root->lo;
760
	if (sm_supported(iommu)) {
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

786 787
static bool attach_deferred(struct device *dev)
{
788
	return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO;
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return false;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return true;
	}

	return false;
}

static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || iommu->drhd->ignored)
		return true;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
		    quirk_ioat_snb_local_iommu(pdev))
			return true;
	}

	return false;
}

865
struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
866 867
{
	struct dmar_drhd_unit *drhd = NULL;
868
	struct pci_dev *pdev = NULL;
869
	struct intel_iommu *iommu;
870
	struct device *tmp;
871
	u16 segment = 0;
872 873
	int i;

874
	if (!dev)
875 876
		return NULL;

877
	if (dev_is_pci(dev)) {
878 879
		struct pci_dev *pf_pdev;

880
		pdev = pci_real_dma_dev(to_pci_dev(dev));
881

882 883 884 885
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
886
		segment = pci_domain_nr(pdev->bus);
887
	} else if (has_acpi_companion(dev))
888 889
		dev = &ACPI_COMPANION(dev)->dev;

890
	rcu_read_lock();
891
	for_each_iommu(iommu, drhd) {
892
		if (pdev && segment != drhd->segment)
893
			continue;
894

895
		for_each_active_dev_scope(drhd->devices,
896 897
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
898 899 900 901
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
902
				if (pdev && pdev->is_virtfn)
903 904
					goto got_pdev;

905 906 907 908
				if (bus && devfn) {
					*bus = drhd->devices[i].bus;
					*devfn = drhd->devices[i].devfn;
				}
909
				goto out;
910 911
			}

912
			if (is_downstream_to_pci_bridge(dev, tmp))
913
				goto got_pdev;
914
		}
915

916 917
		if (pdev && drhd->include_all) {
		got_pdev:
918 919 920 921
			if (bus && devfn) {
				*bus = pdev->bus->number;
				*devfn = pdev->devfn;
			}
922
			goto out;
923
		}
924
	}
925
	iommu = NULL;
926
 out:
927 928 929
	if (iommu_is_dummy(iommu, dev))
		iommu = NULL;

930
	rcu_read_unlock();
931

932
	return iommu;
933 934
}

W
Weidong Han 已提交
935 936 937 938 939 940 941
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

942 943 944
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
945
	int ret = 0;
946 947 948
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
949 950 951
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
967
		context = iommu_context_addr(iommu, i, 0, 0);
968 969
		if (context)
			free_pgtable_page(context);
970

971
		if (!sm_supported(iommu))
972 973 974 975 976 977
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

978 979 980 981 982 983 984
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

985
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
986
				      unsigned long pfn, int *target_level)
987
{
988
	struct dma_pte *parent, *pte;
989
	int level = agaw_to_level(domain->agaw);
990
	int offset;
991 992

	BUG_ON(!domain->pgd);
993

994
	if (!domain_pfn_supported(domain, pfn))
995 996 997
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

998 999
	parent = domain->pgd;

1000
	while (1) {
1001 1002
		void *tmp_page;

1003
		offset = pfn_level_offset(pfn, level);
1004
		pte = &parent[offset];
1005
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1006
			break;
1007
		if (level == *target_level)
1008 1009
			break;

1010
		if (!dma_pte_present(pte)) {
1011 1012
			uint64_t pteval;

1013
			tmp_page = alloc_pgtable_page(domain->nid);
1014

1015
			if (!tmp_page)
1016
				return NULL;
1017

1018
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1019
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1020
			if (domain_use_first_level(domain)) {
1021
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
1022 1023 1024
				if (domain->domain.type == IOMMU_DOMAIN_DMA)
					pteval |= DMA_FL_PTE_ACCESS;
			}
1025
			if (cmpxchg64(&pte->val, 0ULL, pteval))
1026 1027
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
1028
			else
1029
				domain_flush_cache(domain, pte, sizeof(*pte));
1030
		}
1031 1032 1033
		if (level == 1)
			break;

1034
		parent = phys_to_virt(dma_pte_addr(pte));
1035 1036 1037
		level--;
	}

1038 1039 1040
	if (!*target_level)
		*target_level = level;

1041 1042 1043 1044
	return pte;
}

/* return address's pte at specific level */
1045 1046
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
1047
					 int level, int *large_page)
1048
{
1049
	struct dma_pte *parent, *pte;
1050 1051 1052 1053 1054
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
1055
		offset = pfn_level_offset(pfn, total);
1056 1057 1058 1059
		pte = &parent[offset];
		if (level == total)
			return pte;

1060 1061
		if (!dma_pte_present(pte)) {
			*large_page = total;
1062
			break;
1063 1064
		}

1065
		if (dma_pte_superpage(pte)) {
1066 1067 1068 1069
			*large_page = total;
			return pte;
		}

1070
		parent = phys_to_virt(dma_pte_addr(pte));
1071 1072 1073 1074 1075 1076
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
1077
static void dma_pte_clear_range(struct dmar_domain *domain,
1078 1079
				unsigned long start_pfn,
				unsigned long last_pfn)
1080
{
1081
	unsigned int large_page;
1082
	struct dma_pte *first_pte, *pte;
1083

1084 1085
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1086
	BUG_ON(start_pfn > last_pfn);
1087

1088
	/* we don't need lock here; nobody else touches the iova range */
1089
	do {
1090 1091
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1092
		if (!pte) {
1093
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1094 1095
			continue;
		}
1096
		do {
1097
			dma_clear_pte(pte);
1098
			start_pfn += lvl_to_nr_pages(large_page);
1099
			pte++;
1100 1101
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1102 1103
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1104 1105

	} while (start_pfn && start_pfn <= last_pfn);
1106 1107
}

1108
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1109 1110 1111
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1123
		level_pfn = pfn & level_mask(level);
1124 1125
		level_pte = phys_to_virt(dma_pte_addr(pte));

1126 1127 1128 1129 1130
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1131

1132 1133 1134 1135 1136
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1137
		      last_pfn < level_pfn + level_size(level) - 1)) {
1138 1139 1140 1141 1142 1143 1144 1145 1146
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1147 1148 1149 1150
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1151
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1152
				   unsigned long start_pfn,
1153 1154
				   unsigned long last_pfn,
				   int retain_level)
1155
{
1156 1157
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1158
	BUG_ON(start_pfn > last_pfn);
1159

1160 1161
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1162
	/* We don't need lock here; nobody else touches the iova range */
1163
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1164
			   domain->pgd, 0, start_pfn, last_pfn);
1165

1166
	/* free pgd */
1167
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1168 1169 1170 1171 1172
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1192 1193
	pte = page_address(pg);
	do {
1194 1195 1196
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1197 1198
		pte++;
	} while (!first_pte_in_page(pte));
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1255 1256
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
1257 1258
				 unsigned long last_pfn,
				 struct page *freelist)
1259
{
1260 1261
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1262 1263 1264 1265
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1266 1267
				       domain->pgd, 0, start_pfn, last_pfn,
				       freelist);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1281
static void dma_free_pagelist(struct page *freelist)
1282 1283 1284 1285 1286 1287 1288 1289 1290
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1291 1292 1293 1294 1295 1296
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1297
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1298
	if (!root) {
J
Joerg Roedel 已提交
1299
		pr_err("Allocating root entry for %s failed\n",
1300
			iommu->name);
1301
		return -ENOMEM;
1302
	}
1303

F
Fenghua Yu 已提交
1304
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1315
	u64 addr;
1316
	u32 sts;
1317 1318
	unsigned long flag;

1319
	addr = virt_to_phys(iommu->root_entry);
1320 1321
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1322

1323
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1324
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1325

1326
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1327 1328 1329

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1330
		      readl, (sts & DMA_GSTS_RTPS), sts);
1331

1332
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1333 1334
}

1335
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1336 1337 1338 1339
{
	u32 val;
	unsigned long flag;

1340
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1341 1342
		return;

1343
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1344
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1345 1346 1347

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1348
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1349

1350
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1351 1352 1353
}

/* return value determine if we need a write buffer flush */
1354 1355 1356
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1377
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1378 1379 1380 1381 1382 1383
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1384
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1385 1386 1387
}

/* return value determine if we need a write buffer flush */
1388 1389
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1405
		/* IH bit is passed in as part of address */
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1423
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1424 1425 1426 1427 1428 1429 1430 1431 1432
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1433
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1434 1435 1436

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1437
		pr_err("Flush IOTLB failed\n");
1438
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1439
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1440 1441
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1442 1443
}

1444 1445 1446
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1447 1448 1449
{
	struct device_domain_info *info;

1450 1451
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1452 1453 1454 1455
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1456 1457
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1458 1459
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1460 1461 1462
			break;
		}

1463
	return NULL;
Y
Yu Zhao 已提交
1464 1465
}

1466 1467 1468 1469 1470 1471 1472
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

1473 1474
	list_for_each_entry(info, &domain->devices, link)
		if (info->ats_enabled) {
1475 1476 1477
			has_iotlb_device = true;
			break;
		}
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	if (!has_iotlb_device) {
		struct subdev_domain_info *sinfo;

		list_for_each_entry(sinfo, &domain->subdevices, link_domain) {
			info = get_domain_info(sinfo->pdev);
			if (info && info->ats_enabled) {
				has_iotlb_device = true;
				break;
			}
		}
1489 1490 1491 1492 1493
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1494
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1495
{
1496 1497
	struct pci_dev *pdev;

1498 1499
	assert_spin_locked(&device_domain_lock);

1500
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1501 1502
		return;

1503
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1516
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1517
	}
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1528 1529 1530
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1531 1532
		info->pri_enabled = 1;
#endif
1533
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1534
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1535
		info->ats_enabled = 1;
1536
		domain_update_iotlb(info->domain);
1537 1538
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1539 1540 1541 1542
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1543 1544
	struct pci_dev *pdev;

1545 1546
	assert_spin_locked(&device_domain_lock);

1547
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1548 1549
		return;

1550 1551 1552 1553 1554
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1555
		domain_update_iotlb(info->domain);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1567 1568
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
static void __iommu_flush_dev_iotlb(struct device_domain_info *info,
				    u64 addr, unsigned int mask)
{
	u16 sid, qdep;

	if (!info || !info->ats_enabled)
		return;

	sid = info->bus << 8 | info->devfn;
	qdep = info->ats_qdep;
	qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
			   qdep, addr, mask);
}

Y
Yu Zhao 已提交
1583 1584 1585 1586 1587
static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	unsigned long flags;
	struct device_domain_info *info;
1588
	struct subdev_domain_info *sinfo;
Y
Yu Zhao 已提交
1589

1590 1591 1592
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1593
	spin_lock_irqsave(&device_domain_lock, flags);
1594 1595
	list_for_each_entry(info, &domain->devices, link)
		__iommu_flush_dev_iotlb(info, addr, mask);
Y
Yu Zhao 已提交
1596

1597 1598 1599
	list_for_each_entry(sinfo, &domain->subdevices, link_domain) {
		info = get_domain_info(sinfo->pdev);
		__iommu_flush_dev_iotlb(info, addr, mask);
Y
Yu Zhao 已提交
1600 1601 1602 1603
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1618 1619 1620 1621
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1622
{
1623
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1624
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1625
	u16 did = domain->iommu_did[iommu->seq_id];
1626 1627 1628

	BUG_ON(pages == 0);

1629 1630
	if (ih)
		ih = 1 << 6;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1648 1649

	/*
1650 1651
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1652
	 */
1653
	if (!cap_caching_mode(iommu->cap) || !map)
1654
		iommu_flush_dev_iotlb(domain, addr, mask);
1655 1656
}

1657 1658 1659 1660 1661
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1662 1663 1664 1665 1666
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1667 1668 1669 1670 1671
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1672
static void intel_flush_iotlb_all(struct iommu_domain *domain)
1673
{
1674
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
1675 1676
	int idx;

1677
	for_each_domain_iommu(idx, dmar_domain) {
1678
		struct intel_iommu *iommu = g_iommus[idx];
1679
		u16 did = dmar_domain->iommu_did[iommu->seq_id];
1680

1681 1682
		if (domain_use_first_level(dmar_domain))
			domain_flush_piotlb(iommu, dmar_domain, 0, -1, 0);
1683 1684 1685
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1686 1687 1688 1689 1690 1691 1692

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1693 1694 1695 1696 1697
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1698 1699 1700
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1701
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1702 1703 1704 1705 1706 1707 1708 1709
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1710
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1711 1712
}

1713
static void iommu_enable_translation(struct intel_iommu *iommu)
1714 1715 1716 1717
{
	u32 sts;
	unsigned long flags;

1718
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1719 1720
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1721 1722 1723

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1724
		      readl, (sts & DMA_GSTS_TES), sts);
1725

1726
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1727 1728
}

1729
static void iommu_disable_translation(struct intel_iommu *iommu)
1730 1731 1732 1733
{
	u32 sts;
	unsigned long flag;

1734 1735 1736 1737
	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
		return;

1738
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1739 1740 1741 1742 1743
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1744
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1745

1746
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1747 1748 1749 1750
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1751 1752
	u32 ndomains, nlongs;
	size_t size;
1753 1754

	ndomains = cap_ndoms(iommu->cap);
1755
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1756
		 iommu->name, ndomains);
1757 1758
	nlongs = BITS_TO_LONGS(ndomains);

1759 1760
	spin_lock_init(&iommu->lock);

1761 1762
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1763 1764
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1765 1766
		return -ENOMEM;
	}
1767

1768
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1769 1770 1771 1772 1773 1774 1775 1776
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1777 1778
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1779
		kfree(iommu->domain_ids);
1780
		kfree(iommu->domains);
1781
		iommu->domain_ids = NULL;
1782
		iommu->domains    = NULL;
1783 1784 1785 1786
		return -ENOMEM;
	}

	/*
1787 1788 1789 1790
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1791
	 */
1792 1793
	set_bit(0, iommu->domain_ids);

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1804 1805 1806
	return 0;
}

1807
static void disable_dmar_iommu(struct intel_iommu *iommu)
1808
{
1809
	struct device_domain_info *info, *tmp;
1810
	unsigned long flags;
1811

1812 1813
	if (!iommu->domains || !iommu->domain_ids)
		return;
1814

1815
	spin_lock_irqsave(&device_domain_lock, flags);
1816 1817 1818 1819 1820 1821 1822
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1823
		__dmar_remove_one_dev_info(info);
1824
	}
1825
	spin_unlock_irqrestore(&device_domain_lock, flags);
1826 1827 1828

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1829
}
1830

1831 1832 1833
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1834
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1835 1836 1837 1838
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1839 1840 1841 1842 1843
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1844

W
Weidong Han 已提交
1845 1846
	g_iommus[iommu->seq_id] = NULL;

1847 1848
	/* free context mapping */
	free_context_table(iommu);
1849 1850

#ifdef CONFIG_INTEL_IOMMU_SVM
1851
	if (pasid_supported(iommu)) {
1852 1853 1854
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1855
	if (vccap_pasid(iommu->vccap))
1856 1857
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1858
#endif
1859 1860
}

1861 1862
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1863
 * DMA translation.
1864 1865 1866 1867 1868
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1869
	static int first_level_support = -1;
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1888
static struct dmar_domain *alloc_domain(int flags)
1889 1890 1891 1892 1893 1894 1895
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1896
	memset(domain, 0, sizeof(*domain));
1897
	domain->nid = NUMA_NO_NODE;
1898
	domain->flags = flags;
1899 1900
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1901
	domain->has_iotlb_device = false;
1902
	INIT_LIST_HEAD(&domain->devices);
1903
	INIT_LIST_HEAD(&domain->subdevices);
1904 1905 1906 1907

	return domain;
}

1908 1909
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1910 1911
			       struct intel_iommu *iommu)
{
1912
	unsigned long ndomains;
1913
	int num;
1914

1915
	assert_spin_locked(&device_domain_lock);
1916
	assert_spin_locked(&iommu->lock);
1917

1918 1919 1920
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1921
		ndomains = cap_ndoms(iommu->cap);
1922 1923 1924 1925 1926 1927
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1928
			return -ENOSPC;
1929
		}
1930

1931 1932 1933 1934 1935
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1936 1937 1938

		domain_update_iommu_cap(domain);
	}
1939

1940
	return 0;
1941 1942 1943 1944 1945
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1946
	int num, count;
1947

1948
	assert_spin_locked(&device_domain_lock);
1949
	assert_spin_locked(&iommu->lock);
1950

1951 1952 1953
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1954 1955 1956
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1957 1958

		domain_update_iommu_cap(domain);
1959
		domain->iommu_did[iommu->seq_id] = 0;
1960 1961 1962 1963 1964
	}

	return count;
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

1982
	/* Remove associated devices and clear attached or cached domains */
1983
	domain_remove_dev_info(domain);
1984

1985
	/* destroy iovas */
1986
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
1987
		iommu_put_dma_cookie(&domain->domain);
1988

1989 1990
	if (domain->pgd) {
		struct page *freelist;
1991

1992 1993
		freelist = domain_unmap(domain, 0,
					DOMAIN_MAX_PFN(domain->gaw), NULL);
1994 1995
		dma_free_pagelist(freelist);
	}
1996

1997 1998 1999
	free_domain_mem(domain);
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

2049 2050
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
2051
				      struct pasid_table *table,
2052
				      u8 bus, u8 devfn)
2053
{
2054
	u16 did = domain->iommu_did[iommu->seq_id];
2055 2056
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
2057 2058
	struct context_entry *context;
	unsigned long flags;
2059
	int ret;
2060

2061 2062
	WARN_ON(did == 0);

2063 2064
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
2065 2066 2067

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2068

2069
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2070

2071 2072 2073 2074
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2075
	context = iommu_context_addr(iommu, bus, devfn, 1);
2076
	if (!context)
2077
		goto out_unlock;
2078

2079 2080 2081
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2095
		if (did_old < cap_ndoms(iommu->cap)) {
2096 2097 2098 2099
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2100 2101 2102
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2103 2104
	}

2105
	context_clear_entry(context);
2106

2107 2108
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2109

2110 2111 2112 2113 2114 2115 2116 2117 2118
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2119 2120

		/*
2121 2122
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2123
		 */
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2163 2164

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2165
	}
F
Fenghua Yu 已提交
2166

2167 2168
	context_set_fault_enable(context);
	context_set_present(context);
2169 2170
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(context, sizeof(*context));
2171

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2183
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2184
	} else {
2185
		iommu_flush_write_buffer(iommu);
2186
	}
Y
Yu Zhao 已提交
2187
	iommu_enable_dev_iotlb(info);
2188

2189 2190 2191 2192 2193
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2194

2195
	return ret;
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2214
static int
2215
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2216
{
2217
	struct domain_context_mapping_data data;
2218
	struct pasid_table *table;
2219
	struct intel_iommu *iommu;
2220
	u8 bus, devfn;
2221

2222
	iommu = device_to_iommu(dev, &bus, &devfn);
2223 2224
	if (!iommu)
		return -ENODEV;
2225

2226
	table = intel_pasid_get_table(dev);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2238 2239 2240 2241 2242 2243 2244 2245
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2246 2247
}

2248
static int domain_context_mapped(struct device *dev)
2249
{
W
Weidong Han 已提交
2250
	struct intel_iommu *iommu;
2251
	u8 bus, devfn;
W
Weidong Han 已提交
2252

2253
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2254 2255
	if (!iommu)
		return -ENODEV;
2256

2257 2258
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2259

2260 2261
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2262 2263
}

2264 2265 2266 2267 2268 2269 2270 2271
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2300 2301 2302
static int
__domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
		 unsigned long phys_pfn, unsigned long nr_pages, int prot)
2303 2304
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2305 2306
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2307
	phys_addr_t pteval;
2308
	u64 attr;
2309

2310
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2311 2312 2313 2314

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2315
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
2316
	if (domain_use_first_level(domain)) {
2317
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2318

2319 2320 2321 2322 2323 2324 2325
		if (domain->domain.type == IOMMU_DOMAIN_DMA) {
			attr |= DMA_FL_PTE_ACCESS;
			if (prot & DMA_PTE_WRITE)
				attr |= DMA_FL_PTE_DIRTY;
		}
	}

2326
	pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2327

2328
	while (nr_pages > 0) {
2329 2330
		uint64_t tmp;

2331
		if (!pte) {
2332 2333
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn,
					phys_pfn, nr_pages);
2334

2335
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2336 2337
			if (!pte)
				return -ENOMEM;
2338
			/* It is large page*/
2339
			if (largepage_lvl > 1) {
2340 2341
				unsigned long nr_superpages, end_pfn;

2342
				pteval |= DMA_PTE_LARGE_PAGE;
2343
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2344

2345
				nr_superpages = nr_pages / lvl_pages;
2346 2347
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2348 2349
				/*
				 * Ensure that old small page tables are
2350
				 * removed to make room for superpage(s).
2351 2352
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2353
				 */
2354 2355
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2356
			} else {
2357
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2358
			}
2359

2360 2361 2362 2363
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2364
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2365
		if (tmp) {
2366
			static int dumps = 5;
J
Joerg Roedel 已提交
2367 2368
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2369 2370 2371 2372 2373 2374
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;

		/* If the next PTE would be the first in a new page, then we
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		 * need to flush the cache on the entries we've just written.
		 * And then we'll need to recalculate 'pte', so clear it and
		 * let it get set again in the if (!pte) block above.
		 *
		 * If we're done (!nr_pages) we need to flush the cache too.
		 *
		 * Also if we've been setting superpages, we may need to
		 * recalculate 'pte' and switch back to smaller pages for the
		 * end of the mapping, if the trailing size is not enough to
		 * use another superpage (i.e. nr_pages < lvl_pages).
		 */
2397
		pte++;
2398
		if (!nr_pages || first_pte_in_page(pte) ||
2399
		    (largepage_lvl > 1 && nr_pages < lvl_pages)) {
2400 2401 2402 2403 2404
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
	}
2405

2406 2407 2408
	return 0;
}

2409 2410 2411
static int
domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
	       unsigned long phys_pfn, unsigned long nr_pages, int prot)
2412
{
2413
	int iommu_id, ret;
2414 2415 2416
	struct intel_iommu *iommu;

	/* Do the real mapping first */
2417
	ret = __domain_mapping(domain, iov_pfn, phys_pfn, nr_pages, prot);
2418 2419 2420
	if (ret)
		return ret;

2421 2422
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2423 2424 2425 2426
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2427 2428
}

2429
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2430
{
2431 2432 2433 2434
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2435 2436
	if (!iommu)
		return;
2437

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2458 2459
}

2460 2461 2462 2463 2464 2465
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2466
		dev_iommu_priv_set(info->dev, NULL);
2467 2468
}

2469 2470
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2471
	struct device_domain_info *info, *tmp;
2472
	unsigned long flags;
2473 2474

	spin_lock_irqsave(&device_domain_lock, flags);
2475
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2476
		__dmar_remove_one_dev_info(info);
2477 2478 2479
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2480
struct dmar_domain *find_domain(struct device *dev)
2481 2482 2483
{
	struct device_domain_info *info;

2484 2485 2486
	if (unlikely(!dev || !dev->iommu))
		return NULL;

2487
	if (unlikely(attach_deferred(dev)))
2488 2489 2490
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2491
	info = get_domain_info(dev);
2492 2493 2494 2495 2496 2497
	if (likely(info))
		return info->domain;

	return NULL;
}

2498
static inline struct device_domain_info *
2499 2500 2501 2502 2503
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2504
		if (info->segment == segment && info->bus == bus &&
2505
		    info->devfn == devfn)
2506
			return info;
2507 2508 2509 2510

	return NULL;
}

2511 2512 2513
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
2514
				    u32 pasid)
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2541 2542 2543 2544 2545 2546
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2547 2548 2549 2550
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2551
{
2552
	struct dmar_domain *found = NULL;
2553 2554
	struct device_domain_info *info;
	unsigned long flags;
2555
	int ret;
2556 2557 2558

	info = alloc_devinfo_mem();
	if (!info)
2559
		return NULL;
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2573 2574 2575
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2576 2577
	info->dev = dev;
	info->domain = domain;
2578
	info->iommu = iommu;
2579
	info->pasid_table = NULL;
2580
	info->auxd_enabled = 0;
2581
	INIT_LIST_HEAD(&info->subdevices);
2582

2583 2584 2585
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2586 2587
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2588 2589 2590
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2591 2592
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2593 2594 2595 2596 2597 2598
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
2599
			    pci_pri_supported(pdev))
2600 2601 2602 2603
				info->pri_supported = 1;
		}
	}

2604 2605
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2606
		found = find_domain(dev);
2607 2608

	if (!found) {
2609
		struct device_domain_info *info2;
2610 2611
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2612 2613 2614 2615
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2616
	}
2617

2618 2619 2620
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2621 2622
		/* Caller must free the original domain */
		return found;
2623 2624
	}

2625 2626 2627 2628 2629
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2630
		spin_unlock_irqrestore(&device_domain_lock, flags);
2631
		free_devinfo_mem(info);
2632 2633 2634
		return NULL;
	}

2635 2636 2637
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
2638
		dev_iommu_priv_set(dev, info);
2639
	spin_unlock_irqrestore(&device_domain_lock, flags);
2640

2641 2642
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2643 2644
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2645
			dev_err(dev, "PASID table allocation failed\n");
2646
			dmar_remove_one_dev_info(dev);
2647
			return NULL;
2648
		}
2649 2650

		/* Setup the PASID entry for requests without PASID: */
2651
		spin_lock_irqsave(&iommu->lock, flags);
2652 2653 2654
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2655 2656 2657
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2658 2659 2660
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
2661
		spin_unlock_irqrestore(&iommu->lock, flags);
2662
		if (ret) {
2663
			dev_err(dev, "Setup RID2PASID failed\n");
2664
			dmar_remove_one_dev_info(dev);
2665
			return NULL;
2666 2667
		}
	}
2668

2669
	if (dev && domain_context_mapping(domain, dev)) {
2670
		dev_err(dev, "Domain context map failed\n");
2671
		dmar_remove_one_dev_info(dev);
2672 2673 2674
		return NULL;
	}

2675
	return domain;
2676 2677
}

2678
static int iommu_domain_identity_map(struct dmar_domain *domain,
2679 2680
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2681 2682 2683 2684 2685
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2686
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2687

2688
	return __domain_mapping(domain, first_vpfn,
2689 2690
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2691 2692
}

2693 2694
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2695
static int __init si_domain_init(int hw)
2696
{
2697 2698 2699
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2700

2701
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2702 2703 2704
	if (!si_domain)
		return -EFAULT;

2705
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2706 2707 2708 2709
		domain_exit(si_domain);
		return -EFAULT;
	}

2710 2711 2712
	if (hw)
		return 0;

2713
	for_each_online_node(nid) {
2714 2715 2716 2717 2718
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2719 2720
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2721 2722 2723
			if (ret)
				return ret;
		}
2724 2725
	}

2726
	/*
2727 2728
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

2740 2741 2742
			ret = iommu_domain_identity_map(si_domain,
					mm_to_dma_pfn(start >> PAGE_SHIFT),
					mm_to_dma_pfn(end >> PAGE_SHIFT));
2743 2744 2745 2746 2747
			if (ret)
				return ret;
		}
	}

2748 2749 2750
	return 0;
}

2751
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2752
{
2753
	struct dmar_domain *ndomain;
2754
	struct intel_iommu *iommu;
2755
	u8 bus, devfn;
2756

2757
	iommu = device_to_iommu(dev, &bus, &devfn);
2758 2759 2760
	if (!iommu)
		return -ENODEV;

2761
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2762 2763
	if (ndomain != domain)
		return -EBUSY;
2764 2765 2766 2767

	return 0;
}

2768
static bool device_has_rmrr(struct device *dev)
2769 2770
{
	struct dmar_rmrr_unit *rmrr;
2771
	struct device *tmp;
2772 2773
	int i;

2774
	rcu_read_lock();
2775
	for_each_rmrr_units(rmrr) {
2776 2777 2778 2779 2780 2781
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2782 2783
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2784
				rcu_read_unlock();
2785
				return true;
2786
			}
2787
	}
2788
	rcu_read_unlock();
2789 2790 2791
	return false;
}

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2835 2836
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2837 2838 2839 2840 2841 2842
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2843 2844
	if (device_rmrr_is_relaxable(dev))
		return false;
2845 2846 2847 2848

	return true;
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2860
static int device_def_domain_type(struct device *dev)
2861
{
2862 2863
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2864

2865
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2866
			return IOMMU_DOMAIN_IDENTITY;
2867

2868
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2869
			return IOMMU_DOMAIN_IDENTITY;
2870
	}
2871

2872
	return 0;
2873 2874
}

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2901
		pr_info("%s: Using Register based invalidation\n",
2902 2903 2904 2905
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2906
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2907 2908 2909
	}
}

2910
static int copy_context_table(struct intel_iommu *iommu,
2911
			      struct root_entry *old_re,
2912 2913 2914
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2915
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2916
	struct context_entry *new_ce = NULL, ce;
2917
	struct context_entry *old_ce = NULL;
2918
	struct root_entry re;
2919 2920 2921
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2922
	memcpy(&re, old_re, sizeof(re));
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2938
				memunmap(old_ce);
2939 2940 2941

			ret = 0;
			if (devfn < 0x80)
2942
				old_ce_phys = root_entry_lctp(&re);
2943
			else
2944
				old_ce_phys = root_entry_uctp(&re);
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
2957 2958
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
2970
		memcpy(&ce, old_ce + idx, sizeof(ce));
2971

2972
		if (!__context_present(&ce))
2973 2974
			continue;

2975 2976 2977 2978
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

2998 2999 3000 3001 3002 3003 3004 3005
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
3006
	memunmap(old_ce);
3007 3008 3009 3010 3011 3012 3013 3014

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3015
	struct root_entry *old_rt;
3016 3017 3018 3019 3020
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3021
	bool new_ext, ext;
3022 3023 3024

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3035 3036 3037 3038 3039

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3040
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3041 3042 3043 3044 3045 3046
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3047
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3089
	memunmap(old_rt);
3090 3091 3092 3093

	return ret;
}

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
3154
	if (!vccap_pasid(iommu->vccap))
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3173
static int __init init_dmars(void)
3174 3175 3176
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3177
	int ret;
3178

3179 3180 3181 3182 3183 3184 3185
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3186 3187 3188 3189 3190
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3191
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3192 3193 3194
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3195
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3196 3197
	}

3198 3199 3200 3201
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3202 3203 3204
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3205
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3206 3207 3208 3209
		ret = -ENOMEM;
		goto error;
	}

3210 3211 3212 3213
	ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL);
	if (ret)
		goto free_iommu;

3214 3215 3216 3217 3218 3219
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3220 3221 3222 3223 3224
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3225
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3226 3227 3228 3229 3230 3231
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3232
		g_iommus[iommu->seq_id] = iommu;
3233

3234 3235
		intel_iommu_init_qi(iommu);

3236 3237
		ret = iommu_init_domains(iommu);
		if (ret)
3238
			goto free_iommu;
3239

3240 3241
		init_translation_status(iommu);

3242 3243 3244 3245 3246 3247
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3248

3249 3250 3251
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3252
		 * among all IOMMU's. Need to Split it later.
3253 3254
		 */
		ret = iommu_alloc_root_entry(iommu);
3255
		if (ret)
3256
			goto free_iommu;
3257

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3282
		if (!ecap_pass_through(iommu->ecap))
3283
			hw_pass_through = 0;
3284
		intel_svm_check(iommu);
3285 3286
	}

3287 3288 3289 3290 3291 3292 3293
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3294 3295 3296
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3297 3298 3299 3300 3301
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3302
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3303
	dmar_map_gfx = 0;
3304
#endif
3305

3306 3307 3308
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3309 3310
	check_tylersburg_isoch();

3311 3312 3313
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3314

3315 3316 3317 3318 3319 3320 3321
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3322
	for_each_iommu(iommu, drhd) {
3323 3324 3325 3326 3327 3328
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3329
				iommu_disable_protect_mem_regions(iommu);
3330
			continue;
3331
		}
3332 3333 3334

		iommu_flush_write_buffer(iommu);

3335
#ifdef CONFIG_INTEL_IOMMU_SVM
3336
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3337 3338 3339 3340 3341
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3342
			ret = intel_svm_enable_prq(iommu);
3343
			down_write(&dmar_global_lock);
3344 3345 3346 3347
			if (ret)
				goto free_iommu;
		}
#endif
3348 3349
		ret = dmar_set_interrupt(iommu);
		if (ret)
3350
			goto free_iommu;
3351 3352 3353
	}

	return 0;
3354 3355

free_iommu:
3356 3357
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3358
		free_dmar_iommu(iommu);
3359
	}
3360

W
Weidong Han 已提交
3361
	kfree(g_iommus);
3362

3363
error:
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
	return ret;
}

static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3378
		pr_err("Couldn't create iommu_domain cache\n");
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3395
		pr_err("Couldn't create devinfo cache\n");
3396 3397 3398 3399 3400 3401 3402 3403 3404
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3405
	ret = iova_cache_get();
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3419
	iova_cache_put();
3420 3421 3422 3423 3424 3425 3426 3427

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3428
	iova_cache_put();
3429 3430 3431 3432 3433
}

static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
3434
	struct device *dev;
3435
	int i;
3436 3437 3438

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
3439 3440 3441
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
3442
			/* ignore DMAR unit if no devices exist */
3443 3444 3445 3446 3447
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

3448 3449
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
3450 3451
			continue;

3452 3453
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
3454
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3455 3456 3457 3458
				break;
		if (i < drhd->devices_cnt)
			continue;

3459 3460
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
3461
		drhd->gfx_dedicated = 1;
3462
		if (!dmar_map_gfx)
3463
			drhd->ignored = 1;
3464 3465 3466
	}
}

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
3487

3488 3489 3490 3491 3492
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
3493
					   DMA_CCMD_GLOBAL_INVL);
3494 3495
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
3496
		iommu_disable_protect_mem_regions(iommu);
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
3509
					   DMA_CCMD_GLOBAL_INVL);
3510
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3511
					 DMA_TLB_GLOBAL_FLUSH);
3512 3513 3514
	}
}

3515
static int iommu_suspend(void)
3516 3517 3518 3519 3520 3521
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
3522
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
3523
					     GFP_KERNEL);
3524 3525 3526 3527 3528 3529 3530 3531 3532
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

3533
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

3544
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

3555
static void iommu_resume(void)
3556 3557 3558 3559 3560 3561
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
3562 3563 3564 3565
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3566
		return;
3567 3568 3569 3570
	}

	for_each_active_iommu(iommu, drhd) {

3571
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

3582
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3583 3584 3585 3586 3587 3588
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

3589
static struct syscore_ops iommu_syscore_ops = {
3590 3591 3592 3593
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

3594
static void __init init_iommu_pm_ops(void)
3595
{
3596
	register_syscore_ops(&iommu_syscore_ops);
3597 3598 3599
}

#else
3600
static inline void init_iommu_pm_ops(void) {}
3601 3602
#endif	/* CONFIG_PM */

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

3614
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3615 3616 3617
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
3618 3619

	rmrr = (struct acpi_dmar_reserved_memory *)header;
3620 3621
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
3622 3623 3624 3625 3626 3627
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
3628 3629
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
3630 3631 3632

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
3633
		goto out;
3634 3635

	rmrru->hdr = header;
3636

3637 3638
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
3639

3640 3641 3642
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
3643
	if (rmrru->devices_cnt && rmrru->devices == NULL)
3644
		goto free_rmrru;
3645

3646
	list_add(&rmrru->list, &dmar_rmrr_units);
3647

3648
	return 0;
3649 3650 3651 3652
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
3653 3654
}

3655 3656 3657 3658 3659
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

3660 3661
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3675 3676 3677 3678
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

3679
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3680 3681
		return 0;

3682
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3683 3684 3685 3686 3687
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3688 3689 3690
	if (!atsru)
		return -ENOMEM;

3691 3692 3693 3694 3695 3696 3697
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
3698
	atsru->include_all = atsr->flags & 0x1;
3699 3700 3701 3702 3703 3704 3705 3706 3707
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
3708

3709
	list_add_rcu(&atsru->list, &dmar_atsr_units);
3710 3711 3712 3713

	return 0;
}

3714 3715 3716 3717 3718 3719
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

3748
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
3749 3750 3751
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
3752
	}
3753 3754 3755 3756

	return 0;
}

3757 3758
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
3759
	int sp, ret;
3760 3761 3762 3763 3764
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

3765 3766 3767 3768
	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu);
	if (ret)
		goto out;

3769
	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
3770
		pr_warn("%s: Doesn't support hardware pass through.\n",
3771 3772 3773 3774 3775
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
3776
		pr_warn("%s: Doesn't support snooping.\n",
3777 3778 3779
			iommu->name);
		return -ENXIO;
	}
3780
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
3781
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
3782
		pr_warn("%s: Doesn't support large page.\n",
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

3800
	intel_svm_check(iommu);
3801

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
3813 3814

#ifdef CONFIG_INTEL_IOMMU_SVM
3815
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3816 3817 3818 3819 3820
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

3840 3841
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
3858 3859
}

3860 3861 3862 3863 3864 3865 3866 3867 3868
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
3869 3870
	}

3871 3872 3873 3874
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
3875 3876 3877 3878
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
3879
	int i, ret = 1;
3880
	struct pci_bus *bus;
3881 3882
	struct pci_dev *bridge = NULL;
	struct device *tmp;
3883 3884 3885 3886 3887
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
3888
		bridge = bus->self;
3889 3890 3891 3892 3893
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
3894
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3895
			return 0;
3896
		/* If we found the root port, look it up in the ATSR */
3897
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3898 3899 3900
			break;
	}

3901
	rcu_read_lock();
3902 3903 3904 3905 3906
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

3907
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3908
			if (tmp == &bridge->dev)
3909
				goto out;
3910 3911

		if (atsru->include_all)
3912
			goto out;
3913
	}
3914 3915
	ret = 0;
out:
3916
	rcu_read_unlock();
3917

3918
	return ret;
3919 3920
}

3921 3922
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
3923
	int ret;
3924 3925 3926 3927 3928
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

3929
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
3940
			if (ret < 0)
3941
				return ret;
3942
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3943 3944
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
3960
			else if (ret < 0)
3961
				return ret;
3962
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3963 3964 3965 3966 3967 3968 3969 3970 3971
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

3972 3973 3974 3975
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
3976 3977 3978
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
3979 3980 3981

	switch (val) {
	case MEM_GOING_ONLINE:
3982 3983 3984 3985
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
3986 3987 3988 3989 3990 3991
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
3992
		{
3993 3994
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
3995
			struct page *freelist;
3996

3997
			freelist = domain_unmap(si_domain,
3998 3999
						start_vpfn, last_vpfn,
						NULL);
4000

4001 4002
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4003
				iommu_flush_iotlb_psi(iommu, si_domain,
4004
					start_vpfn, mhp->nr_pages,
4005
					!freelist, 0);
4006
			rcu_read_unlock();
4007
			dma_free_pagelist(freelist);
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4020 4021 4022 4023 4024 4025 4026
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4027
		int did;
4028 4029 4030 4031

		if (!iommu)
			continue;

4032
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4033
			domain = get_iommu_domain(iommu, (u16)did);
4034

4035
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4036
				continue;
4037

4038
			iommu_dma_free_cpu_cached_iovas(cpu, &domain->domain);
4039 4040 4041 4042
		}
	}
}

4043
static int intel_iommu_cpu_dead(unsigned int cpu)
4044
{
4045 4046
	free_all_cpu_cached_iovas(cpu);
	return 0;
4047 4048
}

4049 4050 4051 4052 4053 4054 4055 4056 4057
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4078 4079
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4080 4081 4082
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4083 4084
}

4085 4086 4087 4088
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4089
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4100
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4101 4102 4103 4104 4105 4106 4107 4108
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4109
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4110 4111 4112 4113 4114 4115 4116 4117
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4118
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4119 4120 4121 4122
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4123 4124 4125 4126
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4127
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4128 4129 4130 4131 4132 4133 4134 4135
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4136
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4137 4138 4139 4140 4141
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4142 4143 4144 4145 4146
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4147 4148
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4162
static inline bool has_external_pci(void)
4163 4164 4165
{
	struct pci_dev *pdev = NULL;

4166
	for_each_pci_dev(pdev)
4167
		if (pdev->external_facing)
4168
			return true;
4169

4170 4171
	return false;
}
4172

4173 4174
static int __init platform_optin_force_iommu(void)
{
4175
	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4186
		iommu_set_default_passthrough(false);
4187 4188 4189 4190 4191 4192 4193

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4194 4195 4196
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4197 4198
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4237 4238
int __init intel_iommu_init(void)
{
4239
	int ret = -ENODEV;
4240
	struct dmar_drhd_unit *drhd;
4241
	struct intel_iommu *iommu;
4242

4243 4244 4245 4246
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
4247 4248
	force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
		    platform_optin_force_iommu();
4249

4250 4251 4252 4253 4254 4255 4256
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4257 4258 4259
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4260
		goto out_free_dmar;
4261
	}
4262

4263
	if (dmar_dev_scope_init() < 0) {
4264 4265
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4266
		goto out_free_dmar;
4267
	}
4268

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4279 4280 4281
	if (!no_iommu)
		intel_iommu_debugfs_init();

4282
	if (no_iommu || dmar_disabled) {
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4296 4297 4298 4299 4300 4301
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4302
		goto out_free_dmar;
4303
	}
4304

4305
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4306
		pr_info("No RMRR found\n");
4307 4308

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4309
		pr_info("No ATSR found\n");
4310

4311 4312 4313
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4314 4315
	init_no_remapping_devices();

4316
	ret = init_dmars();
4317
	if (ret) {
4318 4319
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4320
		pr_err("Initialization failed\n");
4321
		goto out_free_dmar;
4322
	}
4323
	up_write(&dmar_global_lock);
4324

4325
	init_iommu_pm_ops();
4326

4327
	down_read(&dmar_global_lock);
4328 4329 4330 4331 4332 4333 4334
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4335
	up_read(&dmar_global_lock);
4336

4337
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4338 4339
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4340 4341
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4342

4343
	down_read(&dmar_global_lock);
4344 4345 4346
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4347 4348
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4349
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4350 4351 4352 4353
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
4354 4355
	up_read(&dmar_global_lock);

4356 4357
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4358 4359
	intel_iommu_enabled = 1;

4360
	return 0;
4361 4362 4363

out_free_dmar:
	intel_iommu_free_dmars();
4364 4365
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4366
	return ret;
4367
}
4368

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

4391
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4392
{
4393
	struct dmar_domain *domain;
4394 4395 4396
	struct intel_iommu *iommu;
	unsigned long flags;

4397 4398
	assert_spin_locked(&device_domain_lock);

4399
	if (WARN_ON(!info))
4400 4401
		return;

4402
	iommu = info->iommu;
4403
	domain = info->domain;
4404

4405
	if (info->dev) {
4406 4407
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
4408
					PASID_RID2PASID, false);
4409

4410
		iommu_disable_dev_iotlb(info);
4411 4412
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
4413
		intel_pasid_free_table(info->dev);
4414
	}
4415

4416
	unlink_domain_info(info);
4417

4418
	spin_lock_irqsave(&iommu->lock, flags);
4419
	domain_detach_iommu(domain, iommu);
4420
	spin_unlock_irqrestore(&iommu->lock, flags);
4421

4422
	free_devinfo_mem(info);
4423 4424
}

4425
static void dmar_remove_one_dev_info(struct device *dev)
4426
{
4427
	struct device_domain_info *info;
4428
	unsigned long flags;
4429

4430
	spin_lock_irqsave(&device_domain_lock, flags);
4431 4432
	info = get_domain_info(dev);
	if (info)
4433
		__dmar_remove_one_dev_info(info);
4434
	spin_unlock_irqrestore(&device_domain_lock, flags);
4435 4436
}

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

4459
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
4460
{
4461
	struct dmar_domain *dmar_domain;
4462 4463
	struct iommu_domain *domain;

4464
	switch (type) {
4465
	case IOMMU_DOMAIN_DMA:
4466
	case IOMMU_DOMAIN_UNMANAGED:
4467
		dmar_domain = alloc_domain(0);
4468 4469 4470 4471
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
4472
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4473 4474 4475 4476
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
4477

4478 4479 4480
		if (type == IOMMU_DOMAIN_DMA &&
		    iommu_get_dma_cookie(&dmar_domain->domain))
			return NULL;
4481

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
4492
		return NULL;
K
Kay, Allen M 已提交
4493
	}
4494

4495
	return NULL;
K
Kay, Allen M 已提交
4496 4497
}

4498
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
4499
{
4500 4501
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
4502 4503
}

4504 4505 4506 4507 4508 4509 4510
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
4511
	struct device_domain_info *info = get_domain_info(dev);
4512 4513 4514 4515 4516

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
static inline struct subdev_domain_info *
lookup_subdev_info(struct dmar_domain *domain, struct device *dev)
{
	struct subdev_domain_info *sinfo;

	if (!list_empty(&domain->subdevices)) {
		list_for_each_entry(sinfo, &domain->subdevices, link_domain) {
			if (sinfo->pdev == dev)
				return sinfo;
		}
	}

	return NULL;
}

static int auxiliary_link_device(struct dmar_domain *domain,
				 struct device *dev)
4534
{
4535
	struct device_domain_info *info = get_domain_info(dev);
4536
	struct subdev_domain_info *sinfo = lookup_subdev_info(domain, dev);
4537 4538 4539

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
4540 4541 4542 4543 4544 4545 4546 4547 4548
		return -EINVAL;

	if (!sinfo) {
		sinfo = kzalloc(sizeof(*sinfo), GFP_ATOMIC);
		sinfo->domain = domain;
		sinfo->pdev = dev;
		list_add(&sinfo->link_phys, &info->subdevices);
		list_add(&sinfo->link_domain, &domain->subdevices);
	}
4549

4550
	return ++sinfo->users;
4551 4552
}

4553 4554
static int auxiliary_unlink_device(struct dmar_domain *domain,
				   struct device *dev)
4555
{
4556
	struct device_domain_info *info = get_domain_info(dev);
4557 4558
	struct subdev_domain_info *sinfo = lookup_subdev_info(domain, dev);
	int ret;
4559 4560

	assert_spin_locked(&device_domain_lock);
4561 4562
	if (WARN_ON(!info || !sinfo || sinfo->users <= 0))
		return -EINVAL;
4563

4564 4565 4566 4567 4568 4569
	ret = --sinfo->users;
	if (!ret) {
		list_del(&sinfo->link_phys);
		list_del(&sinfo->link_domain);
		kfree(sinfo);
	}
4570

4571
	return ret;
4572 4573 4574 4575 4576 4577 4578 4579 4580
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	unsigned long flags;
	struct intel_iommu *iommu;

4581
	iommu = device_to_iommu(dev, NULL, NULL);
4582 4583 4584 4585
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
4586
		u32 pasid;
4587

4588 4589 4590 4591 4592
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
4593 4594 4595 4596 4597 4598 4599
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
	ret = auxiliary_link_device(domain, dev);
	if (ret <= 0)
		goto link_failed;

	/*
	 * Subdevices from the same physical device can be attached to the
	 * same domain. For such cases, only the first subdevice attachment
	 * needs to go through the full steps in this function. So if ret >
	 * 1, just goto out.
	 */
	if (ret > 1)
		goto out;

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
4623 4624 4625 4626 4627 4628
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
4629 4630 4631
	if (ret)
		goto table_failed;

4632 4633
	spin_unlock(&iommu->lock);
out:
4634 4635 4636 4637 4638 4639 4640 4641
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
4642 4643
	auxiliary_unlink_device(domain, dev);
link_failed:
4644
	spin_unlock_irqrestore(&device_domain_lock, flags);
4645
	if (list_empty(&domain->subdevices) && domain->default_pasid > 0)
4646
		ioasid_put(domain->default_pasid);
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
4662
	info = get_domain_info(dev);
4663 4664
	iommu = info->iommu;

4665 4666 4667 4668 4669 4670 4671
	if (!auxiliary_unlink_device(domain, dev)) {
		spin_lock(&iommu->lock);
		intel_pasid_tear_down_entry(iommu, dev,
					    domain->default_pasid, false);
		domain_detach_iommu(domain, iommu);
		spin_unlock(&iommu->lock);
	}
4672 4673

	spin_unlock_irqrestore(&device_domain_lock, flags);
4674 4675 4676

	if (list_empty(&domain->subdevices) && domain->default_pasid > 0)
		ioasid_put(domain->default_pasid);
4677 4678
}

4679 4680
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
4681
{
4682
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4683 4684
	struct intel_iommu *iommu;
	int addr_width;
4685

4686
	iommu = device_to_iommu(dev, NULL, NULL);
4687 4688 4689 4690 4691
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
4692 4693 4694 4695
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
4696 4697 4698
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
4699 4700
		return -EFAULT;
	}
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
4711 4712
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
4713
			free_pgtable_page(pte);
4714 4715 4716
		}
		dmar_domain->agaw--;
	}
4717

4718 4719 4720 4721 4722 4723 4724 4725
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

4726 4727
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
4728 4729 4730 4731
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

4732 4733 4734
	if (is_aux_domain(dev, domain))
		return -EPERM;

4735 4736 4737 4738 4739
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
4740
		if (old_domain)
4741 4742 4743 4744 4745 4746 4747 4748
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
4749 4750
}

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

4766 4767
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
4768
{
4769
	dmar_remove_one_dev_info(dev);
4770
}
4771

4772 4773 4774 4775 4776 4777
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

4778
#ifdef CONFIG_INTEL_IOMMU_SVM
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
4796
static const int
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

4839
	if (!inv_info || !dmar_domain)
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
4854
	info = get_domain_info(dev);
4855 4856 4857 4858 4859 4860 4861 4862
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
L
Liu Yi L 已提交
4863
	if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
4864 4865
		size = to_vtd_size(inv_info->granu.addr_info.granule_size,
				   inv_info->granu.addr_info.nb_granules);
4866 4867 4868 4869 4870 4871

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;
L
Liu Yi L 已提交
4872
		u64 addr = 0;
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
4886 4887
		    (inv_info->granu.pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->granu.pasid_info.pasid;
4888
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
4889 4890
			 (inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->granu.addr_info.pasid;
4891 4892 4893

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
4894
			/* HW will ignore LSB bits based on address mask */
4895 4896
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
4897
			    (inv_info->granu.addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
4898
				pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n",
4899
						   inv_info->granu.addr_info.addr, size);
4900 4901 4902 4903 4904 4905 4906
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
4907
					mm_to_dma_pfn(inv_info->granu.addr_info.addr),
4908
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
4909
					inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);
4910

L
Liu Yi L 已提交
4911 4912
			if (!info->ats_enabled)
				break;
4913 4914 4915 4916 4917
			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
L
Liu Yi L 已提交
4918
			fallthrough;
4919
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
L
Liu Yi L 已提交
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
			/*
			 * PASID based device TLB invalidation does not support
			 * IOMMU_INV_GRANU_PASID granularity but only supports
			 * IOMMU_INV_GRANU_ADDR.
			 * The equivalent of that is we set the size to be the
			 * entire range of 64 bit. User only provides PASID info
			 * without address info. So we set addr to 0.
			 */
			if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
				size = 64 - VTD_PAGE_SHIFT;
				addr = 0;
			} else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
4932
				addr = inv_info->granu.addr_info.addr;
L
Liu Yi L 已提交
4933 4934
			}

4935 4936 4937
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
L
Liu Yi L 已提交
4938
						info->ats_qdep, addr,
4939
						size);
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

4957 4958
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
4959
			   size_t size, int iommu_prot, gfp_t gfp)
4960
{
4961
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4962
	u64 max_addr;
4963
	int prot = 0;
4964
	int ret;
4965

4966 4967 4968 4969
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
4970 4971
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
4972

4973
	max_addr = iova + size;
4974
	if (dmar_domain->max_addr < max_addr) {
4975 4976 4977
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
4978
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4979
		if (end < max_addr) {
J
Joerg Roedel 已提交
4980
			pr_err("%s: iommu width (%d) is not "
4981
			       "sufficient for the mapped address (%llx)\n",
4982
			       __func__, dmar_domain->gaw, max_addr);
4983 4984
			return -EFAULT;
		}
4985
		dmar_domain->max_addr = max_addr;
4986
	}
4987 4988
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
4989
	size = aligned_nrpages(hpa, size);
4990 4991
	ret = domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
			     hpa >> VTD_PAGE_SHIFT, size, prot);
4992
	return ret;
K
Kay, Allen M 已提交
4993 4994
}

4995
static size_t intel_iommu_unmap(struct iommu_domain *domain,
4996 4997
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
4998
{
4999
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5000
	unsigned long start_pfn, last_pfn;
5001
	int level = 0;
5002 5003 5004

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5005
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5006 5007 5008

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5009

5010 5011 5012
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

5013 5014
	gather->freelist = domain_unmap(dmar_domain, start_pfn,
					last_pfn, gather->freelist);
5015

5016 5017
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5018

5019 5020
	iommu_iotlb_gather_add_page(domain, gather, iova, size);

5021
	return size;
K
Kay, Allen M 已提交
5022 5023
}

5024 5025 5026 5027 5028 5029
static void intel_iommu_tlb_sync(struct iommu_domain *domain,
				 struct iommu_iotlb_gather *gather)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long iova_pfn = IOVA_PFN(gather->start);
	size_t size = gather->end - gather->start;
5030
	unsigned long start_pfn;
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
	unsigned long nrpages;
	int iommu_id;

	nrpages = aligned_nrpages(gather->start, size);
	start_pfn = mm_to_dma_pfn(iova_pfn);

	for_each_domain_iommu(iommu_id, dmar_domain)
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, nrpages, !gather->freelist, 0);

	dma_free_pagelist(gather->freelist);
}

5044
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5045
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5046
{
5047
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5048
	struct dma_pte *pte;
5049
	int level = 0;
5050
	u64 phys = 0;
K
Kay, Allen M 已提交
5051

5052
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5053 5054 5055 5056
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
5057

5058
	return phys;
K
Kay, Allen M 已提交
5059
}
5060

5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5115
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5116 5117
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5118
		return domain_update_iommu_snooping(NULL) == 1;
5119
	if (cap == IOMMU_CAP_INTR_REMAP)
5120
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5121

5122
	return false;
S
Sheng Yang 已提交
5123 5124
}

5125
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5126
{
5127
	struct intel_iommu *iommu;
5128

5129
	iommu = device_to_iommu(dev, NULL, NULL);
5130
	if (!iommu)
5131
		return ERR_PTR(-ENODEV);
5132

5133
	if (translation_pre_enabled(iommu))
5134
		dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO);
5135

5136
	return &iommu->iommu;
5137
}
5138

5139
static void intel_iommu_release_device(struct device *dev)
5140
{
5141 5142
	struct intel_iommu *iommu;

5143
	iommu = device_to_iommu(dev, NULL, NULL);
5144 5145 5146
	if (!iommu)
		return;

5147 5148
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5149 5150
	set_dma_ops(dev, NULL);
}
5151

L
Lu Baolu 已提交
5152 5153
static void intel_iommu_probe_finalize(struct device *dev)
{
5154 5155 5156
	dma_addr_t base = IOVA_START_PFN << VTD_PAGE_SHIFT;
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5157

5158 5159 5160
	if (domain && domain->type == IOMMU_DOMAIN_DMA)
		iommu_setup_dma_ops(dev, base,
				    __DOMAIN_MAX_ADDR(dmar_domain->gaw) - base);
L
Lu Baolu 已提交
5161
	else
5162
		set_dma_ops(dev, NULL);
5163 5164
}

5165 5166 5167
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5168
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5169 5170 5171 5172 5173
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5174
	down_read(&dmar_global_lock);
5175 5176 5177
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5178
			struct iommu_resv_region *resv;
5179
			enum iommu_resv_type type;
5180 5181
			size_t length;

5182 5183
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5184 5185
				continue;

5186
			length = rmrr->end_address - rmrr->base_address + 1;
5187 5188 5189 5190

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5191
			resv = iommu_alloc_resv_region(rmrr->base_address,
5192
						       length, prot, type);
5193 5194 5195 5196
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5197 5198
		}
	}
5199
	up_read(&dmar_global_lock);
5200

5201 5202 5203 5204 5205
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5206
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5207
						   IOMMU_RESV_DIRECT_RELAXABLE);
5208 5209 5210 5211 5212 5213
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5214 5215
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5216
				      0, IOMMU_RESV_MSI);
5217 5218 5219 5220 5221
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5222
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5223 5224 5225 5226 5227 5228 5229 5230
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5231
	domain = find_domain(dev);
5232 5233 5234 5235 5236 5237 5238
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5239
	info = get_domain_info(dev);
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5253 5254 5255
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5273 5274 5275 5276 5277 5278 5279
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5280 5281 5282 5283 5284 5285 5286
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int ret;

5287
	iommu = device_to_iommu(dev, NULL, NULL);
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5299
	info = get_domain_info(dev);
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5312
	info = get_domain_info(dev);
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5365 5366 5367 5368 5369 5370 5371 5372
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

5373 5374 5375 5376 5377 5378 5379 5380 5381
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
5407
	struct device_domain_info *info = get_domain_info(dev);
5408 5409 5410 5411 5412 5413 5414

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5415 5416 5417 5418 5419 5420 5421 5422 5423
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5424 5425 5426
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
5427
	return attach_deferred(dev);
5428 5429
}

5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
static int
intel_iommu_domain_get_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		return -ENODEV;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = !intel_iommu_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
	default:
		return -EINVAL;
	}
}

5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
/*
 * Check that the device does not live on an external facing PCI port that is
 * marked as untrusted. Such devices should not be able to apply quirks and
 * thus not be able to bypass the IOMMU restrictions.
 */
static bool risky_device(struct pci_dev *pdev)
{
	if (pdev->untrusted) {
		pci_info(pdev,
			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
			 pdev->vendor, pdev->device);
		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
		return true;
	}
	return false;
}

5499
const struct iommu_ops intel_iommu_ops = {
5500 5501 5502
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
5503
	.domain_get_attr        = intel_iommu_domain_get_attr,
5504
	.domain_set_attr	= intel_iommu_domain_set_attr,
5505 5506
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
5507 5508
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
5509
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
5510 5511
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
5512
	.flush_iotlb_all        = intel_flush_iotlb_all,
5513
	.iotlb_sync		= intel_iommu_tlb_sync,
5514
	.iova_to_phys		= intel_iommu_iova_to_phys,
5515
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
5516
	.probe_finalize		= intel_iommu_probe_finalize,
5517
	.release_device		= intel_iommu_release_device,
5518
	.get_resv_regions	= intel_iommu_get_resv_regions,
5519
	.put_resv_regions	= generic_iommu_put_resv_regions,
5520
	.device_group		= intel_iommu_device_group,
5521 5522 5523 5524
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
5525
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
5526
	.def_domain_type	= device_def_domain_type,
5527
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
5528
#ifdef CONFIG_INTEL_IOMMU_SVM
5529
	.cache_invalidate	= intel_iommu_sva_invalidate,
5530 5531
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
5532 5533 5534
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
5535
	.page_response		= intel_svm_page_response,
5536
#endif
5537
};
5538

5539
static void quirk_iommu_igfx(struct pci_dev *dev)
5540
{
5541 5542 5543
	if (risky_device(dev))
		return;

5544
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5545 5546 5547
	dmar_map_gfx = 0;
}

5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
5582

5583
static void quirk_iommu_rwbf(struct pci_dev *dev)
5584
{
5585 5586 5587
	if (risky_device(dev))
		return;

5588 5589
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
5590
	 * but needs it. Same seems to hold for the desktop versions.
5591
	 */
5592
	pci_info(dev, "Forcing write-buffer flush capability\n");
5593 5594 5595 5596
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5597 5598 5599 5600 5601 5602
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5603

5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

5614
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5615 5616 5617
{
	unsigned short ggc;

5618 5619 5620
	if (risky_device(dev))
		return;

5621
	if (pci_read_config_word(dev, GGC, &ggc))
5622 5623
		return;

5624
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5625
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5626
		dmar_map_gfx = 0;
5627 5628
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
5629
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5630 5631
		intel_iommu_strict = 1;
       }
5632 5633 5634 5635 5636 5637
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
{
	unsigned short ver;

	if (!IS_GFX_DEVICE(dev))
		return;

	ver = (dev->device >> 8) & 0xff;
	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
	    ver != 0x9a)
		return;

	if (risky_device(dev))
		return;

	pci_info(dev, "Skip IOMMU disabling for graphics\n");
	iommu_skip_te_disable = 1;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);

5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
5675 5676 5677 5678 5679 5680

	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

5681 5682 5683 5684 5685 5686 5687 5688 5689
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

5690 5691 5692 5693 5694
	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
5723 5724

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5725 5726
	       vtisochctrl);
}