iommu.c 157.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "../irq_remapping.h"
51
#include "pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298

299 300 301 302
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

303 304 305 306 307
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
308
	struct dmar_dev_scope *devices;	/* target devices */
309 310 311 312 313 314
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
315
	struct dmar_dev_scope *devices;	/* target devices */
316 317 318 319 320 321 322 323 324 325
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
326 327 328
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

329
static void domain_exit(struct dmar_domain *domain);
330
static void domain_remove_dev_info(struct dmar_domain *domain);
331
static void dmar_remove_one_dev_info(struct device *dev);
332
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
333 334
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
335 336
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
337

338
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
339 340 341
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
342
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
343

344
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
345 346
int intel_iommu_sm = 1;
#else
347
int intel_iommu_sm;
348
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
349

350 351 352
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

353
static int dmar_map_gfx = 1;
354
static int dmar_forcedac;
M
mark gross 已提交
355
static int intel_iommu_strict;
356
static int intel_iommu_superpage = 1;
357
static int iommu_identity_mapping;
358
static int intel_no_bounce;
359
static int iommu_skip_te_disable;
360

361 362
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
363

364 365 366
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

367
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
368
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
369 370 371 372 373 374 375
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

376
	info = dev_iommu_priv_get(dev);
377 378 379 380 381 382 383
	if (unlikely(info == DUMMY_DEVICE_DOMAIN_INFO ||
		     info == DEFER_DEVICE_DOMAIN_INFO))
		return NULL;

	return info;
}

384
DEFINE_SPINLOCK(device_domain_lock);
385 386
static LIST_HEAD(device_domain_list);

387 388 389
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

390 391
/*
 * Iterate over elements in device_domain_list and call the specified
392
 * callback @fn against each element.
393 394 395 396 397
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
398
	unsigned long flags;
399 400
	struct device_domain_info *info;

401
	spin_lock_irqsave(&device_domain_lock, flags);
402 403
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
404 405
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
406
			return ret;
407
		}
408
	}
409
	spin_unlock_irqrestore(&device_domain_lock, flags);
410 411 412 413

	return 0;
}

414
const struct iommu_ops intel_iommu_ops;
415

416 417 418 419 420
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

421 422 423 424 425
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

426 427 428 429 430 431 432 433 434
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

435 436 437 438 439
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
440 441
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
442
			pr_info("IOMMU enabled\n");
443
		} else if (!strncmp(str, "off", 3)) {
444
			dmar_disabled = 1;
445
			no_platform_optin = 1;
J
Joerg Roedel 已提交
446
			pr_info("IOMMU disabled\n");
447 448
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
449
			pr_info("Disable GFX device mapping\n");
450
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
451
			pr_info("Forcing DAC for PCI devices\n");
452
			dmar_forcedac = 1;
M
mark gross 已提交
453
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
454
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
455
			intel_iommu_strict = 1;
456
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
457
			pr_info("Disable supported super page\n");
458
			intel_iommu_superpage = 0;
459 460 461
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
462
		} else if (!strncmp(str, "tboot_noforce", 13)) {
463
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
464
			intel_iommu_tboot_noforce = 1;
465 466 467
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
468 469 470 471 472 473 474 475 476 477 478 479 480
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

481 482
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
483 484 485 486 487 488 489 490
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
491 492 493 494 495
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
496 497 498 499 500 501 502 503 504 505 506 507 508
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
509 510
}

511
void *alloc_pgtable_page(int node)
512
{
513 514
	struct page *page;
	void *vaddr = NULL;
515

516 517 518
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
519
	return vaddr;
520 521
}

522
void free_pgtable_page(void *vaddr)
523 524 525 526 527 528
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
529
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
530 531
}

K
Kay, Allen M 已提交
532
static void free_domain_mem(void *vaddr)
533 534 535 536 537 538
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
539
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
540 541 542 543 544 545 546
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

547 548 549 550 551
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

552 553 554 555 556
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

557 558 559 560 561 562 563 564
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
565
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
566 567 568 569 570
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
571
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
572 573 574 575 576 577 578 579
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

598
/* This functionin only returns single iommu in a domain */
599
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
600 601 602
{
	int iommu_id;

603
	/* si_domain and vm domain should not get here. */
604 605 606
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

607 608 609
	for_each_domain_iommu(iommu_id, domain)
		break;

610 611 612 613 614 615
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

616 617 618 619 620 621
static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
{
	return sm_supported(iommu) ?
			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
}

W
Weidong Han 已提交
622 623
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
624 625
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
626 627
	bool found = false;
	int i;
628

629
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
630

631
	for_each_domain_iommu(i, domain) {
632
		found = true;
633
		if (!iommu_paging_structure_coherency(g_iommus[i])) {
W
Weidong Han 已提交
634 635 636 637
			domain->iommu_coherency = 0;
			break;
		}
	}
638 639 640 641 642 643
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
644
		if (!iommu_paging_structure_coherency(iommu)) {
645 646 647 648 649
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
650 651
}

652
static int domain_update_iommu_snooping(struct intel_iommu *skip)
653
{
654 655 656
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
657

658 659 660 661 662 663 664
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
665 666
		}
	}
667 668 669
	rcu_read_unlock();

	return ret;
670 671
}

672 673
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
674
{
675
	struct dmar_drhd_unit *drhd;
676
	struct intel_iommu *iommu;
677
	int mask = 0x3;
678 679

	if (!intel_iommu_superpage) {
680
		return 0;
681 682
	}

683
	/* set iommu_superpage to the smallest common denominator */
684
	rcu_read_lock();
685
	for_each_active_iommu(iommu, drhd) {
686
		if (iommu != skip) {
687 688 689 690 691 692 693
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

694 695
			if (!mask)
				break;
696 697
		}
	}
698 699
	rcu_read_unlock();

700
	return fls(mask);
701 702
}

703 704 705 706
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
707
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
708
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
709 710
}

711 712
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
713 714 715 716 717
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

718
	entry = &root->lo;
719
	if (sm_supported(iommu)) {
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

745 746
static int iommu_dummy(struct device *dev)
{
747
	return dev_iommu_priv_get(dev) == DUMMY_DEVICE_DOMAIN_INFO;
748 749
}

750 751
static bool attach_deferred(struct device *dev)
{
752
	return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO;
753 754
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

782
struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
783 784
{
	struct dmar_drhd_unit *drhd = NULL;
785
	struct pci_dev *pdev = NULL;
786
	struct intel_iommu *iommu;
787
	struct device *tmp;
788
	u16 segment = 0;
789 790
	int i;

791
	if (!dev || iommu_dummy(dev))
792 793
		return NULL;

794
	if (dev_is_pci(dev)) {
795 796
		struct pci_dev *pf_pdev;

797
		pdev = pci_real_dma_dev(to_pci_dev(dev));
798

799 800 801 802
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
803
		segment = pci_domain_nr(pdev->bus);
804
	} else if (has_acpi_companion(dev))
805 806
		dev = &ACPI_COMPANION(dev)->dev;

807
	rcu_read_lock();
808
	for_each_active_iommu(iommu, drhd) {
809
		if (pdev && segment != drhd->segment)
810
			continue;
811

812
		for_each_active_dev_scope(drhd->devices,
813 814
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
815 816 817 818
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
819
				if (pdev && pdev->is_virtfn)
820 821
					goto got_pdev;

822 823 824 825
				if (bus && devfn) {
					*bus = drhd->devices[i].bus;
					*devfn = drhd->devices[i].devfn;
				}
826
				goto out;
827 828
			}

829
			if (is_downstream_to_pci_bridge(dev, tmp))
830
				goto got_pdev;
831
		}
832

833 834
		if (pdev && drhd->include_all) {
		got_pdev:
835 836 837 838
			if (bus && devfn) {
				*bus = pdev->bus->number;
				*devfn = pdev->devfn;
			}
839
			goto out;
840
		}
841
	}
842
	iommu = NULL;
843
 out:
844
	rcu_read_unlock();
845

846
	return iommu;
847 848
}

W
Weidong Han 已提交
849 850 851 852 853 854 855
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

856 857 858
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
859
	int ret = 0;
860 861 862
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
863 864 865
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
881
		context = iommu_context_addr(iommu, i, 0, 0);
882 883
		if (context)
			free_pgtable_page(context);
884

885
		if (!sm_supported(iommu))
886 887 888 889 890 891
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

892 893 894 895 896 897 898
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

899
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
900
				      unsigned long pfn, int *target_level)
901
{
902
	struct dma_pte *parent, *pte;
903
	int level = agaw_to_level(domain->agaw);
904
	int offset;
905 906

	BUG_ON(!domain->pgd);
907

908
	if (!domain_pfn_supported(domain, pfn))
909 910 911
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

912 913
	parent = domain->pgd;

914
	while (1) {
915 916
		void *tmp_page;

917
		offset = pfn_level_offset(pfn, level);
918
		pte = &parent[offset];
919
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
920
			break;
921
		if (level == *target_level)
922 923
			break;

924
		if (!dma_pte_present(pte)) {
925 926
			uint64_t pteval;

927
			tmp_page = alloc_pgtable_page(domain->nid);
928

929
			if (!tmp_page)
930
				return NULL;
931

932
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
933
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
934
			if (domain_use_first_level(domain))
935
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
936
			if (cmpxchg64(&pte->val, 0ULL, pteval))
937 938
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
939
			else
940
				domain_flush_cache(domain, pte, sizeof(*pte));
941
		}
942 943 944
		if (level == 1)
			break;

945
		parent = phys_to_virt(dma_pte_addr(pte));
946 947 948
		level--;
	}

949 950 951
	if (!*target_level)
		*target_level = level;

952 953 954 955
	return pte;
}

/* return address's pte at specific level */
956 957
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
958
					 int level, int *large_page)
959
{
960
	struct dma_pte *parent, *pte;
961 962 963 964 965
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
966
		offset = pfn_level_offset(pfn, total);
967 968 969 970
		pte = &parent[offset];
		if (level == total)
			return pte;

971 972
		if (!dma_pte_present(pte)) {
			*large_page = total;
973
			break;
974 975
		}

976
		if (dma_pte_superpage(pte)) {
977 978 979 980
			*large_page = total;
			return pte;
		}

981
		parent = phys_to_virt(dma_pte_addr(pte));
982 983 984 985 986 987
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
988
static void dma_pte_clear_range(struct dmar_domain *domain,
989 990
				unsigned long start_pfn,
				unsigned long last_pfn)
991
{
992
	unsigned int large_page;
993
	struct dma_pte *first_pte, *pte;
994

995 996
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
997
	BUG_ON(start_pfn > last_pfn);
998

999
	/* we don't need lock here; nobody else touches the iova range */
1000
	do {
1001 1002
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1003
		if (!pte) {
1004
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1005 1006
			continue;
		}
1007
		do {
1008
			dma_clear_pte(pte);
1009
			start_pfn += lvl_to_nr_pages(large_page);
1010
			pte++;
1011 1012
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1013 1014
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1015 1016

	} while (start_pfn && start_pfn <= last_pfn);
1017 1018
}

1019
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1020 1021 1022
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1034
		level_pfn = pfn & level_mask(level);
1035 1036
		level_pte = phys_to_virt(dma_pte_addr(pte));

1037 1038 1039 1040 1041
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1042

1043 1044 1045 1046 1047
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1048
		      last_pfn < level_pfn + level_size(level) - 1)) {
1049 1050 1051 1052 1053 1054 1055 1056 1057
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1058 1059 1060 1061
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1062
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1063
				   unsigned long start_pfn,
1064 1065
				   unsigned long last_pfn,
				   int retain_level)
1066
{
1067 1068
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1069
	BUG_ON(start_pfn > last_pfn);
1070

1071 1072
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1073
	/* We don't need lock here; nobody else touches the iova range */
1074
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1075
			   domain->pgd, 0, start_pfn, last_pfn);
1076

1077
	/* free pgd */
1078
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1079 1080 1081 1082 1083
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1103 1104
	pte = page_address(pg);
	do {
1105 1106 1107
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1108 1109
		pte++;
	} while (!first_pte_in_page(pte));
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1166 1167 1168
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1169
{
1170
	struct page *freelist;
1171

1172 1173
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1192
static void dma_free_pagelist(struct page *freelist)
1193 1194 1195 1196 1197 1198 1199 1200 1201
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1202 1203 1204 1205 1206 1207 1208
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1209 1210 1211 1212 1213 1214
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1215
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1216
	if (!root) {
J
Joerg Roedel 已提交
1217
		pr_err("Allocating root entry for %s failed\n",
1218
			iommu->name);
1219
		return -ENOMEM;
1220
	}
1221

F
Fenghua Yu 已提交
1222
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1233
	u64 addr;
1234
	u32 sts;
1235 1236
	unsigned long flag;

1237
	addr = virt_to_phys(iommu->root_entry);
1238 1239
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1240

1241
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1242
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1243

1244
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1245 1246 1247

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1248
		      readl, (sts & DMA_GSTS_RTPS), sts);
1249

1250
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1251 1252
}

1253
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1254 1255 1256 1257
{
	u32 val;
	unsigned long flag;

1258
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1259 1260
		return;

1261
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1262
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1263 1264 1265

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1266
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1267

1268
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1269 1270 1271
}

/* return value determine if we need a write buffer flush */
1272 1273 1274
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1295
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1296 1297 1298 1299 1300 1301
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1302
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1303 1304 1305
}

/* return value determine if we need a write buffer flush */
1306 1307
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1323
		/* IH bit is passed in as part of address */
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1341
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1342 1343 1344 1345 1346 1347 1348 1349 1350
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1351
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1352 1353 1354

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1355
		pr_err("Flush IOTLB failed\n");
1356
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1357
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1358 1359
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1360 1361
}

1362 1363 1364
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1365 1366 1367
{
	struct device_domain_info *info;

1368 1369
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1370 1371 1372 1373
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1374 1375
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1376 1377
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1378 1379 1380
			break;
		}

1381
	return NULL;
Y
Yu Zhao 已提交
1382 1383
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1407
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1408
{
1409 1410
	struct pci_dev *pdev;

1411 1412
	assert_spin_locked(&device_domain_lock);

1413
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1414 1415
		return;

1416
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1429
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1430
	}
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1441 1442 1443
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1444 1445
		info->pri_enabled = 1;
#endif
1446
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1447
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1448
		info->ats_enabled = 1;
1449
		domain_update_iotlb(info->domain);
1450 1451
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1452 1453 1454 1455
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1456 1457
	struct pci_dev *pdev;

1458 1459
	assert_spin_locked(&device_domain_lock);

1460
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1461 1462
		return;

1463 1464 1465 1466 1467
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1468
		domain_update_iotlb(info->domain);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1489 1490 1491
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1492 1493
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1494
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1495 1496 1497
			continue;

		sid = info->bus << 8 | info->devfn;
1498
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1499 1500
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1501 1502 1503 1504
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1519 1520 1521 1522
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1523
{
1524
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1525
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1526
	u16 did = domain->iommu_did[iommu->seq_id];
1527 1528 1529

	BUG_ON(pages == 0);

1530 1531
	if (ih)
		ih = 1 << 6;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1549 1550

	/*
1551 1552
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1553
	 */
1554
	if (!cap_caching_mode(iommu->cap) || !map)
1555
		iommu_flush_dev_iotlb(domain, addr, mask);
1556 1557
}

1558 1559 1560 1561 1562
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1563 1564 1565 1566 1567
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1568 1569 1570 1571 1572
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

1584 1585 1586 1587 1588
		if (domain_use_first_level(domain))
			domain_flush_piotlb(iommu, domain, 0, -1, 0);
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1589 1590 1591 1592 1593 1594 1595

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1596 1597 1598 1599 1600
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1601 1602 1603
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1604
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1605 1606 1607 1608 1609 1610 1611 1612
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1613
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1614 1615
}

1616
static void iommu_enable_translation(struct intel_iommu *iommu)
1617 1618 1619 1620
{
	u32 sts;
	unsigned long flags;

1621
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1622 1623
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1624 1625 1626

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1627
		      readl, (sts & DMA_GSTS_TES), sts);
1628

1629
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1630 1631
}

1632
static void iommu_disable_translation(struct intel_iommu *iommu)
1633 1634 1635 1636
{
	u32 sts;
	unsigned long flag;

1637 1638 1639 1640
	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
		return;

1641
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1642 1643 1644 1645 1646
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1647
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1648

1649
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1650 1651 1652 1653
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1654 1655
	u32 ndomains, nlongs;
	size_t size;
1656 1657

	ndomains = cap_ndoms(iommu->cap);
1658
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1659
		 iommu->name, ndomains);
1660 1661
	nlongs = BITS_TO_LONGS(ndomains);

1662 1663
	spin_lock_init(&iommu->lock);

1664 1665
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1666 1667
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1668 1669
		return -ENOMEM;
	}
1670

1671
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1672 1673 1674 1675 1676 1677 1678 1679
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1680 1681
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1682
		kfree(iommu->domain_ids);
1683
		kfree(iommu->domains);
1684
		iommu->domain_ids = NULL;
1685
		iommu->domains    = NULL;
1686 1687 1688 1689
		return -ENOMEM;
	}

	/*
1690 1691 1692 1693
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1694
	 */
1695 1696
	set_bit(0, iommu->domain_ids);

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1707 1708 1709
	return 0;
}

1710
static void disable_dmar_iommu(struct intel_iommu *iommu)
1711
{
1712
	struct device_domain_info *info, *tmp;
1713
	unsigned long flags;
1714

1715 1716
	if (!iommu->domains || !iommu->domain_ids)
		return;
1717

1718
	spin_lock_irqsave(&device_domain_lock, flags);
1719 1720 1721 1722 1723 1724 1725
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1726
		__dmar_remove_one_dev_info(info);
1727
	}
1728
	spin_unlock_irqrestore(&device_domain_lock, flags);
1729 1730 1731

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1732
}
1733

1734 1735 1736
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1737
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1738 1739 1740 1741
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1742 1743 1744 1745 1746
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1747

W
Weidong Han 已提交
1748 1749
	g_iommus[iommu->seq_id] = NULL;

1750 1751
	/* free context mapping */
	free_context_table(iommu);
1752 1753

#ifdef CONFIG_INTEL_IOMMU_SVM
1754
	if (pasid_supported(iommu)) {
1755 1756 1757
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1758 1759 1760
	if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap))
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1761
#endif
1762 1763
}

1764 1765
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1766
 * DMA translation.
1767 1768 1769 1770 1771
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1772
	static int first_level_support = -1;
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1791
static struct dmar_domain *alloc_domain(int flags)
1792 1793 1794 1795 1796 1797 1798
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1799
	memset(domain, 0, sizeof(*domain));
1800
	domain->nid = NUMA_NO_NODE;
1801
	domain->flags = flags;
1802 1803
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1804
	domain->has_iotlb_device = false;
1805
	INIT_LIST_HEAD(&domain->devices);
1806 1807 1808 1809

	return domain;
}

1810 1811
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1812 1813
			       struct intel_iommu *iommu)
{
1814
	unsigned long ndomains;
1815
	int num;
1816

1817
	assert_spin_locked(&device_domain_lock);
1818
	assert_spin_locked(&iommu->lock);
1819

1820 1821 1822
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1823
		ndomains = cap_ndoms(iommu->cap);
1824 1825 1826 1827 1828 1829
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1830
			return -ENOSPC;
1831
		}
1832

1833 1834 1835 1836 1837
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1838 1839 1840

		domain_update_iommu_cap(domain);
	}
1841

1842
	return 0;
1843 1844 1845 1846 1847
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1848
	int num, count;
1849

1850
	assert_spin_locked(&device_domain_lock);
1851
	assert_spin_locked(&iommu->lock);
1852

1853 1854 1855
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1856 1857 1858
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1859 1860

		domain_update_iommu_cap(domain);
1861
		domain->iommu_did[iommu->seq_id] = 0;
1862 1863 1864 1865 1866
	}

	return count;
}

1867
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1868
static struct lock_class_key reserved_rbtree_key;
1869

1870
static int dmar_init_reserved_ranges(void)
1871 1872 1873 1874 1875
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1876
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1877

M
Mark Gross 已提交
1878 1879 1880
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1881 1882 1883
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1884
	if (!iova) {
J
Joerg Roedel 已提交
1885
		pr_err("Reserve IOAPIC range failed\n");
1886 1887
		return -ENODEV;
	}
1888 1889 1890 1891 1892 1893 1894 1895 1896

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1897 1898 1899
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1900
			if (!iova) {
1901
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1902 1903
				return -ENODEV;
			}
1904 1905
		}
	}
1906
	return 0;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

1926
	/* Remove associated devices and clear attached or cached domains */
1927
	domain_remove_dev_info(domain);
1928

1929
	/* destroy iovas */
1930 1931
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
		put_iova_domain(&domain->iovad);
1932

1933 1934
	if (domain->pgd) {
		struct page *freelist;
1935

1936 1937 1938
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
1939

1940 1941 1942
	free_domain_mem(domain);
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

1992 1993
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
1994
				      struct pasid_table *table,
1995
				      u8 bus, u8 devfn)
1996
{
1997
	u16 did = domain->iommu_did[iommu->seq_id];
1998 1999
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
2000 2001
	struct context_entry *context;
	unsigned long flags;
2002
	int ret;
2003

2004 2005
	WARN_ON(did == 0);

2006 2007
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
2008 2009 2010

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2011

2012
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2013

2014 2015 2016 2017
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2018
	context = iommu_context_addr(iommu, bus, devfn, 1);
2019
	if (!context)
2020
		goto out_unlock;
2021

2022 2023 2024
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2025

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2038
		if (did_old < cap_ndoms(iommu->cap)) {
2039 2040 2041 2042
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2043 2044 2045
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2046 2047
	}

2048
	context_clear_entry(context);
2049

2050 2051
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2052

2053 2054 2055 2056 2057 2058 2059 2060 2061
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2062 2063

		/*
2064 2065
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2066
		 */
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2106 2107

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2108
	}
F
Fenghua Yu 已提交
2109

2110 2111
	context_set_fault_enable(context);
	context_set_present(context);
2112 2113
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(context, sizeof(*context));
2114

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2126
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2127
	} else {
2128
		iommu_flush_write_buffer(iommu);
2129
	}
Y
Yu Zhao 已提交
2130
	iommu_enable_dev_iotlb(info);
2131

2132 2133 2134 2135 2136
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2137

2138
	return ret;
2139 2140
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2157
static int
2158
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2159
{
2160
	struct domain_context_mapping_data data;
2161
	struct pasid_table *table;
2162
	struct intel_iommu *iommu;
2163
	u8 bus, devfn;
2164

2165
	iommu = device_to_iommu(dev, &bus, &devfn);
2166 2167
	if (!iommu)
		return -ENODEV;
2168

2169
	table = intel_pasid_get_table(dev);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2181 2182 2183 2184 2185 2186 2187 2188
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2189 2190
}

2191
static int domain_context_mapped(struct device *dev)
2192
{
W
Weidong Han 已提交
2193
	struct intel_iommu *iommu;
2194
	u8 bus, devfn;
W
Weidong Han 已提交
2195

2196
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2197 2198
	if (!iommu)
		return -ENODEV;
2199

2200 2201
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2202

2203 2204
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2205 2206
}

2207 2208 2209 2210 2211 2212 2213 2214
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2243 2244 2245
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2246 2247
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2248
	phys_addr_t pteval;
2249
	unsigned long sg_res = 0;
2250 2251
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2252
	u64 attr;
2253

2254
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2255 2256 2257 2258

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2259 2260
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
2261
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2262

2263 2264
	if (!sg) {
		sg_res = nr_pages;
2265
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2266 2267
	}

2268
	while (nr_pages > 0) {
2269 2270
		uint64_t tmp;

2271
		if (!sg_res) {
2272 2273
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2274
			sg_res = aligned_nrpages(sg->offset, sg->length);
2275
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2276
			sg->dma_length = sg->length;
2277
			pteval = (sg_phys(sg) - pgoff) | attr;
2278
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2279
		}
2280

2281
		if (!pte) {
2282 2283
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2284
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2285 2286
			if (!pte)
				return -ENOMEM;
2287
			/* It is large page*/
2288
			if (largepage_lvl > 1) {
2289 2290
				unsigned long nr_superpages, end_pfn;

2291
				pteval |= DMA_PTE_LARGE_PAGE;
2292
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2293 2294 2295 2296

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2297 2298
				/*
				 * Ensure that old small page tables are
2299
				 * removed to make room for superpage(s).
2300 2301
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2302
				 */
2303 2304
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2305
			} else {
2306
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2307
			}
2308

2309 2310 2311 2312
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2313
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2314
		if (tmp) {
2315
			static int dumps = 5;
J
Joerg Roedel 已提交
2316 2317
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2318 2319 2320 2321 2322 2323
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2347
		pte++;
2348 2349
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2350 2351 2352 2353
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2354 2355

		if (!sg_res && nr_pages)
2356 2357 2358 2359 2360
			sg = sg_next(sg);
	}
	return 0;
}

2361
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2362 2363 2364
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2365
	int iommu_id, ret;
2366 2367 2368 2369 2370 2371 2372
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2373 2374
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2375 2376 2377 2378
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2379 2380
}

2381 2382 2383
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2384
{
2385
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2386
}
2387

2388 2389 2390 2391
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2392
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2393 2394
}

2395
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2396
{
2397 2398 2399 2400
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2401 2402
	if (!iommu)
		return;
2403

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2424 2425
}

2426 2427 2428 2429 2430 2431
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2432
		dev_iommu_priv_set(info->dev, NULL);
2433 2434
}

2435 2436
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2437
	struct device_domain_info *info, *tmp;
2438
	unsigned long flags;
2439 2440

	spin_lock_irqsave(&device_domain_lock, flags);
2441
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2442
		__dmar_remove_one_dev_info(info);
2443 2444 2445
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2446
struct dmar_domain *find_domain(struct device *dev)
2447 2448 2449
{
	struct device_domain_info *info;

2450
	if (unlikely(attach_deferred(dev) || iommu_dummy(dev)))
2451 2452 2453
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2454
	info = get_domain_info(dev);
2455 2456 2457 2458 2459 2460
	if (likely(info))
		return info->domain;

	return NULL;
}

2461
static void do_deferred_attach(struct device *dev)
2462
{
2463
	struct iommu_domain *domain;
2464

2465
	dev_iommu_priv_set(dev, NULL);
2466 2467 2468 2469 2470
	domain = iommu_get_domain_for_dev(dev);
	if (domain)
		intel_iommu_attach_device(domain, dev);
}

2471
static inline struct device_domain_info *
2472 2473 2474 2475 2476
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2477
		if (info->segment == segment && info->bus == bus &&
2478
		    info->devfn == devfn)
2479
			return info;
2480 2481 2482 2483

	return NULL;
}

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
				    int pasid)
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2514 2515 2516 2517 2518 2519
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2520 2521 2522 2523
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2524
{
2525
	struct dmar_domain *found = NULL;
2526 2527
	struct device_domain_info *info;
	unsigned long flags;
2528
	int ret;
2529 2530 2531

	info = alloc_devinfo_mem();
	if (!info)
2532
		return NULL;
2533

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2546 2547 2548
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2549 2550
	info->dev = dev;
	info->domain = domain;
2551
	info->iommu = iommu;
2552
	info->pasid_table = NULL;
2553
	info->auxd_enabled = 0;
2554
	INIT_LIST_HEAD(&info->auxiliary_domains);
2555

2556 2557 2558
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2559 2560
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2561 2562 2563
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2564 2565
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2566 2567 2568 2569 2570 2571
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
2572
			    pci_pri_supported(pdev))
2573 2574 2575 2576
				info->pri_supported = 1;
		}
	}

2577 2578
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2579
		found = find_domain(dev);
2580 2581

	if (!found) {
2582
		struct device_domain_info *info2;
2583 2584
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2585 2586 2587 2588
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2589
	}
2590

2591 2592 2593
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2594 2595
		/* Caller must free the original domain */
		return found;
2596 2597
	}

2598 2599 2600 2601 2602
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2603
		spin_unlock_irqrestore(&device_domain_lock, flags);
2604
		free_devinfo_mem(info);
2605 2606 2607
		return NULL;
	}

2608 2609 2610
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
2611
		dev_iommu_priv_set(dev, info);
2612
	spin_unlock_irqrestore(&device_domain_lock, flags);
2613

2614 2615
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2616 2617
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2618
			dev_err(dev, "PASID table allocation failed\n");
2619
			dmar_remove_one_dev_info(dev);
2620
			return NULL;
2621
		}
2622 2623 2624 2625 2626 2627

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2628 2629 2630
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2631 2632 2633 2634 2635
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2636
			dev_err(dev, "Setup RID2PASID failed\n");
2637
			dmar_remove_one_dev_info(dev);
2638
			return NULL;
2639 2640
		}
	}
2641

2642
	if (dev && domain_context_mapping(domain, dev)) {
2643
		dev_err(dev, "Domain context map failed\n");
2644
		dmar_remove_one_dev_info(dev);
2645 2646 2647
		return NULL;
	}

2648
	return domain;
2649 2650
}

2651
static int iommu_domain_identity_map(struct dmar_domain *domain,
2652 2653
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2654 2655 2656 2657 2658
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2659
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2660

2661 2662 2663
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2664 2665
}

2666 2667
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2668
static int __init si_domain_init(int hw)
2669
{
2670 2671 2672
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2673

2674
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2675 2676 2677
	if (!si_domain)
		return -EFAULT;

2678
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2679 2680 2681 2682
		domain_exit(si_domain);
		return -EFAULT;
	}

2683 2684 2685
	if (hw)
		return 0;

2686
	for_each_online_node(nid) {
2687 2688 2689 2690 2691
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2692 2693
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2694 2695 2696
			if (ret)
				return ret;
		}
2697 2698
	}

2699
	/*
2700 2701
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

2713 2714 2715
			ret = iommu_domain_identity_map(si_domain,
					mm_to_dma_pfn(start >> PAGE_SHIFT),
					mm_to_dma_pfn(end >> PAGE_SHIFT));
2716 2717 2718 2719 2720
			if (ret)
				return ret;
		}
	}

2721 2722 2723
	return 0;
}

2724
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2725
{
2726
	struct dmar_domain *ndomain;
2727
	struct intel_iommu *iommu;
2728
	u8 bus, devfn;
2729

2730
	iommu = device_to_iommu(dev, &bus, &devfn);
2731 2732 2733
	if (!iommu)
		return -ENODEV;

2734
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2735 2736
	if (ndomain != domain)
		return -EBUSY;
2737 2738 2739 2740

	return 0;
}

2741
static bool device_has_rmrr(struct device *dev)
2742 2743
{
	struct dmar_rmrr_unit *rmrr;
2744
	struct device *tmp;
2745 2746
	int i;

2747
	rcu_read_lock();
2748
	for_each_rmrr_units(rmrr) {
2749 2750 2751 2752 2753 2754
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2755 2756
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2757
				rcu_read_unlock();
2758
				return true;
2759
			}
2760
	}
2761
	rcu_read_unlock();
2762 2763 2764
	return false;
}

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2808 2809
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2810 2811 2812 2813 2814 2815
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2816 2817
	if (device_rmrr_is_relaxable(dev))
		return false;
2818 2819 2820 2821

	return true;
}

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2833
static int device_def_domain_type(struct device *dev)
2834
{
2835 2836
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2837

2838 2839 2840 2841 2842
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2843
			return IOMMU_DOMAIN_DMA;
2844

2845
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2846
			return IOMMU_DOMAIN_IDENTITY;
2847

2848
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2849
			return IOMMU_DOMAIN_IDENTITY;
2850
	}
2851

2852
	return 0;
2853 2854
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2881
		pr_info("%s: Using Register based invalidation\n",
2882 2883 2884 2885
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2886
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2887 2888 2889
	}
}

2890
static int copy_context_table(struct intel_iommu *iommu,
2891
			      struct root_entry *old_re,
2892 2893 2894
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2895
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2896
	struct context_entry *new_ce = NULL, ce;
2897
	struct context_entry *old_ce = NULL;
2898
	struct root_entry re;
2899 2900 2901
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2902
	memcpy(&re, old_re, sizeof(re));
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2918
				memunmap(old_ce);
2919 2920 2921

			ret = 0;
			if (devfn < 0x80)
2922
				old_ce_phys = root_entry_lctp(&re);
2923
			else
2924
				old_ce_phys = root_entry_uctp(&re);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
2937 2938
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
2950
		memcpy(&ce, old_ce + idx, sizeof(ce));
2951

2952
		if (!__context_present(&ce))
2953 2954
			continue;

2955 2956 2957 2958
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

2978 2979 2980 2981 2982 2983 2984 2985
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
2986
	memunmap(old_ce);
2987 2988 2989 2990 2991 2992 2993 2994

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
2995
	struct root_entry *old_rt;
2996 2997 2998 2999 3000
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3001
	bool new_ext, ext;
3002 3003 3004

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3015 3016 3017 3018 3019

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3020
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3021 3022 3023 3024 3025 3026
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3027
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3069
	memunmap(old_rt);
3070 3071 3072 3073

	return ret;
}

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
	if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap))
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3153
static int __init init_dmars(void)
3154 3155 3156
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3157
	int ret;
3158

3159 3160 3161 3162 3163 3164 3165
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3166 3167 3168 3169 3170
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3171
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3172 3173 3174
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3175
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3176 3177
	}

3178 3179 3180 3181
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3182 3183 3184
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3185
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3186 3187 3188 3189
		ret = -ENOMEM;
		goto error;
	}

3190 3191 3192 3193 3194 3195
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3196 3197 3198 3199 3200
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3201
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3202 3203 3204 3205 3206 3207
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3208
		g_iommus[iommu->seq_id] = iommu;
3209

3210 3211
		intel_iommu_init_qi(iommu);

3212 3213
		ret = iommu_init_domains(iommu);
		if (ret)
3214
			goto free_iommu;
3215

3216 3217
		init_translation_status(iommu);

3218 3219 3220 3221 3222 3223
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3224

3225 3226 3227
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3228
		 * among all IOMMU's. Need to Split it later.
3229 3230
		 */
		ret = iommu_alloc_root_entry(iommu);
3231
		if (ret)
3232
			goto free_iommu;
3233

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3258
		if (!ecap_pass_through(iommu->ecap))
3259
			hw_pass_through = 0;
3260
		intel_svm_check(iommu);
3261 3262
	}

3263 3264 3265 3266 3267 3268 3269
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3270 3271 3272
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3273 3274 3275 3276 3277
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3278
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3279
	dmar_map_gfx = 0;
3280
#endif
3281

3282 3283 3284
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3285 3286
	check_tylersburg_isoch();

3287 3288 3289
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3290

3291 3292 3293 3294 3295 3296 3297
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3298
	for_each_iommu(iommu, drhd) {
3299 3300 3301 3302 3303 3304
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3305
				iommu_disable_protect_mem_regions(iommu);
3306
			continue;
3307
		}
3308 3309 3310

		iommu_flush_write_buffer(iommu);

3311
#ifdef CONFIG_INTEL_IOMMU_SVM
3312
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3313 3314 3315 3316 3317
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3318
			ret = intel_svm_enable_prq(iommu);
3319
			down_write(&dmar_global_lock);
3320 3321 3322 3323
			if (ret)
				goto free_iommu;
		}
#endif
3324 3325
		ret = dmar_set_interrupt(iommu);
		if (ret)
3326
			goto free_iommu;
3327 3328 3329
	}

	return 0;
3330 3331

free_iommu:
3332 3333
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3334
		free_dmar_iommu(iommu);
3335
	}
3336

W
Weidong Han 已提交
3337
	kfree(g_iommus);
3338

3339
error:
3340 3341 3342
	return ret;
}

3343
/* This takes a number of _MM_ pages, not VTD pages */
3344
static unsigned long intel_alloc_iova(struct device *dev,
3345 3346
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3347
{
3348
	unsigned long iova_pfn;
3349

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	/*
	 * Restrict dma_mask to the width that the iommu can handle.
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
				 dma_mask);
	else
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
				 dma_mask);

3365 3366
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3367 3368

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3369 3370
		/*
		 * First try to allocate an io virtual address in
3371
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3372
		 * from higher range
3373
		 */
3374
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3375
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3376 3377
		if (iova_pfn)
			return iova_pfn;
3378
	}
3379 3380
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3381
	if (unlikely(!iova_pfn)) {
3382 3383
		dev_err_once(dev, "Allocating %ld-page iova failed\n",
			     nrpages);
3384
		return 0;
3385 3386
	}

3387
	return iova_pfn;
3388 3389
}

3390 3391
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3392 3393
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3394
	phys_addr_t start_paddr;
3395
	unsigned long iova_pfn;
3396
	int prot = 0;
I
Ingo Molnar 已提交
3397
	int ret;
3398
	struct intel_iommu *iommu;
3399
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3400 3401

	BUG_ON(dir == DMA_NONE);
3402

L
Lu Baolu 已提交
3403 3404 3405
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3406
	domain = find_domain(dev);
3407
	if (!domain)
3408
		return DMA_MAPPING_ERROR;
3409

3410
	iommu = domain_get_iommu(domain);
3411
	size = aligned_nrpages(paddr, size);
3412

3413 3414
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3415 3416
		goto error;

3417 3418 3419 3420 3421
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3422
			!cap_zlr(iommu->cap))
3423 3424 3425 3426
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3427
	 * paddr - (paddr + size) might be partial page, we should map the whole
3428
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3429
	 * might have two guest_addr mapping to the same host paddr, but this
3430 3431
	 * is not a big problem
	 */
3432
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3433
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3434 3435 3436
	if (ret)
		goto error;

3437
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3438
	start_paddr += paddr & ~PAGE_MASK;
3439 3440 3441

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3442
	return start_paddr;
3443 3444

error:
3445
	if (iova_pfn)
3446
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3447 3448
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3449
	return DMA_MAPPING_ERROR;
3450 3451
}

3452 3453 3454
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3455
				 unsigned long attrs)
3456
{
L
Lu Baolu 已提交
3457 3458
	return __intel_map_single(dev, page_to_phys(page) + offset,
				  size, dir, *dev->dma_mask);
3459 3460 3461 3462 3463 3464
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
L
Lu Baolu 已提交
3465
	return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask);
3466 3467
}

3468
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3469
{
3470
	struct dmar_domain *domain;
3471
	unsigned long start_pfn, last_pfn;
3472
	unsigned long nrpages;
3473
	unsigned long iova_pfn;
3474
	struct intel_iommu *iommu;
3475
	struct page *freelist;
3476
	struct pci_dev *pdev = NULL;
3477

3478
	domain = find_domain(dev);
3479 3480
	BUG_ON(!domain);

3481 3482
	iommu = domain_get_iommu(domain);

3483
	iova_pfn = IOVA_PFN(dev_addr);
3484

3485
	nrpages = aligned_nrpages(dev_addr, size);
3486
	start_pfn = mm_to_dma_pfn(iova_pfn);
3487
	last_pfn = start_pfn + nrpages - 1;
3488

3489 3490 3491
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3492
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3493 3494
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3495
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3496
				      nrpages, !freelist, 0);
M
mark gross 已提交
3497
		/* free iova */
3498
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3499
		dma_free_pagelist(freelist);
M
mark gross 已提交
3500
	} else {
3501 3502
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3503 3504 3505 3506 3507
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3508 3509

	trace_unmap_single(dev, dev_addr, size);
3510 3511
}

3512 3513
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3514
			     unsigned long attrs)
3515
{
L
Lu Baolu 已提交
3516
	intel_unmap(dev, dev_addr, size);
3517 3518 3519 3520 3521
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
L
Lu Baolu 已提交
3522
	intel_unmap(dev, dev_addr, size);
3523 3524
}

3525
static void *intel_alloc_coherent(struct device *dev, size_t size,
3526
				  dma_addr_t *dma_handle, gfp_t flags,
3527
				  unsigned long attrs)
3528
{
3529 3530
	struct page *page = NULL;
	int order;
3531

L
Lu Baolu 已提交
3532 3533
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3534

3535 3536 3537 3538 3539 3540
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3541 3542
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3543 3544 3545 3546 3547 3548 3549 3550
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3551 3552 3553
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3554
	if (*dma_handle != DMA_MAPPING_ERROR)
3555 3556 3557
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3558

3559 3560 3561
	return NULL;
}

3562
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3563
				dma_addr_t dma_handle, unsigned long attrs)
3564
{
3565 3566 3567 3568 3569 3570 3571 3572 3573
	int order;
	struct page *page = virt_to_page(vaddr);

	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3574 3575
}

3576
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3577
			   int nelems, enum dma_data_direction dir,
3578
			   unsigned long attrs)
3579
{
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3590 3591

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3592 3593
}

3594
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3595
			enum dma_data_direction dir, unsigned long attrs)
3596 3597 3598
{
	int i;
	struct dmar_domain *domain;
3599 3600
	size_t size = 0;
	int prot = 0;
3601
	unsigned long iova_pfn;
3602
	int ret;
F
FUJITA Tomonori 已提交
3603
	struct scatterlist *sg;
3604
	unsigned long start_vpfn;
3605
	struct intel_iommu *iommu;
3606 3607

	BUG_ON(dir == DMA_NONE);
L
Lu Baolu 已提交
3608 3609 3610

	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3611

3612
	domain = find_domain(dev);
3613 3614 3615
	if (!domain)
		return 0;

3616 3617
	iommu = domain_get_iommu(domain);

3618
	for_each_sg(sglist, sg, nelems, i)
3619
		size += aligned_nrpages(sg->offset, sg->length);
3620

3621
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3622
				*dev->dma_mask);
3623
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3624
		sglist->dma_length = 0;
3625 3626 3627 3628 3629 3630 3631 3632
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3633
			!cap_zlr(iommu->cap))
3634 3635 3636 3637
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3638
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3639

3640
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3641 3642
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3643 3644
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3645
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3646
		return 0;
3647 3648
	}

3649 3650
	for_each_sg(sglist, sg, nelems, i)
		trace_map_sg(dev, i + 1, nelems, sg);
3651

3652 3653 3654
	return nelems;
}

3655 3656 3657 3658 3659
static u64 intel_get_required_mask(struct device *dev)
{
	return DMA_BIT_MASK(32);
}

3660
static const struct dma_map_ops intel_dma_ops = {
3661 3662
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3663 3664
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3665 3666
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3667
	.map_resource = intel_map_resource,
3668
	.unmap_resource = intel_unmap_resource,
3669
	.dma_supported = dma_direct_supported,
3670 3671
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3672
	.get_required_mask = intel_get_required_mask,
3673 3674
};

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3705 3706 3707
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3708
	domain = find_domain(dev);
3709

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
		tlb_addr = swiotlb_tbl_map_single(dev,
				__phys_to_dma(dev, io_tlb_start),
				paddr, size, aligned_size, dir, attrs);
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

3864 3865 3866
	for_each_sg(sglist, sg, nelems, i)
		trace_bounce_map_sg(dev, i + 1, nelems, sg);

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
	.dma_supported		= dma_direct_supported,
};

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3939
		pr_err("Couldn't create iommu_domain cache\n");
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3956
		pr_err("Couldn't create devinfo cache\n");
3957 3958 3959 3960 3961 3962 3963 3964 3965
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3966
	ret = iova_cache_get();
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3980
	iova_cache_put();
3981 3982 3983 3984 3985 3986 3987 3988

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3989
	iova_cache_put();
3990 3991
}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
4013 4014 4015
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
4016
		dev_iommu_priv_set(&pdev->dev, DUMMY_DEVICE_DOMAIN_INFO);
4017
	}
4018 4019 4020
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

4021 4022 4023
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4024
	struct device *dev;
4025
	int i;
4026 4027 4028

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4029 4030 4031
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4032
			/* ignore DMAR unit if no devices exist */
4033 4034 4035 4036 4037
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4038 4039
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4040 4041
			continue;

4042 4043
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4044
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4045 4046 4047 4048
				break;
		if (i < drhd->devices_cnt)
			continue;

4049 4050
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4051
		drhd->gfx_dedicated = 1;
4052
		if (!dmar_map_gfx) {
4053
			drhd->ignored = 1;
4054 4055
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
4056
				dev_iommu_priv_set(dev, DUMMY_DEVICE_DOMAIN_INFO);
4057 4058 4059 4060
		}
	}
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4081

4082 4083 4084 4085 4086
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4087
					   DMA_CCMD_GLOBAL_INVL);
4088 4089
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4090
		iommu_disable_protect_mem_regions(iommu);
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4103
					   DMA_CCMD_GLOBAL_INVL);
4104
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4105
					 DMA_TLB_GLOBAL_FLUSH);
4106 4107 4108
	}
}

4109
static int iommu_suspend(void)
4110 4111 4112 4113 4114 4115
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4116
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4127
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4138
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4149
static void iommu_resume(void)
4150 4151 4152 4153 4154 4155
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4156 4157 4158 4159
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4160
		return;
4161 4162 4163 4164
	}

	for_each_active_iommu(iommu, drhd) {

4165
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4176
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4177 4178 4179 4180 4181 4182
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4183
static struct syscore_ops iommu_syscore_ops = {
4184 4185 4186 4187
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4188
static void __init init_iommu_pm_ops(void)
4189
{
4190
	register_syscore_ops(&iommu_syscore_ops);
4191 4192 4193
}

#else
4194
static inline void init_iommu_pm_ops(void) {}
4195 4196
#endif	/* CONFIG_PM */

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

4208
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4209 4210 4211
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4212 4213

	rmrr = (struct acpi_dmar_reserved_memory *)header;
4214 4215
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
4216 4217 4218 4219 4220 4221
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
4222 4223
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
4224 4225 4226

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4227
		goto out;
4228 4229

	rmrru->hdr = header;
4230

4231 4232
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4233

4234 4235 4236
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4237
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4238
		goto free_rmrru;
4239

4240
	list_add(&rmrru->list, &dmar_rmrr_units);
4241

4242
	return 0;
4243 4244 4245 4246
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4247 4248
}

4249 4250 4251 4252 4253
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

4254 4255
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4269 4270 4271 4272
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4273
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4274 4275
		return 0;

4276
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4277 4278 4279 4280 4281
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4282 4283 4284
	if (!atsru)
		return -ENOMEM;

4285 4286 4287 4288 4289 4290 4291
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4292
	atsru->include_all = atsr->flags & 0x1;
4293 4294 4295 4296 4297 4298 4299 4300 4301
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4302

4303
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4304 4305 4306 4307

	return 0;
}

4308 4309 4310 4311 4312 4313
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4342
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4343 4344 4345
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4346
	}
4347 4348 4349 4350

	return 0;
}

4351 4352
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4353
	int sp, ret;
4354 4355 4356 4357 4358 4359
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4360
		pr_warn("%s: Doesn't support hardware pass through.\n",
4361 4362 4363 4364 4365
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4366
		pr_warn("%s: Doesn't support snooping.\n",
4367 4368 4369
			iommu->name);
		return -ENXIO;
	}
4370
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
4371
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4372
		pr_warn("%s: Doesn't support large page.\n",
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4390
	intel_svm_check(iommu);
4391

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4403 4404

#ifdef CONFIG_INTEL_IOMMU_SVM
4405
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4406 4407 4408 4409 4410
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4430 4431
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4448 4449
}

4450 4451 4452 4453 4454 4455 4456 4457 4458
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4459 4460
	}

4461 4462 4463 4464
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4465 4466 4467 4468
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4469
	int i, ret = 1;
4470
	struct pci_bus *bus;
4471 4472
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4473 4474 4475 4476 4477
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4478
		bridge = bus->self;
4479 4480 4481 4482 4483
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4484
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4485
			return 0;
4486
		/* If we found the root port, look it up in the ATSR */
4487
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4488 4489 4490
			break;
	}

4491
	rcu_read_lock();
4492 4493 4494 4495 4496
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4497
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4498
			if (tmp == &bridge->dev)
4499
				goto out;
4500 4501

		if (atsru->include_all)
4502
			goto out;
4503
	}
4504 4505
	ret = 0;
out:
4506
	rcu_read_unlock();
4507

4508
	return ret;
4509 4510
}

4511 4512
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4513
	int ret;
4514 4515 4516 4517 4518
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4519
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4530
			if (ret < 0)
4531
				return ret;
4532
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4533 4534
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4550
			else if (ret < 0)
4551
				return ret;
4552
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4553 4554 4555 4556 4557 4558 4559 4560 4561
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4562 4563 4564 4565
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
4566 4567 4568
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
4569 4570 4571

	switch (val) {
	case MEM_GOING_ONLINE:
4572 4573 4574 4575
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
4576 4577 4578 4579 4580 4581
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
4582
		{
4583 4584
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4585
			struct page *freelist;
4586

4587 4588
			freelist = domain_unmap(si_domain,
						start_vpfn, last_vpfn);
4589

4590 4591
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4592
				iommu_flush_iotlb_psi(iommu, si_domain,
4593
					start_vpfn, mhp->nr_pages,
4594
					!freelist, 0);
4595
			rcu_read_unlock();
4596
			dma_free_pagelist(freelist);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4609 4610 4611 4612 4613 4614 4615
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4616
		int did;
4617 4618 4619 4620

		if (!iommu)
			continue;

4621
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4622
			domain = get_iommu_domain(iommu, (u16)did);
4623

4624
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4625
				continue;
4626

4627 4628 4629 4630 4631
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4632
static int intel_iommu_cpu_dead(unsigned int cpu)
4633
{
4634 4635
	free_all_cpu_cached_iovas(cpu);
	return 0;
4636 4637
}

4638 4639 4640 4641 4642 4643 4644 4645 4646
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4667 4668
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4669 4670 4671
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4672 4673
}

4674 4675 4676 4677
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4678
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4689
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4690 4691 4692 4693 4694 4695 4696 4697
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4698
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4699 4700 4701 4702 4703 4704 4705 4706
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4707
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4708 4709 4710 4711
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4712 4713 4714 4715
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4716
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4717 4718 4719 4720 4721 4722 4723 4724
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4725
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4726 4727 4728 4729 4730
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4731 4732 4733 4734 4735
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4736 4737
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4751
static inline bool has_external_pci(void)
4752 4753 4754
{
	struct pci_dev *pdev = NULL;

4755
	for_each_pci_dev(pdev)
4756
		if (pdev->external_facing)
4757
			return true;
4758

4759 4760
	return false;
}
4761

4762 4763
static int __init platform_optin_force_iommu(void)
{
4764
	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4775
		iommu_set_default_passthrough(false);
4776 4777 4778 4779 4780 4781 4782

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4783 4784 4785
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4786 4787
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4826 4827
int __init intel_iommu_init(void)
{
4828
	int ret = -ENODEV;
4829
	struct dmar_drhd_unit *drhd;
4830
	struct intel_iommu *iommu;
4831

4832 4833 4834 4835 4836
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4837

4838 4839 4840 4841 4842 4843 4844
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4845 4846 4847
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4848
		goto out_free_dmar;
4849
	}
4850

4851
	if (dmar_dev_scope_init() < 0) {
4852 4853
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4854
		goto out_free_dmar;
4855
	}
4856

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4867 4868 4869
	if (!no_iommu)
		intel_iommu_debugfs_init();

4870
	if (no_iommu || dmar_disabled) {
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4884 4885 4886 4887 4888 4889
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4890
		goto out_free_dmar;
4891
	}
4892

4893
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4894
		pr_info("No RMRR found\n");
4895 4896

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4897
		pr_info("No ATSR found\n");
4898

4899 4900 4901
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4902
		goto out_free_reserved_range;
4903
	}
4904

4905 4906 4907
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4908 4909
	init_no_remapping_devices();

4910
	ret = init_dmars();
4911
	if (ret) {
4912 4913
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4914
		pr_err("Initialization failed\n");
4915
		goto out_free_reserved_range;
4916
	}
4917
	up_write(&dmar_global_lock);
4918

4919
	init_iommu_pm_ops();
4920

4921
	down_read(&dmar_global_lock);
4922 4923 4924 4925 4926 4927 4928
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4929
	up_read(&dmar_global_lock);
4930

4931
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4932 4933
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4934 4935
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4936

4937
	down_read(&dmar_global_lock);
4938 4939 4940
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4941 4942
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4943
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4944 4945 4946 4947
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
4948 4949
	up_read(&dmar_global_lock);

4950 4951
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4952 4953
	intel_iommu_enabled = 1;

4954
	return 0;
4955 4956 4957 4958 4959

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
4960 4961
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4962
	return ret;
4963
}
4964

4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

4987
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4988
{
4989
	struct dmar_domain *domain;
4990 4991 4992
	struct intel_iommu *iommu;
	unsigned long flags;

4993 4994
	assert_spin_locked(&device_domain_lock);

4995
	if (WARN_ON(!info))
4996 4997
		return;

4998
	iommu = info->iommu;
4999
	domain = info->domain;
5000

5001
	if (info->dev) {
5002 5003
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
5004
					PASID_RID2PASID, false);
5005

5006
		iommu_disable_dev_iotlb(info);
5007 5008
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
5009
		intel_pasid_free_table(info->dev);
5010
	}
5011

5012
	unlink_domain_info(info);
5013

5014
	spin_lock_irqsave(&iommu->lock, flags);
5015
	domain_detach_iommu(domain, iommu);
5016
	spin_unlock_irqrestore(&iommu->lock, flags);
5017

5018
	free_devinfo_mem(info);
5019 5020
}

5021
static void dmar_remove_one_dev_info(struct device *dev)
5022
{
5023
	struct device_domain_info *info;
5024
	unsigned long flags;
5025

5026
	spin_lock_irqsave(&device_domain_lock, flags);
5027 5028
	info = get_domain_info(dev);
	if (info)
5029
		__dmar_remove_one_dev_info(info);
5030
	spin_unlock_irqrestore(&device_domain_lock, flags);
5031 5032
}

5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
static void intel_init_iova_domain(struct dmar_domain *dmar_domain)
{
	init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad);

	if (!intel_iommu_strict &&
	    init_iova_flush_queue(&dmar_domain->iovad,
				  iommu_flush_iova, iova_entry_free))
		pr_info("iova flush queue initialization failed\n");
}

5066
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5067
{
5068
	struct dmar_domain *dmar_domain;
5069 5070
	struct iommu_domain *domain;

5071
	switch (type) {
5072
	case IOMMU_DOMAIN_DMA:
5073
	case IOMMU_DOMAIN_UNMANAGED:
5074
		dmar_domain = alloc_domain(0);
5075 5076 5077 5078
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5079
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5080 5081 5082 5083
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5084

5085 5086
		if (type == IOMMU_DOMAIN_DMA)
			intel_init_iova_domain(dmar_domain);
5087

5088
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
5089

5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5100
		return NULL;
K
Kay, Allen M 已提交
5101
	}
5102

5103
	return NULL;
K
Kay, Allen M 已提交
5104 5105
}

5106
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5107
{
5108 5109
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5110 5111
}

5112 5113 5114 5115 5116 5117 5118
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
5119
	struct device_domain_info *info = get_domain_info(dev);
5120 5121 5122 5123 5124 5125 5126 5127

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
5128
	struct device_domain_info *info = get_domain_info(dev);
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
5141
	struct device_domain_info *info = get_domain_info(dev);
5142 5143 5144 5145 5146 5147 5148 5149 5150

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5151
		ioasid_free(domain->default_pasid);
5152 5153 5154 5155 5156 5157 5158 5159 5160
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	unsigned long flags;
	struct intel_iommu *iommu;

5161
	iommu = device_to_iommu(dev, NULL, NULL);
5162 5163 5164 5165 5166 5167
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

5168 5169 5170 5171 5172
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
5190 5191 5192 5193 5194 5195
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5212
		ioasid_free(domain->default_pasid);
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
5228
	info = get_domain_info(dev);
5229 5230 5231 5232 5233
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
5234
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
5235 5236 5237 5238 5239 5240
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5241 5242
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5243
{
5244
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5245 5246
	struct intel_iommu *iommu;
	int addr_width;
5247

5248
	iommu = device_to_iommu(dev, NULL, NULL);
5249 5250 5251 5252 5253
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5254 5255 5256 5257
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5258 5259 5260
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5261 5262
		return -EFAULT;
	}
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5273 5274
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5275
			free_pgtable_page(pte);
5276 5277 5278
		}
		dmar_domain->agaw--;
	}
5279

5280 5281 5282 5283 5284 5285 5286 5287
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5288 5289
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5290 5291 5292 5293
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5294 5295 5296
	if (is_aux_domain(dev, domain))
		return -EPERM;

5297 5298 5299 5300 5301
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5302
		if (old_domain)
5303 5304 5305 5306 5307 5308 5309 5310
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5311 5312
}

5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5328 5329
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5330
{
5331
	dmar_remove_one_dev_info(dev);
5332
}
5333

5334 5335 5336 5337 5338 5339
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
5357
static const int
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

#ifdef CONFIG_INTEL_IOMMU_SVM
static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

	if (!inv_info || !dmar_domain ||
	    inv_info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
5417
	info = get_domain_info(dev);
5418 5419 5420 5421 5422 5423 5424 5425
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
L
Liu Yi L 已提交
5426
	if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
5427 5428 5429 5430 5431 5432 5433 5434
		size = to_vtd_size(inv_info->addr_info.granule_size,
				   inv_info->addr_info.nb_granules);

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;
L
Liu Yi L 已提交
5435
		u64 addr = 0;
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
		    (inv_info->pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->pasid_info.pasid;
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			 (inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->addr_info.pasid;

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
5457
			/* HW will ignore LSB bits based on address mask */
5458 5459 5460
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
			    (inv_info->addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
5461
				pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n",
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
						   inv_info->addr_info.addr, size);
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
					mm_to_dma_pfn(inv_info->addr_info.addr),
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
					inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);

L
Liu Yi L 已提交
5474 5475
			if (!info->ats_enabled)
				break;
5476 5477 5478 5479 5480
			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
L
Liu Yi L 已提交
5481
			fallthrough;
5482
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
L
Liu Yi L 已提交
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
			/*
			 * PASID based device TLB invalidation does not support
			 * IOMMU_INV_GRANU_PASID granularity but only supports
			 * IOMMU_INV_GRANU_ADDR.
			 * The equivalent of that is we set the size to be the
			 * entire range of 64 bit. User only provides PASID info
			 * without address info. So we set addr to 0.
			 */
			if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
				size = 64 - VTD_PAGE_SHIFT;
				addr = 0;
			} else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
				addr = inv_info->addr_info.addr;
			}

5498 5499 5500
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
L
Liu Yi L 已提交
5501
						info->ats_qdep, addr,
5502
						size);
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

5520 5521
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5522
			   size_t size, int iommu_prot, gfp_t gfp)
5523
{
5524
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5525
	u64 max_addr;
5526
	int prot = 0;
5527
	int ret;
5528

5529 5530 5531 5532
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5533 5534
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5535

5536
	max_addr = iova + size;
5537
	if (dmar_domain->max_addr < max_addr) {
5538 5539 5540
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5541
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5542
		if (end < max_addr) {
J
Joerg Roedel 已提交
5543
			pr_err("%s: iommu width (%d) is not "
5544
			       "sufficient for the mapped address (%llx)\n",
5545
			       __func__, dmar_domain->gaw, max_addr);
5546 5547
			return -EFAULT;
		}
5548
		dmar_domain->max_addr = max_addr;
5549
	}
5550 5551
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5552
	size = aligned_nrpages(hpa, size);
5553 5554
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5555
	return ret;
K
Kay, Allen M 已提交
5556 5557
}

5558
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5559 5560
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5561
{
5562
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5563 5564 5565
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5566
	int iommu_id, level = 0;
5567 5568 5569

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5570
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5571 5572 5573

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5574

5575 5576 5577 5578 5579 5580 5581
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5582
	for_each_domain_iommu(iommu_id, dmar_domain)
5583 5584
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5585 5586

	dma_free_pagelist(freelist);
5587

5588 5589
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5590

5591
	return size;
K
Kay, Allen M 已提交
5592 5593
}

5594
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5595
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5596
{
5597
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5598
	struct dma_pte *pte;
5599
	int level = 0;
5600
	u64 phys = 0;
K
Kay, Allen M 已提交
5601

5602
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5603 5604 5605 5606
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
5607

5608
	return phys;
K
Kay, Allen M 已提交
5609
}
5610

5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5665
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5666 5667
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5668
		return domain_update_iommu_snooping(NULL) == 1;
5669
	if (cap == IOMMU_CAP_INTR_REMAP)
5670
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5671

5672
	return false;
S
Sheng Yang 已提交
5673 5674
}

5675
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5676
{
5677
	struct intel_iommu *iommu;
5678

5679
	iommu = device_to_iommu(dev, NULL, NULL);
5680
	if (!iommu)
5681
		return ERR_PTR(-ENODEV);
5682

5683
	if (translation_pre_enabled(iommu))
5684
		dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO);
5685

5686
	return &iommu->iommu;
5687
}
5688

5689
static void intel_iommu_release_device(struct device *dev)
5690
{
5691 5692
	struct intel_iommu *iommu;

5693
	iommu = device_to_iommu(dev, NULL, NULL);
5694 5695 5696
	if (!iommu)
		return;

5697 5698
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5699 5700
	set_dma_ops(dev, NULL);
}
5701

L
Lu Baolu 已提交
5702 5703 5704
static void intel_iommu_probe_finalize(struct device *dev)
{
	struct iommu_domain *domain;
5705

L
Lu Baolu 已提交
5706
	domain = iommu_get_domain_for_dev(dev);
5707
	if (device_needs_bounce(dev))
L
Lu Baolu 已提交
5708 5709 5710 5711
		set_dma_ops(dev, &bounce_dma_ops);
	else if (domain && domain->type == IOMMU_DOMAIN_DMA)
		set_dma_ops(dev, &intel_dma_ops);
	else
5712
		set_dma_ops(dev, NULL);
5713 5714
}

5715 5716 5717
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5718
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5719 5720 5721 5722 5723
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5724
	down_read(&dmar_global_lock);
5725 5726 5727
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5728
			struct iommu_resv_region *resv;
5729
			enum iommu_resv_type type;
5730 5731
			size_t length;

5732 5733
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5734 5735
				continue;

5736
			length = rmrr->end_address - rmrr->base_address + 1;
5737 5738 5739 5740

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5741
			resv = iommu_alloc_resv_region(rmrr->base_address,
5742
						       length, prot, type);
5743 5744 5745 5746
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5747 5748
		}
	}
5749
	up_read(&dmar_global_lock);
5750

5751 5752 5753 5754 5755
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5756
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5757
						   IOMMU_RESV_DIRECT_RELAXABLE);
5758 5759 5760 5761 5762 5763
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5764 5765
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5766
				      0, IOMMU_RESV_MSI);
5767 5768 5769 5770 5771
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5772
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5773 5774 5775 5776 5777 5778 5779 5780
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5781
	domain = find_domain(dev);
5782 5783 5784 5785 5786 5787 5788
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5789
	info = get_domain_info(dev);
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5803 5804 5805
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5836 5837 5838 5839 5840 5841 5842
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5843 5844 5845 5846 5847 5848 5849
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int ret;

5850
	iommu = device_to_iommu(dev, NULL, NULL);
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5862
	info = get_domain_info(dev);
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5875
	info = get_domain_info(dev);
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5928 5929 5930 5931 5932 5933 5934 5935
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

5936 5937 5938 5939 5940 5941 5942 5943 5944
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
5970
	struct device_domain_info *info = get_domain_info(dev);
5971 5972 5973 5974 5975 5976 5977

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5978 5979 5980 5981 5982 5983 5984 5985 5986
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5987 5988 5989
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
5990
	return attach_deferred(dev);
5991 5992
}

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
/*
 * Check that the device does not live on an external facing PCI port that is
 * marked as untrusted. Such devices should not be able to apply quirks and
 * thus not be able to bypass the IOMMU restrictions.
 */
static bool risky_device(struct pci_dev *pdev)
{
	if (pdev->untrusted) {
		pci_info(pdev,
			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
			 pdev->vendor, pdev->device);
		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
		return true;
	}
	return false;
}

6041
const struct iommu_ops intel_iommu_ops = {
6042 6043 6044
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
6045
	.domain_set_attr	= intel_iommu_domain_set_attr,
6046 6047
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
6048 6049
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
6050
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
6051 6052 6053
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
6054
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
6055
	.probe_finalize		= intel_iommu_probe_finalize,
6056
	.release_device		= intel_iommu_release_device,
6057
	.get_resv_regions	= intel_iommu_get_resv_regions,
6058
	.put_resv_regions	= generic_iommu_put_resv_regions,
6059
	.apply_resv_region	= intel_iommu_apply_resv_region,
6060
	.device_group		= intel_iommu_device_group,
6061 6062 6063 6064
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
6065
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
6066
	.def_domain_type	= device_def_domain_type,
6067
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
6068
#ifdef CONFIG_INTEL_IOMMU_SVM
6069
	.cache_invalidate	= intel_iommu_sva_invalidate,
6070 6071
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
6072 6073 6074
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
6075
	.page_response		= intel_svm_page_response,
6076
#endif
6077
};
6078

6079
static void quirk_iommu_igfx(struct pci_dev *dev)
6080
{
6081 6082 6083
	if (risky_device(dev))
		return;

6084
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6085 6086 6087
	dmar_map_gfx = 0;
}

6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6122

6123
static void quirk_iommu_rwbf(struct pci_dev *dev)
6124
{
6125 6126 6127
	if (risky_device(dev))
		return;

6128 6129
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6130
	 * but needs it. Same seems to hold for the desktop versions.
6131
	 */
6132
	pci_info(dev, "Forcing write-buffer flush capability\n");
6133 6134 6135 6136
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6137 6138 6139 6140 6141 6142
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6143

6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6154
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6155 6156 6157
{
	unsigned short ggc;

6158 6159 6160
	if (risky_device(dev))
		return;

6161
	if (pci_read_config_word(dev, GGC, &ggc))
6162 6163
		return;

6164
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6165
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6166
		dmar_map_gfx = 0;
6167 6168
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6169
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6170 6171
		intel_iommu_strict = 1;
       }
6172 6173 6174 6175 6176 6177
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
{
	unsigned short ver;

	if (!IS_GFX_DEVICE(dev))
		return;

	ver = (dev->device >> 8) & 0xff;
	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
	    ver != 0x9a)
		return;

	if (risky_device(dev))
		return;

	pci_info(dev, "Skip IOMMU disabling for graphics\n");
	iommu_skip_te_disable = 1;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);

6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
6215 6216 6217 6218 6219 6220

	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6221 6222 6223 6224 6225 6226 6227 6228 6229
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

6230 6231 6232 6233 6234
	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6263 6264

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6265 6266
	       vtisochctrl);
}