iommu.c 142.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
26
#include <linux/dma-map-ops.h>
27
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
34
#include <linux/dma-iommu.h>
K
Kay, Allen M 已提交
35
#include <linux/intel-iommu.h>
36
#include <linux/syscore_ops.h>
37
#include <linux/tboot.h>
38
#include <linux/dmi.h>
39
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
40
#include <linux/memblock.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <asm/irq_remapping.h>
45
#include <asm/cacheflush.h>
46
#include <asm/iommu.h>
47
#include <trace/events/intel_iommu.h>
48

49
#include "../irq_remapping.h"
50
#include "pasid.h"
51

F
Fenghua Yu 已提交
52 53 54
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

55
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
57
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
58
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
59 60 61 62 63

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

64
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
65

F
Fenghua Yu 已提交
66
#define MAX_AGAW_WIDTH 64
67
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
68

69 70
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
71 72 73 74 75 76

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
77

78 79 80
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

81
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
82

83 84 85 86
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

105 106 107 108 109 110 111
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
112
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
113 114 115 116
}

static inline int width_to_agaw(int width)
{
117
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
118 119 120 121 122 123 124
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

125
static inline int pfn_level_offset(u64 pfn, int level)
126 127 128 129
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

130
static inline u64 level_mask(int level)
131
{
132
	return -1ULL << level_to_offset_bits(level);
133 134
}

135
static inline u64 level_size(int level)
136
{
137
	return 1ULL << level_to_offset_bits(level);
138 139
}

140
static inline u64 align_to_level(u64 pfn, int level)
141 142 143
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
144

145 146
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
147
	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
148 149
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
170 171 172
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

173
static void __init check_tylersburg_isoch(void);
174 175
static int rwbf_quirk;

176 177 178 179 180
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
181
static int intel_iommu_tboot_noforce;
182
static int no_platform_optin;
183

184 185
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
206

207 208
	return re->hi & VTD_PAGE_MASK;
}
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
231 232 233
{
	return (context->lo & 1);
}
234

235
bool context_present(struct context_entry *context)
236 237 238 239 240 241
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
262
	context->lo &= ~VTD_PAGE_MASK;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

278 279 280 281 282
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

283 284 285 286 287
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
288

289 290 291 292 293 294
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
295 296
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
297

298 299 300 301
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

302 303 304 305 306
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
307
	struct dmar_dev_scope *devices;	/* target devices */
308 309 310 311 312 313
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
314
	struct dmar_dev_scope *devices;	/* target devices */
315 316 317 318 319 320 321 322 323 324
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
325 326 327
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

328
static void domain_exit(struct dmar_domain *domain);
329
static void domain_remove_dev_info(struct dmar_domain *domain);
330
static void dmar_remove_one_dev_info(struct device *dev);
331
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
332 333
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
334 335
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
336

337
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
338 339 340
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
341
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
342

343
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
344 345
int intel_iommu_sm = 1;
#else
346
int intel_iommu_sm;
347
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
348

349 350 351
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

352
static int dmar_map_gfx = 1;
353
static int dmar_forcedac;
M
mark gross 已提交
354
static int intel_iommu_strict;
355
static int intel_iommu_superpage = 1;
356
static int iommu_identity_mapping;
357
static int iommu_skip_te_disable;
358

359 360
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
361

362 363 364
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

365
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
366 367 368 369 370 371 372
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

373
	info = dev_iommu_priv_get(dev);
374
	if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO))
375 376 377 378 379
		return NULL;

	return info;
}

380
DEFINE_SPINLOCK(device_domain_lock);
381 382
static LIST_HEAD(device_domain_list);

383 384
/*
 * Iterate over elements in device_domain_list and call the specified
385
 * callback @fn against each element.
386 387 388 389 390
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
391
	unsigned long flags;
392 393
	struct device_domain_info *info;

394
	spin_lock_irqsave(&device_domain_lock, flags);
395 396
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
397 398
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
399
			return ret;
400
		}
401
	}
402
	spin_unlock_irqrestore(&device_domain_lock, flags);
403 404 405 406

	return 0;
}

407
const struct iommu_ops intel_iommu_ops;
408

409 410 411 412 413
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

414 415 416 417 418
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

419 420 421 422 423 424 425 426 427
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

428 429 430 431 432
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
433 434
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
435
			pr_info("IOMMU enabled\n");
436
		} else if (!strncmp(str, "off", 3)) {
437
			dmar_disabled = 1;
438
			no_platform_optin = 1;
J
Joerg Roedel 已提交
439
			pr_info("IOMMU disabled\n");
440 441
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
442
			pr_info("Disable GFX device mapping\n");
443
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
444
			pr_info("Forcing DAC for PCI devices\n");
445
			dmar_forcedac = 1;
M
mark gross 已提交
446
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
447
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
448
			intel_iommu_strict = 1;
449
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
450
			pr_info("Disable supported super page\n");
451
			intel_iommu_superpage = 0;
452 453 454
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
455
		} else if (!strncmp(str, "tboot_noforce", 13)) {
456
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
457
			intel_iommu_tboot_noforce = 1;
458 459 460 461 462 463 464 465 466 467 468 469 470
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

471 472
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
473 474 475 476 477 478 479 480
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
481 482 483 484 485
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
486 487 488 489 490 491 492 493 494 495 496 497 498
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
499 500
}

501
void *alloc_pgtable_page(int node)
502
{
503 504
	struct page *page;
	void *vaddr = NULL;
505

506 507 508
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
509
	return vaddr;
510 511
}

512
void free_pgtable_page(void *vaddr)
513 514 515 516 517 518
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
519
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
520 521
}

K
Kay, Allen M 已提交
522
static void free_domain_mem(void *vaddr)
523 524 525 526 527 528
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
529
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
530 531 532 533 534 535 536
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

537 538 539 540 541
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

542 543 544 545 546
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

547 548 549 550 551 552 553 554
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
555
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
556 557 558 559 560
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
561
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
562 563 564 565 566 567 568 569
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

588
/* This functionin only returns single iommu in a domain */
589
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
590 591 592
{
	int iommu_id;

593
	/* si_domain and vm domain should not get here. */
594 595 596
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

597 598 599
	for_each_domain_iommu(iommu_id, domain)
		break;

600 601 602 603 604 605
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

606 607 608 609 610 611
static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
{
	return sm_supported(iommu) ?
			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
}

W
Weidong Han 已提交
612 613
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
614 615
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
616 617
	bool found = false;
	int i;
618

619
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
620

621
	for_each_domain_iommu(i, domain) {
622
		found = true;
623
		if (!iommu_paging_structure_coherency(g_iommus[i])) {
W
Weidong Han 已提交
624 625 626 627
			domain->iommu_coherency = 0;
			break;
		}
	}
628 629 630 631 632 633
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
634
		if (!iommu_paging_structure_coherency(iommu)) {
635 636 637 638 639
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
640 641
}

642
static int domain_update_iommu_snooping(struct intel_iommu *skip)
643
{
644 645 646
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
647

648 649 650 651 652 653 654
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
655 656
		}
	}
657 658 659
	rcu_read_unlock();

	return ret;
660 661
}

662 663
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
664
{
665
	struct dmar_drhd_unit *drhd;
666
	struct intel_iommu *iommu;
667
	int mask = 0x3;
668 669

	if (!intel_iommu_superpage) {
670
		return 0;
671 672
	}

673
	/* set iommu_superpage to the smallest common denominator */
674
	rcu_read_lock();
675
	for_each_active_iommu(iommu, drhd) {
676
		if (iommu != skip) {
677 678 679 680 681 682 683
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

684 685
			if (!mask)
				break;
686 687
		}
	}
688 689
	rcu_read_unlock();

690
	return fls(mask);
691 692
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static int domain_update_device_node(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	int nid = NUMA_NO_NODE;

	assert_spin_locked(&device_domain_lock);

	if (list_empty(&domain->devices))
		return NUMA_NO_NODE;

	list_for_each_entry(info, &domain->devices, link) {
		if (!info->dev)
			continue;

		/*
		 * There could possibly be multiple device numa nodes as devices
		 * within the same domain may sit behind different IOMMUs. There
		 * isn't perfect answer in such situation, so we select first
		 * come first served policy.
		 */
		nid = dev_to_node(info->dev);
		if (nid != NUMA_NO_NODE)
			break;
	}

	return nid;
}

721 722
static void domain_update_iotlb(struct dmar_domain *domain);

723 724 725 726
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
727
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
728
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
729 730 731 732 733 734 735

	/*
	 * If RHSA is missing, we should default to the device numa domain
	 * as fall back.
	 */
	if (domain->nid == NUMA_NO_NODE)
		domain->nid = domain_update_device_node(domain);
736 737 738 739 740 741 742 743 744 745 746 747

	/*
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
	else
		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
748 749

	domain_update_iotlb(domain);
750 751
}

752 753
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
754 755 756 757 758
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

759
	entry = &root->lo;
760
	if (sm_supported(iommu)) {
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

786 787
static bool attach_deferred(struct device *dev)
{
788
	return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO;
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return false;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return true;
	}

	return false;
}

static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || iommu->drhd->ignored)
		return true;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
		    quirk_ioat_snb_local_iommu(pdev))
			return true;
	}

	return false;
}

865
struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
866 867
{
	struct dmar_drhd_unit *drhd = NULL;
868
	struct pci_dev *pdev = NULL;
869
	struct intel_iommu *iommu;
870
	struct device *tmp;
871
	u16 segment = 0;
872 873
	int i;

874
	if (!dev)
875 876
		return NULL;

877
	if (dev_is_pci(dev)) {
878 879
		struct pci_dev *pf_pdev;

880
		pdev = pci_real_dma_dev(to_pci_dev(dev));
881

882 883 884 885
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
886
		segment = pci_domain_nr(pdev->bus);
887
	} else if (has_acpi_companion(dev))
888 889
		dev = &ACPI_COMPANION(dev)->dev;

890
	rcu_read_lock();
891
	for_each_iommu(iommu, drhd) {
892
		if (pdev && segment != drhd->segment)
893
			continue;
894

895
		for_each_active_dev_scope(drhd->devices,
896 897
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
898 899 900 901
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
902
				if (pdev && pdev->is_virtfn)
903 904
					goto got_pdev;

905 906 907 908
				if (bus && devfn) {
					*bus = drhd->devices[i].bus;
					*devfn = drhd->devices[i].devfn;
				}
909
				goto out;
910 911
			}

912
			if (is_downstream_to_pci_bridge(dev, tmp))
913
				goto got_pdev;
914
		}
915

916 917
		if (pdev && drhd->include_all) {
		got_pdev:
918 919 920 921
			if (bus && devfn) {
				*bus = pdev->bus->number;
				*devfn = pdev->devfn;
			}
922
			goto out;
923
		}
924
	}
925
	iommu = NULL;
926
 out:
927 928 929
	if (iommu_is_dummy(iommu, dev))
		iommu = NULL;

930
	rcu_read_unlock();
931

932
	return iommu;
933 934
}

W
Weidong Han 已提交
935 936 937 938 939 940 941
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

942 943 944
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
945
	int ret = 0;
946 947 948
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
949 950 951
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
967
		context = iommu_context_addr(iommu, i, 0, 0);
968 969
		if (context)
			free_pgtable_page(context);
970

971
		if (!sm_supported(iommu))
972 973 974 975 976 977
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

978 979 980 981 982 983 984
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

985
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
986
				      unsigned long pfn, int *target_level)
987
{
988
	struct dma_pte *parent, *pte;
989
	int level = agaw_to_level(domain->agaw);
990
	int offset;
991 992

	BUG_ON(!domain->pgd);
993

994
	if (!domain_pfn_supported(domain, pfn))
995 996 997
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

998 999
	parent = domain->pgd;

1000
	while (1) {
1001 1002
		void *tmp_page;

1003
		offset = pfn_level_offset(pfn, level);
1004
		pte = &parent[offset];
1005
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1006
			break;
1007
		if (level == *target_level)
1008 1009
			break;

1010
		if (!dma_pte_present(pte)) {
1011 1012
			uint64_t pteval;

1013
			tmp_page = alloc_pgtable_page(domain->nid);
1014

1015
			if (!tmp_page)
1016
				return NULL;
1017

1018
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1019
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1020
			if (domain_use_first_level(domain))
1021
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
1022
			if (cmpxchg64(&pte->val, 0ULL, pteval))
1023 1024
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
1025
			else
1026
				domain_flush_cache(domain, pte, sizeof(*pte));
1027
		}
1028 1029 1030
		if (level == 1)
			break;

1031
		parent = phys_to_virt(dma_pte_addr(pte));
1032 1033 1034
		level--;
	}

1035 1036 1037
	if (!*target_level)
		*target_level = level;

1038 1039 1040 1041
	return pte;
}

/* return address's pte at specific level */
1042 1043
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
1044
					 int level, int *large_page)
1045
{
1046
	struct dma_pte *parent, *pte;
1047 1048 1049 1050 1051
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
1052
		offset = pfn_level_offset(pfn, total);
1053 1054 1055 1056
		pte = &parent[offset];
		if (level == total)
			return pte;

1057 1058
		if (!dma_pte_present(pte)) {
			*large_page = total;
1059
			break;
1060 1061
		}

1062
		if (dma_pte_superpage(pte)) {
1063 1064 1065 1066
			*large_page = total;
			return pte;
		}

1067
		parent = phys_to_virt(dma_pte_addr(pte));
1068 1069 1070 1071 1072 1073
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
1074
static void dma_pte_clear_range(struct dmar_domain *domain,
1075 1076
				unsigned long start_pfn,
				unsigned long last_pfn)
1077
{
1078
	unsigned int large_page;
1079
	struct dma_pte *first_pte, *pte;
1080

1081 1082
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1083
	BUG_ON(start_pfn > last_pfn);
1084

1085
	/* we don't need lock here; nobody else touches the iova range */
1086
	do {
1087 1088
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1089
		if (!pte) {
1090
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1091 1092
			continue;
		}
1093
		do {
1094
			dma_clear_pte(pte);
1095
			start_pfn += lvl_to_nr_pages(large_page);
1096
			pte++;
1097 1098
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1099 1100
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1101 1102

	} while (start_pfn && start_pfn <= last_pfn);
1103 1104
}

1105
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1106 1107 1108
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1120
		level_pfn = pfn & level_mask(level);
1121 1122
		level_pte = phys_to_virt(dma_pte_addr(pte));

1123 1124 1125 1126 1127
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1128

1129 1130 1131 1132 1133
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1134
		      last_pfn < level_pfn + level_size(level) - 1)) {
1135 1136 1137 1138 1139 1140 1141 1142 1143
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1144 1145 1146 1147
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1148
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1149
				   unsigned long start_pfn,
1150 1151
				   unsigned long last_pfn,
				   int retain_level)
1152
{
1153 1154
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1155
	BUG_ON(start_pfn > last_pfn);
1156

1157 1158
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1159
	/* We don't need lock here; nobody else touches the iova range */
1160
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1161
			   domain->pgd, 0, start_pfn, last_pfn);
1162

1163
	/* free pgd */
1164
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1165 1166 1167 1168 1169
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1189 1190
	pte = page_address(pg);
	do {
1191 1192 1193
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1194 1195
		pte++;
	} while (!first_pte_in_page(pte));
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1252 1253
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
1254 1255
				 unsigned long last_pfn,
				 struct page *freelist)
1256
{
1257 1258
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1259 1260 1261 1262
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1263 1264
				       domain->pgd, 0, start_pfn, last_pfn,
				       freelist);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1278
static void dma_free_pagelist(struct page *freelist)
1279 1280 1281 1282 1283 1284 1285 1286 1287
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1288 1289 1290 1291 1292 1293
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1294
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1295
	if (!root) {
J
Joerg Roedel 已提交
1296
		pr_err("Allocating root entry for %s failed\n",
1297
			iommu->name);
1298
		return -ENOMEM;
1299
	}
1300

F
Fenghua Yu 已提交
1301
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1312
	u64 addr;
1313
	u32 sts;
1314 1315
	unsigned long flag;

1316
	addr = virt_to_phys(iommu->root_entry);
1317 1318
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1319

1320
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1321
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1322

1323
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1324 1325 1326

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1327
		      readl, (sts & DMA_GSTS_RTPS), sts);
1328

1329
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1330 1331
}

1332
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1333 1334 1335 1336
{
	u32 val;
	unsigned long flag;

1337
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1338 1339
		return;

1340
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1341
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1342 1343 1344

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1345
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1346

1347
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1348 1349 1350
}

/* return value determine if we need a write buffer flush */
1351 1352 1353
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1374
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1375 1376 1377 1378 1379 1380
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1381
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1382 1383 1384
}

/* return value determine if we need a write buffer flush */
1385 1386
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1402
		/* IH bit is passed in as part of address */
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1420
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1421 1422 1423 1424 1425 1426 1427 1428 1429
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1430
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1431 1432 1433

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1434
		pr_err("Flush IOTLB failed\n");
1435
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1436
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1437 1438
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1439 1440
}

1441 1442 1443
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1444 1445 1446
{
	struct device_domain_info *info;

1447 1448
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1449 1450 1451 1452
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1453 1454
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1455 1456
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1457 1458 1459
			break;
		}

1460
	return NULL;
Y
Yu Zhao 已提交
1461 1462
}

1463 1464 1465 1466 1467 1468 1469
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

1470 1471
	list_for_each_entry(info, &domain->devices, link)
		if (info->ats_enabled) {
1472 1473 1474
			has_iotlb_device = true;
			break;
		}
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	if (!has_iotlb_device) {
		struct subdev_domain_info *sinfo;

		list_for_each_entry(sinfo, &domain->subdevices, link_domain) {
			info = get_domain_info(sinfo->pdev);
			if (info && info->ats_enabled) {
				has_iotlb_device = true;
				break;
			}
		}
1486 1487 1488 1489 1490
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1491
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1492
{
1493 1494
	struct pci_dev *pdev;

1495 1496
	assert_spin_locked(&device_domain_lock);

1497
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1498 1499
		return;

1500
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1513
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1514
	}
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1525 1526 1527
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1528 1529
		info->pri_enabled = 1;
#endif
1530
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1531
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1532
		info->ats_enabled = 1;
1533
		domain_update_iotlb(info->domain);
1534 1535
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1536 1537 1538 1539
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1540 1541
	struct pci_dev *pdev;

1542 1543
	assert_spin_locked(&device_domain_lock);

1544
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1545 1546
		return;

1547 1548 1549 1550 1551
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1552
		domain_update_iotlb(info->domain);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1564 1565
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
static void __iommu_flush_dev_iotlb(struct device_domain_info *info,
				    u64 addr, unsigned int mask)
{
	u16 sid, qdep;

	if (!info || !info->ats_enabled)
		return;

	sid = info->bus << 8 | info->devfn;
	qdep = info->ats_qdep;
	qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
			   qdep, addr, mask);
}

Y
Yu Zhao 已提交
1580 1581 1582 1583 1584
static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	unsigned long flags;
	struct device_domain_info *info;
1585
	struct subdev_domain_info *sinfo;
Y
Yu Zhao 已提交
1586

1587 1588 1589
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1590
	spin_lock_irqsave(&device_domain_lock, flags);
1591 1592
	list_for_each_entry(info, &domain->devices, link)
		__iommu_flush_dev_iotlb(info, addr, mask);
Y
Yu Zhao 已提交
1593

1594 1595 1596
	list_for_each_entry(sinfo, &domain->subdevices, link_domain) {
		info = get_domain_info(sinfo->pdev);
		__iommu_flush_dev_iotlb(info, addr, mask);
Y
Yu Zhao 已提交
1597 1598 1599 1600
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1615 1616 1617 1618
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1619
{
1620
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1621
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1622
	u16 did = domain->iommu_did[iommu->seq_id];
1623 1624 1625

	BUG_ON(pages == 0);

1626 1627
	if (ih)
		ih = 1 << 6;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1645 1646

	/*
1647 1648
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1649
	 */
1650
	if (!cap_caching_mode(iommu->cap) || !map)
1651
		iommu_flush_dev_iotlb(domain, addr, mask);
1652 1653
}

1654 1655 1656 1657 1658
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1659 1660 1661 1662 1663
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1664 1665 1666 1667 1668
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1669
static void intel_flush_iotlb_all(struct iommu_domain *domain)
1670
{
1671
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
1672 1673
	int idx;

1674
	for_each_domain_iommu(idx, dmar_domain) {
1675
		struct intel_iommu *iommu = g_iommus[idx];
1676
		u16 did = dmar_domain->iommu_did[iommu->seq_id];
1677

1678 1679
		if (domain_use_first_level(dmar_domain))
			domain_flush_piotlb(iommu, dmar_domain, 0, -1, 0);
1680 1681 1682
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1683 1684 1685 1686 1687 1688 1689

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1690 1691 1692 1693 1694
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1695 1696 1697
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1698
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1699 1700 1701 1702 1703 1704 1705 1706
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1707
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1708 1709
}

1710
static void iommu_enable_translation(struct intel_iommu *iommu)
1711 1712 1713 1714
{
	u32 sts;
	unsigned long flags;

1715
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1716 1717
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1718 1719 1720

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1721
		      readl, (sts & DMA_GSTS_TES), sts);
1722

1723
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1724 1725
}

1726
static void iommu_disable_translation(struct intel_iommu *iommu)
1727 1728 1729 1730
{
	u32 sts;
	unsigned long flag;

1731 1732 1733 1734
	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
		return;

1735
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1736 1737 1738 1739 1740
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1741
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1742

1743
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1744 1745 1746 1747
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1748 1749
	u32 ndomains, nlongs;
	size_t size;
1750 1751

	ndomains = cap_ndoms(iommu->cap);
1752
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1753
		 iommu->name, ndomains);
1754 1755
	nlongs = BITS_TO_LONGS(ndomains);

1756 1757
	spin_lock_init(&iommu->lock);

1758 1759
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1760 1761
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1762 1763
		return -ENOMEM;
	}
1764

1765
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1766 1767 1768 1769 1770 1771 1772 1773
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1774 1775
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1776
		kfree(iommu->domain_ids);
1777
		kfree(iommu->domains);
1778
		iommu->domain_ids = NULL;
1779
		iommu->domains    = NULL;
1780 1781 1782 1783
		return -ENOMEM;
	}

	/*
1784 1785 1786 1787
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1788
	 */
1789 1790
	set_bit(0, iommu->domain_ids);

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1801 1802 1803
	return 0;
}

1804
static void disable_dmar_iommu(struct intel_iommu *iommu)
1805
{
1806
	struct device_domain_info *info, *tmp;
1807
	unsigned long flags;
1808

1809 1810
	if (!iommu->domains || !iommu->domain_ids)
		return;
1811

1812
	spin_lock_irqsave(&device_domain_lock, flags);
1813 1814 1815 1816 1817 1818 1819
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1820
		__dmar_remove_one_dev_info(info);
1821
	}
1822
	spin_unlock_irqrestore(&device_domain_lock, flags);
1823 1824 1825

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1826
}
1827

1828 1829 1830
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1831
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1832 1833 1834 1835
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1836 1837 1838 1839 1840
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1841

W
Weidong Han 已提交
1842 1843
	g_iommus[iommu->seq_id] = NULL;

1844 1845
	/* free context mapping */
	free_context_table(iommu);
1846 1847

#ifdef CONFIG_INTEL_IOMMU_SVM
1848
	if (pasid_supported(iommu)) {
1849 1850 1851
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1852
	if (vccap_pasid(iommu->vccap))
1853 1854
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1855
#endif
1856 1857
}

1858 1859
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1860
 * DMA translation.
1861 1862 1863 1864 1865
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1866
	static int first_level_support = -1;
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1885
static struct dmar_domain *alloc_domain(int flags)
1886 1887 1888 1889 1890 1891 1892
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1893
	memset(domain, 0, sizeof(*domain));
1894
	domain->nid = NUMA_NO_NODE;
1895
	domain->flags = flags;
1896 1897
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1898
	domain->has_iotlb_device = false;
1899
	INIT_LIST_HEAD(&domain->devices);
1900
	INIT_LIST_HEAD(&domain->subdevices);
1901 1902 1903 1904

	return domain;
}

1905 1906
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1907 1908
			       struct intel_iommu *iommu)
{
1909
	unsigned long ndomains;
1910
	int num;
1911

1912
	assert_spin_locked(&device_domain_lock);
1913
	assert_spin_locked(&iommu->lock);
1914

1915 1916 1917
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1918
		ndomains = cap_ndoms(iommu->cap);
1919 1920 1921 1922 1923 1924
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1925
			return -ENOSPC;
1926
		}
1927

1928 1929 1930 1931 1932
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1933 1934 1935

		domain_update_iommu_cap(domain);
	}
1936

1937
	return 0;
1938 1939 1940 1941 1942
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1943
	int num, count;
1944

1945
	assert_spin_locked(&device_domain_lock);
1946
	assert_spin_locked(&iommu->lock);
1947

1948 1949 1950
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1951 1952 1953
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1954 1955

		domain_update_iommu_cap(domain);
1956
		domain->iommu_did[iommu->seq_id] = 0;
1957 1958 1959 1960 1961
	}

	return count;
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

1979
	/* Remove associated devices and clear attached or cached domains */
1980
	domain_remove_dev_info(domain);
1981

1982
	/* destroy iovas */
1983
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
1984
		iommu_put_dma_cookie(&domain->domain);
1985

1986 1987
	if (domain->pgd) {
		struct page *freelist;
1988

1989 1990
		freelist = domain_unmap(domain, 0,
					DOMAIN_MAX_PFN(domain->gaw), NULL);
1991 1992
		dma_free_pagelist(freelist);
	}
1993

1994 1995 1996
	free_domain_mem(domain);
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

2046 2047
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
2048
				      struct pasid_table *table,
2049
				      u8 bus, u8 devfn)
2050
{
2051
	u16 did = domain->iommu_did[iommu->seq_id];
2052 2053
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
2054 2055
	struct context_entry *context;
	unsigned long flags;
2056
	int ret;
2057

2058 2059
	WARN_ON(did == 0);

2060 2061
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
2062 2063 2064

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2065

2066
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2067

2068 2069 2070 2071
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2072
	context = iommu_context_addr(iommu, bus, devfn, 1);
2073
	if (!context)
2074
		goto out_unlock;
2075

2076 2077 2078
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2092
		if (did_old < cap_ndoms(iommu->cap)) {
2093 2094 2095 2096
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2097 2098 2099
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2100 2101
	}

2102
	context_clear_entry(context);
2103

2104 2105
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2106

2107 2108 2109 2110 2111 2112 2113 2114 2115
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2116 2117

		/*
2118 2119
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2120
		 */
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2160 2161

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2162
	}
F
Fenghua Yu 已提交
2163

2164 2165
	context_set_fault_enable(context);
	context_set_present(context);
2166 2167
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(context, sizeof(*context));
2168

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2180
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2181
	} else {
2182
		iommu_flush_write_buffer(iommu);
2183
	}
Y
Yu Zhao 已提交
2184
	iommu_enable_dev_iotlb(info);
2185

2186 2187 2188 2189 2190
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2191

2192
	return ret;
2193 2194
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2211
static int
2212
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2213
{
2214
	struct domain_context_mapping_data data;
2215
	struct pasid_table *table;
2216
	struct intel_iommu *iommu;
2217
	u8 bus, devfn;
2218

2219
	iommu = device_to_iommu(dev, &bus, &devfn);
2220 2221
	if (!iommu)
		return -ENODEV;
2222

2223
	table = intel_pasid_get_table(dev);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2235 2236 2237 2238 2239 2240 2241 2242
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2243 2244
}

2245
static int domain_context_mapped(struct device *dev)
2246
{
W
Weidong Han 已提交
2247
	struct intel_iommu *iommu;
2248
	u8 bus, devfn;
W
Weidong Han 已提交
2249

2250
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2251 2252
	if (!iommu)
		return -ENODEV;
2253

2254 2255
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2256

2257 2258
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2259 2260
}

2261 2262 2263 2264 2265 2266 2267 2268
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2297 2298 2299
static int
__domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
		 unsigned long phys_pfn, unsigned long nr_pages, int prot)
2300 2301
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2302 2303
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2304
	phys_addr_t pteval;
2305
	u64 attr;
2306

2307
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2308 2309 2310 2311

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2312 2313
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
2314
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2315

2316
	pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2317

2318
	while (nr_pages > 0) {
2319 2320
		uint64_t tmp;

2321
		if (!pte) {
2322 2323
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn,
					phys_pfn, nr_pages);
2324

2325
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2326 2327
			if (!pte)
				return -ENOMEM;
2328
			/* It is large page*/
2329
			if (largepage_lvl > 1) {
2330 2331
				unsigned long nr_superpages, end_pfn;

2332
				pteval |= DMA_PTE_LARGE_PAGE;
2333
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2334

2335
				nr_superpages = nr_pages / lvl_pages;
2336 2337
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2338 2339
				/*
				 * Ensure that old small page tables are
2340
				 * removed to make room for superpage(s).
2341 2342
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2343
				 */
2344 2345
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2346
			} else {
2347
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2348
			}
2349

2350 2351 2352 2353
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2354
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2355
		if (tmp) {
2356
			static int dumps = 5;
J
Joerg Roedel 已提交
2357 2358
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2359 2360 2361 2362 2363 2364
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;

		/* If the next PTE would be the first in a new page, then we
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		 * need to flush the cache on the entries we've just written.
		 * And then we'll need to recalculate 'pte', so clear it and
		 * let it get set again in the if (!pte) block above.
		 *
		 * If we're done (!nr_pages) we need to flush the cache too.
		 *
		 * Also if we've been setting superpages, we may need to
		 * recalculate 'pte' and switch back to smaller pages for the
		 * end of the mapping, if the trailing size is not enough to
		 * use another superpage (i.e. nr_pages < lvl_pages).
		 */
2387
		pte++;
2388
		if (!nr_pages || first_pte_in_page(pte) ||
2389
		    (largepage_lvl > 1 && nr_pages < lvl_pages)) {
2390 2391 2392 2393 2394
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
	}
2395

2396 2397 2398
	return 0;
}

2399 2400 2401
static int
domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
	       unsigned long phys_pfn, unsigned long nr_pages, int prot)
2402
{
2403
	int iommu_id, ret;
2404 2405 2406
	struct intel_iommu *iommu;

	/* Do the real mapping first */
2407
	ret = __domain_mapping(domain, iov_pfn, phys_pfn, nr_pages, prot);
2408 2409 2410
	if (ret)
		return ret;

2411 2412
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2413 2414 2415 2416
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2417 2418
}

2419
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2420
{
2421 2422 2423 2424
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2425 2426
	if (!iommu)
		return;
2427

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2448 2449
}

2450 2451 2452 2453 2454 2455
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2456
		dev_iommu_priv_set(info->dev, NULL);
2457 2458
}

2459 2460
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2461
	struct device_domain_info *info, *tmp;
2462
	unsigned long flags;
2463 2464

	spin_lock_irqsave(&device_domain_lock, flags);
2465
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2466
		__dmar_remove_one_dev_info(info);
2467 2468 2469
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2470
struct dmar_domain *find_domain(struct device *dev)
2471 2472 2473
{
	struct device_domain_info *info;

2474 2475 2476
	if (unlikely(!dev || !dev->iommu))
		return NULL;

2477
	if (unlikely(attach_deferred(dev)))
2478 2479 2480
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2481
	info = get_domain_info(dev);
2482 2483 2484 2485 2486 2487
	if (likely(info))
		return info->domain;

	return NULL;
}

2488
static inline struct device_domain_info *
2489 2490 2491 2492 2493
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2494
		if (info->segment == segment && info->bus == bus &&
2495
		    info->devfn == devfn)
2496
			return info;
2497 2498 2499 2500

	return NULL;
}

2501 2502 2503
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
2504
				    u32 pasid)
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2531 2532 2533 2534 2535 2536
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2537 2538 2539 2540
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2541
{
2542
	struct dmar_domain *found = NULL;
2543 2544
	struct device_domain_info *info;
	unsigned long flags;
2545
	int ret;
2546 2547 2548

	info = alloc_devinfo_mem();
	if (!info)
2549
		return NULL;
2550

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2563 2564 2565
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2566 2567
	info->dev = dev;
	info->domain = domain;
2568
	info->iommu = iommu;
2569
	info->pasid_table = NULL;
2570
	info->auxd_enabled = 0;
2571
	INIT_LIST_HEAD(&info->subdevices);
2572

2573 2574 2575
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2576 2577
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2578 2579 2580
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2581 2582
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2583 2584 2585 2586 2587 2588
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
2589
			    pci_pri_supported(pdev))
2590 2591 2592 2593
				info->pri_supported = 1;
		}
	}

2594 2595
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2596
		found = find_domain(dev);
2597 2598

	if (!found) {
2599
		struct device_domain_info *info2;
2600 2601
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2602 2603 2604 2605
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2606
	}
2607

2608 2609 2610
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2611 2612
		/* Caller must free the original domain */
		return found;
2613 2614
	}

2615 2616 2617 2618 2619
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2620
		spin_unlock_irqrestore(&device_domain_lock, flags);
2621
		free_devinfo_mem(info);
2622 2623 2624
		return NULL;
	}

2625 2626 2627
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
2628
		dev_iommu_priv_set(dev, info);
2629
	spin_unlock_irqrestore(&device_domain_lock, flags);
2630

2631 2632
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2633 2634
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2635
			dev_err(dev, "PASID table allocation failed\n");
2636
			dmar_remove_one_dev_info(dev);
2637
			return NULL;
2638
		}
2639 2640

		/* Setup the PASID entry for requests without PASID: */
2641
		spin_lock_irqsave(&iommu->lock, flags);
2642 2643 2644
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2645 2646 2647
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2648 2649 2650
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
2651
		spin_unlock_irqrestore(&iommu->lock, flags);
2652
		if (ret) {
2653
			dev_err(dev, "Setup RID2PASID failed\n");
2654
			dmar_remove_one_dev_info(dev);
2655
			return NULL;
2656 2657
		}
	}
2658

2659
	if (dev && domain_context_mapping(domain, dev)) {
2660
		dev_err(dev, "Domain context map failed\n");
2661
		dmar_remove_one_dev_info(dev);
2662 2663 2664
		return NULL;
	}

2665
	return domain;
2666 2667
}

2668
static int iommu_domain_identity_map(struct dmar_domain *domain,
2669 2670
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2671 2672 2673 2674 2675
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2676
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2677

2678
	return __domain_mapping(domain, first_vpfn,
2679 2680
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2681 2682
}

2683 2684
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2685
static int __init si_domain_init(int hw)
2686
{
2687 2688 2689
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2690

2691
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2692 2693 2694
	if (!si_domain)
		return -EFAULT;

2695
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2696 2697 2698 2699
		domain_exit(si_domain);
		return -EFAULT;
	}

2700 2701 2702
	if (hw)
		return 0;

2703
	for_each_online_node(nid) {
2704 2705 2706 2707 2708
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2709 2710
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2711 2712 2713
			if (ret)
				return ret;
		}
2714 2715
	}

2716
	/*
2717 2718
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

2730 2731 2732
			ret = iommu_domain_identity_map(si_domain,
					mm_to_dma_pfn(start >> PAGE_SHIFT),
					mm_to_dma_pfn(end >> PAGE_SHIFT));
2733 2734 2735 2736 2737
			if (ret)
				return ret;
		}
	}

2738 2739 2740
	return 0;
}

2741
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2742
{
2743
	struct dmar_domain *ndomain;
2744
	struct intel_iommu *iommu;
2745
	u8 bus, devfn;
2746

2747
	iommu = device_to_iommu(dev, &bus, &devfn);
2748 2749 2750
	if (!iommu)
		return -ENODEV;

2751
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2752 2753
	if (ndomain != domain)
		return -EBUSY;
2754 2755 2756 2757

	return 0;
}

2758
static bool device_has_rmrr(struct device *dev)
2759 2760
{
	struct dmar_rmrr_unit *rmrr;
2761
	struct device *tmp;
2762 2763
	int i;

2764
	rcu_read_lock();
2765
	for_each_rmrr_units(rmrr) {
2766 2767 2768 2769 2770 2771
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2772 2773
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2774
				rcu_read_unlock();
2775
				return true;
2776
			}
2777
	}
2778
	rcu_read_unlock();
2779 2780 2781
	return false;
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2825 2826
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2827 2828 2829 2830 2831 2832
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2833 2834
	if (device_rmrr_is_relaxable(dev))
		return false;
2835 2836 2837 2838

	return true;
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2850
static int device_def_domain_type(struct device *dev)
2851
{
2852 2853
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2854

2855
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2856
			return IOMMU_DOMAIN_IDENTITY;
2857

2858
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2859
			return IOMMU_DOMAIN_IDENTITY;
2860
	}
2861

2862
	return 0;
2863 2864
}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2891
		pr_info("%s: Using Register based invalidation\n",
2892 2893 2894 2895
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2896
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2897 2898 2899
	}
}

2900
static int copy_context_table(struct intel_iommu *iommu,
2901
			      struct root_entry *old_re,
2902 2903 2904
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2905
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2906
	struct context_entry *new_ce = NULL, ce;
2907
	struct context_entry *old_ce = NULL;
2908
	struct root_entry re;
2909 2910 2911
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2912
	memcpy(&re, old_re, sizeof(re));
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2928
				memunmap(old_ce);
2929 2930 2931

			ret = 0;
			if (devfn < 0x80)
2932
				old_ce_phys = root_entry_lctp(&re);
2933
			else
2934
				old_ce_phys = root_entry_uctp(&re);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
2947 2948
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
2960
		memcpy(&ce, old_ce + idx, sizeof(ce));
2961

2962
		if (!__context_present(&ce))
2963 2964
			continue;

2965 2966 2967 2968
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

2988 2989 2990 2991 2992 2993 2994 2995
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
2996
	memunmap(old_ce);
2997 2998 2999 3000 3001 3002 3003 3004

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3005
	struct root_entry *old_rt;
3006 3007 3008 3009 3010
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3011
	bool new_ext, ext;
3012 3013 3014

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3025 3026 3027 3028 3029

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3030
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3031 3032 3033 3034 3035 3036
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3037
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3079
	memunmap(old_rt);
3080 3081 3082 3083

	return ret;
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
3144
	if (!vccap_pasid(iommu->vccap))
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3163
static int __init init_dmars(void)
3164 3165 3166
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3167
	int ret;
3168

3169 3170 3171 3172 3173 3174 3175
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3176 3177 3178 3179 3180
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3181
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3182 3183 3184
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3185
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3186 3187
	}

3188 3189 3190 3191
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3192 3193 3194
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3195
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3196 3197 3198 3199
		ret = -ENOMEM;
		goto error;
	}

3200 3201 3202 3203 3204 3205
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3206 3207 3208 3209 3210
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3211
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3212 3213 3214 3215 3216 3217
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3218
		g_iommus[iommu->seq_id] = iommu;
3219

3220 3221
		intel_iommu_init_qi(iommu);

3222 3223
		ret = iommu_init_domains(iommu);
		if (ret)
3224
			goto free_iommu;
3225

3226 3227
		init_translation_status(iommu);

3228 3229 3230 3231 3232 3233
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3234

3235 3236 3237
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3238
		 * among all IOMMU's. Need to Split it later.
3239 3240
		 */
		ret = iommu_alloc_root_entry(iommu);
3241
		if (ret)
3242
			goto free_iommu;
3243

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3268
		if (!ecap_pass_through(iommu->ecap))
3269
			hw_pass_through = 0;
3270
		intel_svm_check(iommu);
3271 3272
	}

3273 3274 3275 3276 3277 3278 3279
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3280 3281 3282
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3283 3284 3285 3286 3287
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3288
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3289
	dmar_map_gfx = 0;
3290
#endif
3291

3292 3293 3294
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3295 3296
	check_tylersburg_isoch();

3297 3298 3299
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3300

3301 3302 3303 3304 3305 3306 3307
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3308
	for_each_iommu(iommu, drhd) {
3309 3310 3311 3312 3313 3314
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3315
				iommu_disable_protect_mem_regions(iommu);
3316
			continue;
3317
		}
3318 3319 3320

		iommu_flush_write_buffer(iommu);

3321
#ifdef CONFIG_INTEL_IOMMU_SVM
3322
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3323 3324 3325 3326 3327
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3328
			ret = intel_svm_enable_prq(iommu);
3329
			down_write(&dmar_global_lock);
3330 3331 3332 3333
			if (ret)
				goto free_iommu;
		}
#endif
3334 3335
		ret = dmar_set_interrupt(iommu);
		if (ret)
3336
			goto free_iommu;
3337 3338 3339
	}

	return 0;
3340 3341

free_iommu:
3342 3343
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3344
		free_dmar_iommu(iommu);
3345
	}
3346

W
Weidong Han 已提交
3347
	kfree(g_iommus);
3348

3349
error:
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
	return ret;
}

static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3364
		pr_err("Couldn't create iommu_domain cache\n");
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3381
		pr_err("Couldn't create devinfo cache\n");
3382 3383 3384 3385 3386 3387 3388 3389 3390
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3391
	ret = iova_cache_get();
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3405
	iova_cache_put();
3406 3407 3408 3409 3410 3411 3412 3413

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3414
	iova_cache_put();
3415 3416 3417 3418 3419
}

static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
3420
	struct device *dev;
3421
	int i;
3422 3423 3424

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
3425 3426 3427
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
3428
			/* ignore DMAR unit if no devices exist */
3429 3430 3431 3432 3433
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

3434 3435
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
3436 3437
			continue;

3438 3439
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
3440
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3441 3442 3443 3444
				break;
		if (i < drhd->devices_cnt)
			continue;

3445 3446
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
3447
		drhd->gfx_dedicated = 1;
3448
		if (!dmar_map_gfx)
3449
			drhd->ignored = 1;
3450 3451 3452
	}
}

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
3473

3474 3475 3476 3477 3478
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
3479
					   DMA_CCMD_GLOBAL_INVL);
3480 3481
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
3482
		iommu_disable_protect_mem_regions(iommu);
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
3495
					   DMA_CCMD_GLOBAL_INVL);
3496
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3497
					 DMA_TLB_GLOBAL_FLUSH);
3498 3499 3500
	}
}

3501
static int iommu_suspend(void)
3502 3503 3504 3505 3506 3507
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
3508
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
3509
					     GFP_KERNEL);
3510 3511 3512 3513 3514 3515 3516 3517 3518
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

3519
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

3530
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

3541
static void iommu_resume(void)
3542 3543 3544 3545 3546 3547
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
3548 3549 3550 3551
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3552
		return;
3553 3554 3555 3556
	}

	for_each_active_iommu(iommu, drhd) {

3557
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

3568
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3569 3570 3571 3572 3573 3574
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

3575
static struct syscore_ops iommu_syscore_ops = {
3576 3577 3578 3579
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

3580
static void __init init_iommu_pm_ops(void)
3581
{
3582
	register_syscore_ops(&iommu_syscore_ops);
3583 3584 3585
}

#else
3586
static inline void init_iommu_pm_ops(void) {}
3587 3588
#endif	/* CONFIG_PM */

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

3600
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3601 3602 3603
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
3604 3605

	rmrr = (struct acpi_dmar_reserved_memory *)header;
3606 3607
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
3608 3609 3610 3611 3612 3613
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
3614 3615
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
3616 3617 3618

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
3619
		goto out;
3620 3621

	rmrru->hdr = header;
3622

3623 3624
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
3625

3626 3627 3628
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
3629
	if (rmrru->devices_cnt && rmrru->devices == NULL)
3630
		goto free_rmrru;
3631

3632
	list_add(&rmrru->list, &dmar_rmrr_units);
3633

3634
	return 0;
3635 3636 3637 3638
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
3639 3640
}

3641 3642 3643 3644 3645
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

3646 3647
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3661 3662 3663 3664
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

3665
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3666 3667
		return 0;

3668
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3669 3670 3671 3672 3673
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3674 3675 3676
	if (!atsru)
		return -ENOMEM;

3677 3678 3679 3680 3681 3682 3683
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
3684
	atsru->include_all = atsr->flags & 0x1;
3685 3686 3687 3688 3689 3690 3691 3692 3693
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
3694

3695
	list_add_rcu(&atsru->list, &dmar_atsr_units);
3696 3697 3698 3699

	return 0;
}

3700 3701 3702 3703 3704 3705
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

3734
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
3735 3736 3737
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
3738
	}
3739 3740 3741 3742

	return 0;
}

3743 3744
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
3745
	int sp, ret;
3746 3747 3748 3749 3750 3751
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
3752
		pr_warn("%s: Doesn't support hardware pass through.\n",
3753 3754 3755 3756 3757
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
3758
		pr_warn("%s: Doesn't support snooping.\n",
3759 3760 3761
			iommu->name);
		return -ENXIO;
	}
3762
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
3763
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
3764
		pr_warn("%s: Doesn't support large page.\n",
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

3782
	intel_svm_check(iommu);
3783

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
3795 3796

#ifdef CONFIG_INTEL_IOMMU_SVM
3797
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3798 3799 3800 3801 3802
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

3822 3823
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
3840 3841
}

3842 3843 3844 3845 3846 3847 3848 3849 3850
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
3851 3852
	}

3853 3854 3855 3856
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
3857 3858 3859 3860
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
3861
	int i, ret = 1;
3862
	struct pci_bus *bus;
3863 3864
	struct pci_dev *bridge = NULL;
	struct device *tmp;
3865 3866 3867 3868 3869
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
3870
		bridge = bus->self;
3871 3872 3873 3874 3875
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
3876
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3877
			return 0;
3878
		/* If we found the root port, look it up in the ATSR */
3879
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3880 3881 3882
			break;
	}

3883
	rcu_read_lock();
3884 3885 3886 3887 3888
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

3889
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3890
			if (tmp == &bridge->dev)
3891
				goto out;
3892 3893

		if (atsru->include_all)
3894
			goto out;
3895
	}
3896 3897
	ret = 0;
out:
3898
	rcu_read_unlock();
3899

3900
	return ret;
3901 3902
}

3903 3904
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
3905
	int ret;
3906 3907 3908 3909 3910
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

3911
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
3922
			if (ret < 0)
3923
				return ret;
3924
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3925 3926
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
3942
			else if (ret < 0)
3943
				return ret;
3944
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3945 3946 3947 3948 3949 3950 3951 3952 3953
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

3954 3955 3956 3957
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
3958 3959 3960
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
3961 3962 3963

	switch (val) {
	case MEM_GOING_ONLINE:
3964 3965 3966 3967
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
3968 3969 3970 3971 3972 3973
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
3974
		{
3975 3976
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
3977
			struct page *freelist;
3978

3979
			freelist = domain_unmap(si_domain,
3980 3981
						start_vpfn, last_vpfn,
						NULL);
3982

3983 3984
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
3985
				iommu_flush_iotlb_psi(iommu, si_domain,
3986
					start_vpfn, mhp->nr_pages,
3987
					!freelist, 0);
3988
			rcu_read_unlock();
3989
			dma_free_pagelist(freelist);
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4002 4003 4004 4005 4006 4007 4008
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4009
		int did;
4010 4011 4012 4013

		if (!iommu)
			continue;

4014
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4015
			domain = get_iommu_domain(iommu, (u16)did);
4016

4017
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4018
				continue;
4019

4020
			iommu_dma_free_cpu_cached_iovas(cpu, &domain->domain);
4021 4022 4023 4024
		}
	}
}

4025
static int intel_iommu_cpu_dead(unsigned int cpu)
4026
{
4027 4028
	free_all_cpu_cached_iovas(cpu);
	return 0;
4029 4030
}

4031 4032 4033 4034 4035 4036 4037 4038 4039
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4060 4061
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4062 4063 4064
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4065 4066
}

4067 4068 4069 4070
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4071
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4082
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4083 4084 4085 4086 4087 4088 4089 4090
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4091
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4092 4093 4094 4095 4096 4097 4098 4099
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4100
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4101 4102 4103 4104
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4105 4106 4107 4108
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4109
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4110 4111 4112 4113 4114 4115 4116 4117
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4118
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4119 4120 4121 4122 4123
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4124 4125 4126 4127 4128
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4129 4130
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4144
static inline bool has_external_pci(void)
4145 4146 4147
{
	struct pci_dev *pdev = NULL;

4148
	for_each_pci_dev(pdev)
4149
		if (pdev->external_facing)
4150
			return true;
4151

4152 4153
	return false;
}
4154

4155 4156
static int __init platform_optin_force_iommu(void)
{
4157
	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4168
		iommu_set_default_passthrough(false);
4169 4170 4171 4172 4173 4174 4175

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4176 4177 4178
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4179 4180
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4219 4220
int __init intel_iommu_init(void)
{
4221
	int ret = -ENODEV;
4222
	struct dmar_drhd_unit *drhd;
4223
	struct intel_iommu *iommu;
4224

4225 4226 4227 4228
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
4229 4230
	force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
		    platform_optin_force_iommu();
4231

4232 4233 4234 4235 4236 4237 4238
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4239 4240 4241
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4242
		goto out_free_dmar;
4243
	}
4244

4245
	if (dmar_dev_scope_init() < 0) {
4246 4247
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4248
		goto out_free_dmar;
4249
	}
4250

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4261 4262 4263
	if (!no_iommu)
		intel_iommu_debugfs_init();

4264
	if (no_iommu || dmar_disabled) {
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4278 4279 4280 4281 4282 4283
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4284
		goto out_free_dmar;
4285
	}
4286

4287
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4288
		pr_info("No RMRR found\n");
4289 4290

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4291
		pr_info("No ATSR found\n");
4292

4293 4294 4295
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4296 4297
	init_no_remapping_devices();

4298
	ret = init_dmars();
4299
	if (ret) {
4300 4301
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4302
		pr_err("Initialization failed\n");
4303
		goto out_free_dmar;
4304
	}
4305
	up_write(&dmar_global_lock);
4306

4307
	init_iommu_pm_ops();
4308

4309
	down_read(&dmar_global_lock);
4310 4311 4312 4313 4314 4315 4316
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4317
	up_read(&dmar_global_lock);
4318

4319
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4320 4321
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4322 4323
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4324

4325
	down_read(&dmar_global_lock);
4326 4327 4328
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4329 4330
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4331
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4332 4333 4334 4335
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
4336 4337
	up_read(&dmar_global_lock);

4338 4339
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4340 4341
	intel_iommu_enabled = 1;

4342
	return 0;
4343 4344 4345

out_free_dmar:
	intel_iommu_free_dmars();
4346 4347
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4348
	return ret;
4349
}
4350

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

4373
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4374
{
4375
	struct dmar_domain *domain;
4376 4377 4378
	struct intel_iommu *iommu;
	unsigned long flags;

4379 4380
	assert_spin_locked(&device_domain_lock);

4381
	if (WARN_ON(!info))
4382 4383
		return;

4384
	iommu = info->iommu;
4385
	domain = info->domain;
4386

4387
	if (info->dev) {
4388 4389
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
4390
					PASID_RID2PASID, false);
4391

4392
		iommu_disable_dev_iotlb(info);
4393 4394
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
4395
		intel_pasid_free_table(info->dev);
4396
	}
4397

4398
	unlink_domain_info(info);
4399

4400
	spin_lock_irqsave(&iommu->lock, flags);
4401
	domain_detach_iommu(domain, iommu);
4402
	spin_unlock_irqrestore(&iommu->lock, flags);
4403

4404
	free_devinfo_mem(info);
4405 4406
}

4407
static void dmar_remove_one_dev_info(struct device *dev)
4408
{
4409
	struct device_domain_info *info;
4410
	unsigned long flags;
4411

4412
	spin_lock_irqsave(&device_domain_lock, flags);
4413 4414
	info = get_domain_info(dev);
	if (info)
4415
		__dmar_remove_one_dev_info(info);
4416
	spin_unlock_irqrestore(&device_domain_lock, flags);
4417 4418
}

4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

4441
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
4442
{
4443
	struct dmar_domain *dmar_domain;
4444 4445
	struct iommu_domain *domain;

4446
	switch (type) {
4447
	case IOMMU_DOMAIN_DMA:
4448
	case IOMMU_DOMAIN_UNMANAGED:
4449
		dmar_domain = alloc_domain(0);
4450 4451 4452 4453
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
4454
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4455 4456 4457 4458
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
4459

4460 4461 4462
		if (type == IOMMU_DOMAIN_DMA &&
		    iommu_get_dma_cookie(&dmar_domain->domain))
			return NULL;
4463

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
4474
		return NULL;
K
Kay, Allen M 已提交
4475
	}
4476

4477
	return NULL;
K
Kay, Allen M 已提交
4478 4479
}

4480
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
4481
{
4482 4483
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
4484 4485
}

4486 4487 4488 4489 4490 4491 4492
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
4493
	struct device_domain_info *info = get_domain_info(dev);
4494 4495 4496 4497 4498

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
static inline struct subdev_domain_info *
lookup_subdev_info(struct dmar_domain *domain, struct device *dev)
{
	struct subdev_domain_info *sinfo;

	if (!list_empty(&domain->subdevices)) {
		list_for_each_entry(sinfo, &domain->subdevices, link_domain) {
			if (sinfo->pdev == dev)
				return sinfo;
		}
	}

	return NULL;
}

static int auxiliary_link_device(struct dmar_domain *domain,
				 struct device *dev)
4516
{
4517
	struct device_domain_info *info = get_domain_info(dev);
4518
	struct subdev_domain_info *sinfo = lookup_subdev_info(domain, dev);
4519 4520 4521

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
4522 4523 4524 4525 4526 4527 4528 4529 4530
		return -EINVAL;

	if (!sinfo) {
		sinfo = kzalloc(sizeof(*sinfo), GFP_ATOMIC);
		sinfo->domain = domain;
		sinfo->pdev = dev;
		list_add(&sinfo->link_phys, &info->subdevices);
		list_add(&sinfo->link_domain, &domain->subdevices);
	}
4531

4532
	return ++sinfo->users;
4533 4534
}

4535 4536
static int auxiliary_unlink_device(struct dmar_domain *domain,
				   struct device *dev)
4537
{
4538
	struct device_domain_info *info = get_domain_info(dev);
4539 4540
	struct subdev_domain_info *sinfo = lookup_subdev_info(domain, dev);
	int ret;
4541 4542

	assert_spin_locked(&device_domain_lock);
4543 4544
	if (WARN_ON(!info || !sinfo || sinfo->users <= 0))
		return -EINVAL;
4545

4546 4547 4548 4549 4550 4551
	ret = --sinfo->users;
	if (!ret) {
		list_del(&sinfo->link_phys);
		list_del(&sinfo->link_domain);
		kfree(sinfo);
	}
4552

4553
	return ret;
4554 4555 4556 4557 4558 4559 4560 4561 4562
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	unsigned long flags;
	struct intel_iommu *iommu;

4563
	iommu = device_to_iommu(dev, NULL, NULL);
4564 4565 4566 4567
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
4568
		u32 pasid;
4569

4570 4571 4572 4573 4574
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
4575 4576 4577 4578 4579 4580 4581
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
	ret = auxiliary_link_device(domain, dev);
	if (ret <= 0)
		goto link_failed;

	/*
	 * Subdevices from the same physical device can be attached to the
	 * same domain. For such cases, only the first subdevice attachment
	 * needs to go through the full steps in this function. So if ret >
	 * 1, just goto out.
	 */
	if (ret > 1)
		goto out;

4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
4605 4606 4607 4608 4609 4610
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
4611 4612 4613
	if (ret)
		goto table_failed;

4614 4615
	spin_unlock(&iommu->lock);
out:
4616 4617 4618 4619 4620 4621 4622 4623
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
4624 4625
	auxiliary_unlink_device(domain, dev);
link_failed:
4626
	spin_unlock_irqrestore(&device_domain_lock, flags);
4627
	if (list_empty(&domain->subdevices) && domain->default_pasid > 0)
4628
		ioasid_put(domain->default_pasid);
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
4644
	info = get_domain_info(dev);
4645 4646
	iommu = info->iommu;

4647 4648 4649 4650 4651 4652 4653
	if (!auxiliary_unlink_device(domain, dev)) {
		spin_lock(&iommu->lock);
		intel_pasid_tear_down_entry(iommu, dev,
					    domain->default_pasid, false);
		domain_detach_iommu(domain, iommu);
		spin_unlock(&iommu->lock);
	}
4654 4655

	spin_unlock_irqrestore(&device_domain_lock, flags);
4656 4657 4658

	if (list_empty(&domain->subdevices) && domain->default_pasid > 0)
		ioasid_put(domain->default_pasid);
4659 4660
}

4661 4662
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
4663
{
4664
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4665 4666
	struct intel_iommu *iommu;
	int addr_width;
4667

4668
	iommu = device_to_iommu(dev, NULL, NULL);
4669 4670 4671 4672 4673
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
4674 4675 4676 4677
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
4678 4679 4680
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
4681 4682
		return -EFAULT;
	}
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
4693 4694
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
4695
			free_pgtable_page(pte);
4696 4697 4698
		}
		dmar_domain->agaw--;
	}
4699

4700 4701 4702 4703 4704 4705 4706 4707
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

4708 4709
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
4710 4711 4712 4713
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

4714 4715 4716
	if (is_aux_domain(dev, domain))
		return -EPERM;

4717 4718 4719 4720 4721
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
4722
		if (old_domain)
4723 4724 4725 4726 4727 4728 4729 4730
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
4731 4732
}

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

4748 4749
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
4750
{
4751
	dmar_remove_one_dev_info(dev);
4752
}
4753

4754 4755 4756 4757 4758 4759
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

4760
#ifdef CONFIG_INTEL_IOMMU_SVM
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
4778
static const int
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

4821
	if (!inv_info || !dmar_domain)
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
4836
	info = get_domain_info(dev);
4837 4838 4839 4840 4841 4842 4843 4844
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
L
Liu Yi L 已提交
4845
	if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
4846 4847
		size = to_vtd_size(inv_info->granu.addr_info.granule_size,
				   inv_info->granu.addr_info.nb_granules);
4848 4849 4850 4851 4852 4853

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;
L
Liu Yi L 已提交
4854
		u64 addr = 0;
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
4868 4869
		    (inv_info->granu.pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->granu.pasid_info.pasid;
4870
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
4871 4872
			 (inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->granu.addr_info.pasid;
4873 4874 4875

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
4876
			/* HW will ignore LSB bits based on address mask */
4877 4878
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
4879
			    (inv_info->granu.addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
4880
				pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n",
4881
						   inv_info->granu.addr_info.addr, size);
4882 4883 4884 4885 4886 4887 4888
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
4889
					mm_to_dma_pfn(inv_info->granu.addr_info.addr),
4890
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
4891
					inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);
4892

L
Liu Yi L 已提交
4893 4894
			if (!info->ats_enabled)
				break;
4895 4896 4897 4898 4899
			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
L
Liu Yi L 已提交
4900
			fallthrough;
4901
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
L
Liu Yi L 已提交
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
			/*
			 * PASID based device TLB invalidation does not support
			 * IOMMU_INV_GRANU_PASID granularity but only supports
			 * IOMMU_INV_GRANU_ADDR.
			 * The equivalent of that is we set the size to be the
			 * entire range of 64 bit. User only provides PASID info
			 * without address info. So we set addr to 0.
			 */
			if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
				size = 64 - VTD_PAGE_SHIFT;
				addr = 0;
			} else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
4914
				addr = inv_info->granu.addr_info.addr;
L
Liu Yi L 已提交
4915 4916
			}

4917 4918 4919
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
L
Liu Yi L 已提交
4920
						info->ats_qdep, addr,
4921
						size);
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

4939 4940
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
4941
			   size_t size, int iommu_prot, gfp_t gfp)
4942
{
4943
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4944
	u64 max_addr;
4945
	int prot = 0;
4946
	int ret;
4947

4948 4949 4950 4951
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
4952 4953
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
4954

4955
	max_addr = iova + size;
4956
	if (dmar_domain->max_addr < max_addr) {
4957 4958 4959
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
4960
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4961
		if (end < max_addr) {
J
Joerg Roedel 已提交
4962
			pr_err("%s: iommu width (%d) is not "
4963
			       "sufficient for the mapped address (%llx)\n",
4964
			       __func__, dmar_domain->gaw, max_addr);
4965 4966
			return -EFAULT;
		}
4967
		dmar_domain->max_addr = max_addr;
4968
	}
4969 4970
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
4971
	size = aligned_nrpages(hpa, size);
4972 4973
	ret = domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
			     hpa >> VTD_PAGE_SHIFT, size, prot);
4974
	return ret;
K
Kay, Allen M 已提交
4975 4976
}

4977
static size_t intel_iommu_unmap(struct iommu_domain *domain,
4978 4979
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
4980
{
4981
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4982
	unsigned long start_pfn, last_pfn;
4983
	int level = 0;
4984 4985 4986

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
4987
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
4988 4989 4990

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4991

4992 4993 4994
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

4995 4996
	gather->freelist = domain_unmap(dmar_domain, start_pfn,
					last_pfn, gather->freelist);
4997

4998 4999
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5000

5001 5002
	iommu_iotlb_gather_add_page(domain, gather, iova, size);

5003
	return size;
K
Kay, Allen M 已提交
5004 5005
}

5006 5007 5008 5009 5010 5011
static void intel_iommu_tlb_sync(struct iommu_domain *domain,
				 struct iommu_iotlb_gather *gather)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long iova_pfn = IOVA_PFN(gather->start);
	size_t size = gather->end - gather->start;
5012
	unsigned long start_pfn;
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
	unsigned long nrpages;
	int iommu_id;

	nrpages = aligned_nrpages(gather->start, size);
	start_pfn = mm_to_dma_pfn(iova_pfn);

	for_each_domain_iommu(iommu_id, dmar_domain)
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, nrpages, !gather->freelist, 0);

	dma_free_pagelist(gather->freelist);
}

5026
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5027
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5028
{
5029
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5030
	struct dma_pte *pte;
5031
	int level = 0;
5032
	u64 phys = 0;
K
Kay, Allen M 已提交
5033

5034
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5035 5036 5037 5038
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
5039

5040
	return phys;
K
Kay, Allen M 已提交
5041
}
5042

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5097
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5098 5099
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5100
		return domain_update_iommu_snooping(NULL) == 1;
5101
	if (cap == IOMMU_CAP_INTR_REMAP)
5102
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5103

5104
	return false;
S
Sheng Yang 已提交
5105 5106
}

5107
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5108
{
5109
	struct intel_iommu *iommu;
5110

5111
	iommu = device_to_iommu(dev, NULL, NULL);
5112
	if (!iommu)
5113
		return ERR_PTR(-ENODEV);
5114

5115
	if (translation_pre_enabled(iommu))
5116
		dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO);
5117

5118
	return &iommu->iommu;
5119
}
5120

5121
static void intel_iommu_release_device(struct device *dev)
5122
{
5123 5124
	struct intel_iommu *iommu;

5125
	iommu = device_to_iommu(dev, NULL, NULL);
5126 5127 5128
	if (!iommu)
		return;

5129 5130
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5131 5132
	set_dma_ops(dev, NULL);
}
5133

L
Lu Baolu 已提交
5134 5135
static void intel_iommu_probe_finalize(struct device *dev)
{
5136 5137 5138
	dma_addr_t base = IOVA_START_PFN << VTD_PAGE_SHIFT;
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5139

5140 5141 5142
	if (domain && domain->type == IOMMU_DOMAIN_DMA)
		iommu_setup_dma_ops(dev, base,
				    __DOMAIN_MAX_ADDR(dmar_domain->gaw) - base);
L
Lu Baolu 已提交
5143
	else
5144
		set_dma_ops(dev, NULL);
5145 5146
}

5147 5148 5149
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5150
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5151 5152 5153 5154 5155
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5156
	down_read(&dmar_global_lock);
5157 5158 5159
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5160
			struct iommu_resv_region *resv;
5161
			enum iommu_resv_type type;
5162 5163
			size_t length;

5164 5165
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5166 5167
				continue;

5168
			length = rmrr->end_address - rmrr->base_address + 1;
5169 5170 5171 5172

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5173
			resv = iommu_alloc_resv_region(rmrr->base_address,
5174
						       length, prot, type);
5175 5176 5177 5178
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5179 5180
		}
	}
5181
	up_read(&dmar_global_lock);
5182

5183 5184 5185 5186 5187
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5188
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5189
						   IOMMU_RESV_DIRECT_RELAXABLE);
5190 5191 5192 5193 5194 5195
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5196 5197
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5198
				      0, IOMMU_RESV_MSI);
5199 5200 5201 5202 5203
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5204
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5205 5206 5207 5208 5209 5210 5211 5212
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5213
	domain = find_domain(dev);
5214 5215 5216 5217 5218 5219 5220
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5221
	info = get_domain_info(dev);
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5235 5236 5237
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5255 5256 5257 5258 5259 5260 5261
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5262 5263 5264 5265 5266 5267 5268
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int ret;

5269
	iommu = device_to_iommu(dev, NULL, NULL);
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5281
	info = get_domain_info(dev);
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5294
	info = get_domain_info(dev);
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5347 5348 5349 5350 5351 5352 5353 5354
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

5355 5356 5357 5358 5359 5360 5361 5362 5363
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
5389
	struct device_domain_info *info = get_domain_info(dev);
5390 5391 5392 5393 5394 5395 5396

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5397 5398 5399 5400 5401 5402 5403 5404 5405
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5406 5407 5408
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
5409
	return attach_deferred(dev);
5410 5411
}

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
static int
intel_iommu_domain_get_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		return -ENODEV;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = !intel_iommu_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
	default:
		return -EINVAL;
	}
}

5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
/*
 * Check that the device does not live on an external facing PCI port that is
 * marked as untrusted. Such devices should not be able to apply quirks and
 * thus not be able to bypass the IOMMU restrictions.
 */
static bool risky_device(struct pci_dev *pdev)
{
	if (pdev->untrusted) {
		pci_info(pdev,
			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
			 pdev->vendor, pdev->device);
		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
		return true;
	}
	return false;
}

5481
const struct iommu_ops intel_iommu_ops = {
5482 5483 5484
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
5485
	.domain_get_attr        = intel_iommu_domain_get_attr,
5486
	.domain_set_attr	= intel_iommu_domain_set_attr,
5487 5488
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
5489 5490
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
5491
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
5492 5493
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
5494
	.flush_iotlb_all        = intel_flush_iotlb_all,
5495
	.iotlb_sync		= intel_iommu_tlb_sync,
5496
	.iova_to_phys		= intel_iommu_iova_to_phys,
5497
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
5498
	.probe_finalize		= intel_iommu_probe_finalize,
5499
	.release_device		= intel_iommu_release_device,
5500
	.get_resv_regions	= intel_iommu_get_resv_regions,
5501
	.put_resv_regions	= generic_iommu_put_resv_regions,
5502
	.device_group		= intel_iommu_device_group,
5503 5504 5505 5506
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
5507
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
5508
	.def_domain_type	= device_def_domain_type,
5509
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
5510
#ifdef CONFIG_INTEL_IOMMU_SVM
5511
	.cache_invalidate	= intel_iommu_sva_invalidate,
5512 5513
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
5514 5515 5516
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
5517
	.page_response		= intel_svm_page_response,
5518
#endif
5519
};
5520

5521
static void quirk_iommu_igfx(struct pci_dev *dev)
5522
{
5523 5524 5525
	if (risky_device(dev))
		return;

5526
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5527 5528 5529
	dmar_map_gfx = 0;
}

5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
5564

5565
static void quirk_iommu_rwbf(struct pci_dev *dev)
5566
{
5567 5568 5569
	if (risky_device(dev))
		return;

5570 5571
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
5572
	 * but needs it. Same seems to hold for the desktop versions.
5573
	 */
5574
	pci_info(dev, "Forcing write-buffer flush capability\n");
5575 5576 5577 5578
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5579 5580 5581 5582 5583 5584
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5585

5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

5596
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5597 5598 5599
{
	unsigned short ggc;

5600 5601 5602
	if (risky_device(dev))
		return;

5603
	if (pci_read_config_word(dev, GGC, &ggc))
5604 5605
		return;

5606
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5607
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5608
		dmar_map_gfx = 0;
5609 5610
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
5611
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5612 5613
		intel_iommu_strict = 1;
       }
5614 5615 5616 5617 5618 5619
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
{
	unsigned short ver;

	if (!IS_GFX_DEVICE(dev))
		return;

	ver = (dev->device >> 8) & 0xff;
	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
	    ver != 0x9a)
		return;

	if (risky_device(dev))
		return;

	pci_info(dev, "Skip IOMMU disabling for graphics\n");
	iommu_skip_te_disable = 1;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
5657 5658 5659 5660 5661 5662

	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

5663 5664 5665 5666 5667 5668 5669 5670 5671
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

5672 5673 5674 5675 5676
	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
5705 5706

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5707 5708
	       vtisochctrl);
}