iommu.c 141.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
26
#include <linux/dma-map-ops.h>
27
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
34
#include <linux/dma-iommu.h>
K
Kay, Allen M 已提交
35
#include <linux/intel-iommu.h>
36
#include <linux/syscore_ops.h>
37
#include <linux/tboot.h>
38
#include <linux/dmi.h>
39
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
40
#include <linux/memblock.h>
41
#include <linux/dma-map-ops.h>
42
#include <linux/dma-direct.h>
43
#include <linux/crash_dump.h>
44
#include <linux/numa.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "../irq_remapping.h"
51
#include "pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
72 73 74 75 76 77

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

126
static inline int pfn_level_offset(u64 pfn, int level)
127 128 129 130
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

131
static inline u64 level_mask(int level)
132
{
133
	return -1ULL << level_to_offset_bits(level);
134 135
}

136
static inline u64 level_size(int level)
137
{
138
	return 1ULL << level_to_offset_bits(level);
139 140
}

141
static inline u64 align_to_level(u64 pfn, int level)
142 143 144
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
static int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298

299 300 301 302
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

303 304 305 306 307
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
308
	struct dmar_dev_scope *devices;	/* target devices */
309 310 311 312 313 314
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
315
	struct dmar_dev_scope *devices;	/* target devices */
316 317 318 319 320 321 322 323 324 325
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
326 327 328
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

329
static void domain_exit(struct dmar_domain *domain);
330
static void domain_remove_dev_info(struct dmar_domain *domain);
331
static void dmar_remove_one_dev_info(struct device *dev);
332
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
333 334
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
335 336
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
337

338
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
339 340 341
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
342
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
343

344
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
345 346
int intel_iommu_sm = 1;
#else
347
int intel_iommu_sm;
348
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
349

350 351 352
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

353
static int dmar_map_gfx = 1;
354
static int dmar_forcedac;
M
mark gross 已提交
355
static int intel_iommu_strict;
356
static int intel_iommu_superpage = 1;
357
static int iommu_identity_mapping;
358
static int iommu_skip_te_disable;
359

360 361
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
362

363 364 365
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

366
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
367 368 369 370 371 372 373
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

374
	info = dev_iommu_priv_get(dev);
375
	if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO))
376 377 378 379 380
		return NULL;

	return info;
}

381
DEFINE_SPINLOCK(device_domain_lock);
382 383
static LIST_HEAD(device_domain_list);

384 385
/*
 * Iterate over elements in device_domain_list and call the specified
386
 * callback @fn against each element.
387 388 389 390 391
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
392
	unsigned long flags;
393 394
	struct device_domain_info *info;

395
	spin_lock_irqsave(&device_domain_lock, flags);
396 397
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
398 399
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
400
			return ret;
401
		}
402
	}
403
	spin_unlock_irqrestore(&device_domain_lock, flags);
404 405 406 407

	return 0;
}

408
const struct iommu_ops intel_iommu_ops;
409

410 411 412 413 414
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

415 416 417 418 419
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

420 421 422 423 424 425 426 427 428
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

429 430 431 432 433
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
434 435
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
436
			pr_info("IOMMU enabled\n");
437
		} else if (!strncmp(str, "off", 3)) {
438
			dmar_disabled = 1;
439
			no_platform_optin = 1;
J
Joerg Roedel 已提交
440
			pr_info("IOMMU disabled\n");
441 442
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
443
			pr_info("Disable GFX device mapping\n");
444
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
445
			pr_info("Forcing DAC for PCI devices\n");
446
			dmar_forcedac = 1;
M
mark gross 已提交
447
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
448
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
449
			intel_iommu_strict = 1;
450
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
451
			pr_info("Disable supported super page\n");
452
			intel_iommu_superpage = 0;
453 454 455
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
456
		} else if (!strncmp(str, "tboot_noforce", 13)) {
457
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
458
			intel_iommu_tboot_noforce = 1;
459 460 461 462 463 464 465 466 467 468 469 470 471
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

472 473
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
474 475 476 477 478 479 480 481
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
482 483 484 485 486
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
487 488 489 490 491 492 493 494 495 496 497 498 499
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
500 501
}

502
void *alloc_pgtable_page(int node)
503
{
504 505
	struct page *page;
	void *vaddr = NULL;
506

507 508 509
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
510
	return vaddr;
511 512
}

513
void free_pgtable_page(void *vaddr)
514 515 516 517 518 519
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
520
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
521 522
}

K
Kay, Allen M 已提交
523
static void free_domain_mem(void *vaddr)
524 525 526 527 528 529
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
530
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
531 532 533 534 535 536 537
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

538 539 540 541 542
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

543 544 545 546 547
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

548 549 550 551 552 553 554 555
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
556
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
557 558 559 560 561
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
562
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
563 564 565 566 567 568 569 570
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

589
/* This functionin only returns single iommu in a domain */
590
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
591 592 593
{
	int iommu_id;

594
	/* si_domain and vm domain should not get here. */
595 596 597
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

598 599 600
	for_each_domain_iommu(iommu_id, domain)
		break;

601 602 603 604 605 606
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

607 608 609 610 611 612
static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
{
	return sm_supported(iommu) ?
			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
}

W
Weidong Han 已提交
613 614
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
615 616
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
617 618
	bool found = false;
	int i;
619

620
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
621

622
	for_each_domain_iommu(i, domain) {
623
		found = true;
624
		if (!iommu_paging_structure_coherency(g_iommus[i])) {
W
Weidong Han 已提交
625 626 627 628
			domain->iommu_coherency = 0;
			break;
		}
	}
629 630 631 632 633 634
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
635
		if (!iommu_paging_structure_coherency(iommu)) {
636 637 638 639 640
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
641 642
}

643
static int domain_update_iommu_snooping(struct intel_iommu *skip)
644
{
645 646 647
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
648

649 650 651 652 653 654 655
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
656 657
		}
	}
658 659 660
	rcu_read_unlock();

	return ret;
661 662
}

663 664
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
665
{
666
	struct dmar_drhd_unit *drhd;
667
	struct intel_iommu *iommu;
668
	int mask = 0x3;
669 670

	if (!intel_iommu_superpage) {
671
		return 0;
672 673
	}

674
	/* set iommu_superpage to the smallest common denominator */
675
	rcu_read_lock();
676
	for_each_active_iommu(iommu, drhd) {
677
		if (iommu != skip) {
678 679 680 681 682 683 684
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

685 686
			if (!mask)
				break;
687 688
		}
	}
689 690
	rcu_read_unlock();

691
	return fls(mask);
692 693
}

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
static int domain_update_device_node(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	int nid = NUMA_NO_NODE;

	assert_spin_locked(&device_domain_lock);

	if (list_empty(&domain->devices))
		return NUMA_NO_NODE;

	list_for_each_entry(info, &domain->devices, link) {
		if (!info->dev)
			continue;

		/*
		 * There could possibly be multiple device numa nodes as devices
		 * within the same domain may sit behind different IOMMUs. There
		 * isn't perfect answer in such situation, so we select first
		 * come first served policy.
		 */
		nid = dev_to_node(info->dev);
		if (nid != NUMA_NO_NODE)
			break;
	}

	return nid;
}

722 723 724 725
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
726
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
727
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
728 729 730 731 732 733 734

	/*
	 * If RHSA is missing, we should default to the device numa domain
	 * as fall back.
	 */
	if (domain->nid == NUMA_NO_NODE)
		domain->nid = domain_update_device_node(domain);
735 736 737 738 739 740 741 742 743 744 745 746

	/*
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
	else
		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
747 748
}

749 750
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
751 752 753 754 755
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

756
	entry = &root->lo;
757
	if (sm_supported(iommu)) {
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

783 784
static bool attach_deferred(struct device *dev)
{
785
	return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO;
786 787
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return false;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return true;
	}

	return false;
}

static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || iommu->drhd->ignored)
		return true;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
		    quirk_ioat_snb_local_iommu(pdev))
			return true;
	}

	return false;
}

862
struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
863 864
{
	struct dmar_drhd_unit *drhd = NULL;
865
	struct pci_dev *pdev = NULL;
866
	struct intel_iommu *iommu;
867
	struct device *tmp;
868
	u16 segment = 0;
869 870
	int i;

871
	if (!dev)
872 873
		return NULL;

874
	if (dev_is_pci(dev)) {
875 876
		struct pci_dev *pf_pdev;

877
		pdev = pci_real_dma_dev(to_pci_dev(dev));
878

879 880 881 882
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
883
		segment = pci_domain_nr(pdev->bus);
884
	} else if (has_acpi_companion(dev))
885 886
		dev = &ACPI_COMPANION(dev)->dev;

887
	rcu_read_lock();
888
	for_each_iommu(iommu, drhd) {
889
		if (pdev && segment != drhd->segment)
890
			continue;
891

892
		for_each_active_dev_scope(drhd->devices,
893 894
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
895 896 897 898
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
899
				if (pdev && pdev->is_virtfn)
900 901
					goto got_pdev;

902 903 904 905
				if (bus && devfn) {
					*bus = drhd->devices[i].bus;
					*devfn = drhd->devices[i].devfn;
				}
906
				goto out;
907 908
			}

909
			if (is_downstream_to_pci_bridge(dev, tmp))
910
				goto got_pdev;
911
		}
912

913 914
		if (pdev && drhd->include_all) {
		got_pdev:
915 916 917 918
			if (bus && devfn) {
				*bus = pdev->bus->number;
				*devfn = pdev->devfn;
			}
919
			goto out;
920
		}
921
	}
922
	iommu = NULL;
923
 out:
924 925 926
	if (iommu_is_dummy(iommu, dev))
		iommu = NULL;

927
	rcu_read_unlock();
928

929
	return iommu;
930 931
}

W
Weidong Han 已提交
932 933 934 935 936 937 938
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

939 940 941
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
942
	int ret = 0;
943 944 945
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
946 947 948
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
964
		context = iommu_context_addr(iommu, i, 0, 0);
965 966
		if (context)
			free_pgtable_page(context);
967

968
		if (!sm_supported(iommu))
969 970 971 972 973 974
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

975 976 977 978 979 980 981
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

982
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
983
				      unsigned long pfn, int *target_level)
984
{
985
	struct dma_pte *parent, *pte;
986
	int level = agaw_to_level(domain->agaw);
987
	int offset;
988 989

	BUG_ON(!domain->pgd);
990

991
	if (!domain_pfn_supported(domain, pfn))
992 993 994
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

995 996
	parent = domain->pgd;

997
	while (1) {
998 999
		void *tmp_page;

1000
		offset = pfn_level_offset(pfn, level);
1001
		pte = &parent[offset];
1002
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1003
			break;
1004
		if (level == *target_level)
1005 1006
			break;

1007
		if (!dma_pte_present(pte)) {
1008 1009
			uint64_t pteval;

1010
			tmp_page = alloc_pgtable_page(domain->nid);
1011

1012
			if (!tmp_page)
1013
				return NULL;
1014

1015
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1016
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1017
			if (domain_use_first_level(domain))
1018
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
1019
			if (cmpxchg64(&pte->val, 0ULL, pteval))
1020 1021
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
1022
			else
1023
				domain_flush_cache(domain, pte, sizeof(*pte));
1024
		}
1025 1026 1027
		if (level == 1)
			break;

1028
		parent = phys_to_virt(dma_pte_addr(pte));
1029 1030 1031
		level--;
	}

1032 1033 1034
	if (!*target_level)
		*target_level = level;

1035 1036 1037 1038
	return pte;
}

/* return address's pte at specific level */
1039 1040
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
1041
					 int level, int *large_page)
1042
{
1043
	struct dma_pte *parent, *pte;
1044 1045 1046 1047 1048
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
1049
		offset = pfn_level_offset(pfn, total);
1050 1051 1052 1053
		pte = &parent[offset];
		if (level == total)
			return pte;

1054 1055
		if (!dma_pte_present(pte)) {
			*large_page = total;
1056
			break;
1057 1058
		}

1059
		if (dma_pte_superpage(pte)) {
1060 1061 1062 1063
			*large_page = total;
			return pte;
		}

1064
		parent = phys_to_virt(dma_pte_addr(pte));
1065 1066 1067 1068 1069 1070
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
1071
static void dma_pte_clear_range(struct dmar_domain *domain,
1072 1073
				unsigned long start_pfn,
				unsigned long last_pfn)
1074
{
1075
	unsigned int large_page;
1076
	struct dma_pte *first_pte, *pte;
1077

1078 1079
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1080
	BUG_ON(start_pfn > last_pfn);
1081

1082
	/* we don't need lock here; nobody else touches the iova range */
1083
	do {
1084 1085
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1086
		if (!pte) {
1087
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1088 1089
			continue;
		}
1090
		do {
1091
			dma_clear_pte(pte);
1092
			start_pfn += lvl_to_nr_pages(large_page);
1093
			pte++;
1094 1095
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1096 1097
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1098 1099

	} while (start_pfn && start_pfn <= last_pfn);
1100 1101
}

1102
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1103 1104 1105
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1117
		level_pfn = pfn & level_mask(level);
1118 1119
		level_pte = phys_to_virt(dma_pte_addr(pte));

1120 1121 1122 1123 1124
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1125

1126 1127 1128 1129 1130
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1131
		      last_pfn < level_pfn + level_size(level) - 1)) {
1132 1133 1134 1135 1136 1137 1138 1139 1140
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1141 1142 1143 1144
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1145
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1146
				   unsigned long start_pfn,
1147 1148
				   unsigned long last_pfn,
				   int retain_level)
1149
{
1150 1151
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1152
	BUG_ON(start_pfn > last_pfn);
1153

1154 1155
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1156
	/* We don't need lock here; nobody else touches the iova range */
1157
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1158
			   domain->pgd, 0, start_pfn, last_pfn);
1159

1160
	/* free pgd */
1161
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1162 1163 1164 1165 1166
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1186 1187
	pte = page_address(pg);
	do {
1188 1189 1190
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1191 1192
		pte++;
	} while (!first_pte_in_page(pte));
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1249 1250
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
1251 1252
				 unsigned long last_pfn,
				 struct page *freelist)
1253
{
1254 1255
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1256 1257 1258 1259
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1260 1261
				       domain->pgd, 0, start_pfn, last_pfn,
				       freelist);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1275
static void dma_free_pagelist(struct page *freelist)
1276 1277 1278 1279 1280 1281 1282 1283 1284
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1285 1286 1287 1288 1289 1290
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1291
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1292
	if (!root) {
J
Joerg Roedel 已提交
1293
		pr_err("Allocating root entry for %s failed\n",
1294
			iommu->name);
1295
		return -ENOMEM;
1296
	}
1297

F
Fenghua Yu 已提交
1298
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1309
	u64 addr;
1310
	u32 sts;
1311 1312
	unsigned long flag;

1313
	addr = virt_to_phys(iommu->root_entry);
1314 1315
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1316

1317
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1318
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1319

1320
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1321 1322 1323

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1324
		      readl, (sts & DMA_GSTS_RTPS), sts);
1325

1326
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1327 1328
}

1329
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1330 1331 1332 1333
{
	u32 val;
	unsigned long flag;

1334
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1335 1336
		return;

1337
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1338
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1339 1340 1341

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1342
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1343

1344
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1345 1346 1347
}

/* return value determine if we need a write buffer flush */
1348 1349 1350
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1371
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1372 1373 1374 1375 1376 1377
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1378
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1379 1380 1381
}

/* return value determine if we need a write buffer flush */
1382 1383
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1399
		/* IH bit is passed in as part of address */
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1417
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1418 1419 1420 1421 1422 1423 1424 1425 1426
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1427
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1428 1429 1430

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1431
		pr_err("Flush IOTLB failed\n");
1432
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1433
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1434 1435
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1436 1437
}

1438 1439 1440
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1441 1442 1443
{
	struct device_domain_info *info;

1444 1445
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1446 1447 1448 1449
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1450 1451
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1452 1453
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1454 1455 1456
			break;
		}

1457
	return NULL;
Y
Yu Zhao 已提交
1458 1459
}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1483
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1484
{
1485 1486
	struct pci_dev *pdev;

1487 1488
	assert_spin_locked(&device_domain_lock);

1489
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1490 1491
		return;

1492
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1505
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1506
	}
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1517 1518 1519
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1520 1521
		info->pri_enabled = 1;
#endif
1522
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1523
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1524
		info->ats_enabled = 1;
1525
		domain_update_iotlb(info->domain);
1526 1527
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1528 1529 1530 1531
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1532 1533
	struct pci_dev *pdev;

1534 1535
	assert_spin_locked(&device_domain_lock);

1536
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1537 1538
		return;

1539 1540 1541 1542 1543
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1544
		domain_update_iotlb(info->domain);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1565 1566 1567
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1568 1569
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1570
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1571 1572 1573
			continue;

		sid = info->bus << 8 | info->devfn;
1574
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1575 1576
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1577 1578 1579 1580
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1595 1596 1597 1598
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1599
{
1600
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1601
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1602
	u16 did = domain->iommu_did[iommu->seq_id];
1603 1604 1605

	BUG_ON(pages == 0);

1606 1607
	if (ih)
		ih = 1 << 6;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1625 1626

	/*
1627 1628
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1629
	 */
1630
	if (!cap_caching_mode(iommu->cap) || !map)
1631
		iommu_flush_dev_iotlb(domain, addr, mask);
1632 1633
}

1634 1635 1636 1637 1638
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1639 1640 1641 1642 1643
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1644 1645 1646 1647 1648
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1649
static void intel_flush_iotlb_all(struct iommu_domain *domain)
1650
{
1651
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
1652 1653
	int idx;

1654
	for_each_domain_iommu(idx, dmar_domain) {
1655
		struct intel_iommu *iommu = g_iommus[idx];
1656
		u16 did = dmar_domain->iommu_did[iommu->seq_id];
1657

1658 1659
		if (domain_use_first_level(dmar_domain))
			domain_flush_piotlb(iommu, dmar_domain, 0, -1, 0);
1660 1661 1662
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1663 1664 1665 1666 1667 1668 1669

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1670 1671 1672 1673 1674
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1675 1676 1677
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1678
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1679 1680 1681 1682 1683 1684 1685 1686
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1687
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1688 1689
}

1690
static void iommu_enable_translation(struct intel_iommu *iommu)
1691 1692 1693 1694
{
	u32 sts;
	unsigned long flags;

1695
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1696 1697
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1698 1699 1700

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1701
		      readl, (sts & DMA_GSTS_TES), sts);
1702

1703
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1704 1705
}

1706
static void iommu_disable_translation(struct intel_iommu *iommu)
1707 1708 1709 1710
{
	u32 sts;
	unsigned long flag;

1711 1712 1713 1714
	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
		return;

1715
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1716 1717 1718 1719 1720
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1721
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1722

1723
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1724 1725 1726 1727
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1728 1729
	u32 ndomains, nlongs;
	size_t size;
1730 1731

	ndomains = cap_ndoms(iommu->cap);
1732
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1733
		 iommu->name, ndomains);
1734 1735
	nlongs = BITS_TO_LONGS(ndomains);

1736 1737
	spin_lock_init(&iommu->lock);

1738 1739
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1740 1741
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1742 1743
		return -ENOMEM;
	}
1744

1745
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1746 1747 1748 1749 1750 1751 1752 1753
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1754 1755
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1756
		kfree(iommu->domain_ids);
1757
		kfree(iommu->domains);
1758
		iommu->domain_ids = NULL;
1759
		iommu->domains    = NULL;
1760 1761 1762 1763
		return -ENOMEM;
	}

	/*
1764 1765 1766 1767
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1768
	 */
1769 1770
	set_bit(0, iommu->domain_ids);

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1781 1782 1783
	return 0;
}

1784
static void disable_dmar_iommu(struct intel_iommu *iommu)
1785
{
1786
	struct device_domain_info *info, *tmp;
1787
	unsigned long flags;
1788

1789 1790
	if (!iommu->domains || !iommu->domain_ids)
		return;
1791

1792
	spin_lock_irqsave(&device_domain_lock, flags);
1793 1794 1795 1796 1797 1798 1799
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1800
		__dmar_remove_one_dev_info(info);
1801
	}
1802
	spin_unlock_irqrestore(&device_domain_lock, flags);
1803 1804 1805

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1806
}
1807

1808 1809 1810
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1811
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1812 1813 1814 1815
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1816 1817 1818 1819 1820
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1821

W
Weidong Han 已提交
1822 1823
	g_iommus[iommu->seq_id] = NULL;

1824 1825
	/* free context mapping */
	free_context_table(iommu);
1826 1827

#ifdef CONFIG_INTEL_IOMMU_SVM
1828
	if (pasid_supported(iommu)) {
1829 1830 1831
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1832
	if (vccap_pasid(iommu->vccap))
1833 1834
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1835
#endif
1836 1837
}

1838 1839
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1840
 * DMA translation.
1841 1842 1843 1844 1845
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1846
	static int first_level_support = -1;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1865
static struct dmar_domain *alloc_domain(int flags)
1866 1867 1868 1869 1870 1871 1872
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1873
	memset(domain, 0, sizeof(*domain));
1874
	domain->nid = NUMA_NO_NODE;
1875
	domain->flags = flags;
1876 1877
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1878
	domain->has_iotlb_device = false;
1879
	INIT_LIST_HEAD(&domain->devices);
1880 1881 1882 1883

	return domain;
}

1884 1885
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1886 1887
			       struct intel_iommu *iommu)
{
1888
	unsigned long ndomains;
1889
	int num;
1890

1891
	assert_spin_locked(&device_domain_lock);
1892
	assert_spin_locked(&iommu->lock);
1893

1894 1895 1896
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1897
		ndomains = cap_ndoms(iommu->cap);
1898 1899 1900 1901 1902 1903
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1904
			return -ENOSPC;
1905
		}
1906

1907 1908 1909 1910 1911
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1912 1913 1914

		domain_update_iommu_cap(domain);
	}
1915

1916
	return 0;
1917 1918 1919 1920 1921
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1922
	int num, count;
1923

1924
	assert_spin_locked(&device_domain_lock);
1925
	assert_spin_locked(&iommu->lock);
1926

1927 1928 1929
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1930 1931 1932
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1933 1934

		domain_update_iommu_cap(domain);
1935
		domain->iommu_did[iommu->seq_id] = 0;
1936 1937 1938 1939 1940
	}

	return count;
}

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

1958
	/* Remove associated devices and clear attached or cached domains */
1959
	domain_remove_dev_info(domain);
1960

1961
	/* destroy iovas */
1962
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
1963
		iommu_put_dma_cookie(&domain->domain);
1964

1965 1966
	if (domain->pgd) {
		struct page *freelist;
1967

1968 1969
		freelist = domain_unmap(domain, 0,
					DOMAIN_MAX_PFN(domain->gaw), NULL);
1970 1971
		dma_free_pagelist(freelist);
	}
1972

1973 1974 1975
	free_domain_mem(domain);
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

2025 2026
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
2027
				      struct pasid_table *table,
2028
				      u8 bus, u8 devfn)
2029
{
2030
	u16 did = domain->iommu_did[iommu->seq_id];
2031 2032
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
2033 2034
	struct context_entry *context;
	unsigned long flags;
2035
	int ret;
2036

2037 2038
	WARN_ON(did == 0);

2039 2040
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
2041 2042 2043

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2044

2045
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2046

2047 2048 2049 2050
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2051
	context = iommu_context_addr(iommu, bus, devfn, 1);
2052
	if (!context)
2053
		goto out_unlock;
2054

2055 2056 2057
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2071
		if (did_old < cap_ndoms(iommu->cap)) {
2072 2073 2074 2075
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2076 2077 2078
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2079 2080
	}

2081
	context_clear_entry(context);
2082

2083 2084
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2095 2096

		/*
2097 2098
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2099
		 */
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2139 2140

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2141
	}
F
Fenghua Yu 已提交
2142

2143 2144
	context_set_fault_enable(context);
	context_set_present(context);
2145 2146
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(context, sizeof(*context));
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2159
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2160
	} else {
2161
		iommu_flush_write_buffer(iommu);
2162
	}
Y
Yu Zhao 已提交
2163
	iommu_enable_dev_iotlb(info);
2164

2165 2166 2167 2168 2169
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2170

2171
	return ret;
2172 2173
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2190
static int
2191
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2192
{
2193
	struct domain_context_mapping_data data;
2194
	struct pasid_table *table;
2195
	struct intel_iommu *iommu;
2196
	u8 bus, devfn;
2197

2198
	iommu = device_to_iommu(dev, &bus, &devfn);
2199 2200
	if (!iommu)
		return -ENODEV;
2201

2202
	table = intel_pasid_get_table(dev);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2214 2215 2216 2217 2218 2219 2220 2221
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2222 2223
}

2224
static int domain_context_mapped(struct device *dev)
2225
{
W
Weidong Han 已提交
2226
	struct intel_iommu *iommu;
2227
	u8 bus, devfn;
W
Weidong Han 已提交
2228

2229
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2230 2231
	if (!iommu)
		return -ENODEV;
2232

2233 2234
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2235

2236 2237
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2276 2277 2278
static int
__domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
		 unsigned long phys_pfn, unsigned long nr_pages, int prot)
2279 2280
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2281 2282
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2283
	phys_addr_t pteval;
2284
	u64 attr;
2285

2286
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2287 2288 2289 2290

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2291 2292
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
2293
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2294

2295
	pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2296

2297
	while (nr_pages > 0) {
2298 2299
		uint64_t tmp;

2300
		if (!pte) {
2301 2302
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn,
					phys_pfn, nr_pages);
2303

2304
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2305 2306
			if (!pte)
				return -ENOMEM;
2307
			/* It is large page*/
2308
			if (largepage_lvl > 1) {
2309 2310
				unsigned long nr_superpages, end_pfn;

2311
				pteval |= DMA_PTE_LARGE_PAGE;
2312
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2313

2314
				nr_superpages = nr_pages / lvl_pages;
2315 2316
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2317 2318
				/*
				 * Ensure that old small page tables are
2319
				 * removed to make room for superpage(s).
2320 2321
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2322
				 */
2323 2324
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2325
			} else {
2326
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2327
			}
2328

2329 2330 2331 2332
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2333
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2334
		if (tmp) {
2335
			static int dumps = 5;
J
Joerg Roedel 已提交
2336 2337
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2338 2339 2340 2341 2342 2343
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;

		/* If the next PTE would be the first in a new page, then we
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		 * need to flush the cache on the entries we've just written.
		 * And then we'll need to recalculate 'pte', so clear it and
		 * let it get set again in the if (!pte) block above.
		 *
		 * If we're done (!nr_pages) we need to flush the cache too.
		 *
		 * Also if we've been setting superpages, we may need to
		 * recalculate 'pte' and switch back to smaller pages for the
		 * end of the mapping, if the trailing size is not enough to
		 * use another superpage (i.e. nr_pages < lvl_pages).
		 */
2366
		pte++;
2367
		if (!nr_pages || first_pte_in_page(pte) ||
2368
		    (largepage_lvl > 1 && nr_pages < lvl_pages)) {
2369 2370 2371 2372 2373
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
	}
2374

2375 2376 2377
	return 0;
}

2378 2379 2380
static int
domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
	       unsigned long phys_pfn, unsigned long nr_pages, int prot)
2381
{
2382
	int iommu_id, ret;
2383 2384 2385
	struct intel_iommu *iommu;

	/* Do the real mapping first */
2386
	ret = __domain_mapping(domain, iov_pfn, phys_pfn, nr_pages, prot);
2387 2388 2389
	if (ret)
		return ret;

2390 2391
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2392 2393 2394 2395
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2396 2397
}

2398
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2399
{
2400 2401 2402 2403
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2404 2405
	if (!iommu)
		return;
2406

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2427 2428
}

2429 2430 2431 2432 2433 2434
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2435
		dev_iommu_priv_set(info->dev, NULL);
2436 2437
}

2438 2439
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2440
	struct device_domain_info *info, *tmp;
2441
	unsigned long flags;
2442 2443

	spin_lock_irqsave(&device_domain_lock, flags);
2444
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2445
		__dmar_remove_one_dev_info(info);
2446 2447 2448
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2449
struct dmar_domain *find_domain(struct device *dev)
2450 2451 2452
{
	struct device_domain_info *info;

2453 2454 2455
	if (unlikely(!dev || !dev->iommu))
		return NULL;

2456
	if (unlikely(attach_deferred(dev)))
2457 2458 2459
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2460
	info = get_domain_info(dev);
2461 2462 2463 2464 2465 2466
	if (likely(info))
		return info->domain;

	return NULL;
}

2467
static inline struct device_domain_info *
2468 2469 2470 2471 2472
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2473
		if (info->segment == segment && info->bus == bus &&
2474
		    info->devfn == devfn)
2475
			return info;
2476 2477 2478 2479

	return NULL;
}

2480 2481 2482
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
2483
				    u32 pasid)
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2510 2511 2512 2513 2514 2515
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2516 2517 2518 2519
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2520
{
2521
	struct dmar_domain *found = NULL;
2522 2523
	struct device_domain_info *info;
	unsigned long flags;
2524
	int ret;
2525 2526 2527

	info = alloc_devinfo_mem();
	if (!info)
2528
		return NULL;
2529

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2542 2543 2544
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2545 2546
	info->dev = dev;
	info->domain = domain;
2547
	info->iommu = iommu;
2548
	info->pasid_table = NULL;
2549
	info->auxd_enabled = 0;
2550
	INIT_LIST_HEAD(&info->auxiliary_domains);
2551

2552 2553 2554
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2555 2556
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2557 2558 2559
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2560 2561
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2562 2563 2564 2565 2566 2567
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
2568
			    pci_pri_supported(pdev))
2569 2570 2571 2572
				info->pri_supported = 1;
		}
	}

2573 2574
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2575
		found = find_domain(dev);
2576 2577

	if (!found) {
2578
		struct device_domain_info *info2;
2579 2580
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2581 2582 2583 2584
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2585
	}
2586

2587 2588 2589
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2590 2591
		/* Caller must free the original domain */
		return found;
2592 2593
	}

2594 2595 2596 2597 2598
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2599
		spin_unlock_irqrestore(&device_domain_lock, flags);
2600
		free_devinfo_mem(info);
2601 2602 2603
		return NULL;
	}

2604 2605 2606
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
2607
		dev_iommu_priv_set(dev, info);
2608
	spin_unlock_irqrestore(&device_domain_lock, flags);
2609

2610 2611
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2612 2613
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2614
			dev_err(dev, "PASID table allocation failed\n");
2615
			dmar_remove_one_dev_info(dev);
2616
			return NULL;
2617
		}
2618 2619

		/* Setup the PASID entry for requests without PASID: */
2620
		spin_lock_irqsave(&iommu->lock, flags);
2621 2622 2623
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2624 2625 2626
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2627 2628 2629
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
2630
		spin_unlock_irqrestore(&iommu->lock, flags);
2631
		if (ret) {
2632
			dev_err(dev, "Setup RID2PASID failed\n");
2633
			dmar_remove_one_dev_info(dev);
2634
			return NULL;
2635 2636
		}
	}
2637

2638
	if (dev && domain_context_mapping(domain, dev)) {
2639
		dev_err(dev, "Domain context map failed\n");
2640
		dmar_remove_one_dev_info(dev);
2641 2642 2643
		return NULL;
	}

2644
	return domain;
2645 2646
}

2647
static int iommu_domain_identity_map(struct dmar_domain *domain,
2648 2649
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2650 2651 2652 2653 2654
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2655
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2656

2657
	return __domain_mapping(domain, first_vpfn,
2658 2659
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2660 2661
}

2662 2663
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2664
static int __init si_domain_init(int hw)
2665
{
2666 2667 2668
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2669

2670
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2671 2672 2673
	if (!si_domain)
		return -EFAULT;

2674
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2675 2676 2677 2678
		domain_exit(si_domain);
		return -EFAULT;
	}

2679 2680 2681
	if (hw)
		return 0;

2682
	for_each_online_node(nid) {
2683 2684 2685 2686 2687
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2688 2689
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2690 2691 2692
			if (ret)
				return ret;
		}
2693 2694
	}

2695
	/*
2696 2697
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

2709 2710 2711
			ret = iommu_domain_identity_map(si_domain,
					mm_to_dma_pfn(start >> PAGE_SHIFT),
					mm_to_dma_pfn(end >> PAGE_SHIFT));
2712 2713 2714 2715 2716
			if (ret)
				return ret;
		}
	}

2717 2718 2719
	return 0;
}

2720
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2721
{
2722
	struct dmar_domain *ndomain;
2723
	struct intel_iommu *iommu;
2724
	u8 bus, devfn;
2725

2726
	iommu = device_to_iommu(dev, &bus, &devfn);
2727 2728 2729
	if (!iommu)
		return -ENODEV;

2730
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2731 2732
	if (ndomain != domain)
		return -EBUSY;
2733 2734 2735 2736

	return 0;
}

2737
static bool device_has_rmrr(struct device *dev)
2738 2739
{
	struct dmar_rmrr_unit *rmrr;
2740
	struct device *tmp;
2741 2742
	int i;

2743
	rcu_read_lock();
2744
	for_each_rmrr_units(rmrr) {
2745 2746 2747 2748 2749 2750
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2751 2752
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2753
				rcu_read_unlock();
2754
				return true;
2755
			}
2756
	}
2757
	rcu_read_unlock();
2758 2759 2760
	return false;
}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2804 2805
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2806 2807 2808 2809 2810 2811
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2812 2813
	if (device_rmrr_is_relaxable(dev))
		return false;
2814 2815 2816 2817

	return true;
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2829
static int device_def_domain_type(struct device *dev)
2830
{
2831 2832
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2833

2834
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2835
			return IOMMU_DOMAIN_IDENTITY;
2836

2837
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2838
			return IOMMU_DOMAIN_IDENTITY;
2839
	}
2840

2841
	return 0;
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2870
		pr_info("%s: Using Register based invalidation\n",
2871 2872 2873 2874
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2875
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2876 2877 2878
	}
}

2879
static int copy_context_table(struct intel_iommu *iommu,
2880
			      struct root_entry *old_re,
2881 2882 2883
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2884
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2885
	struct context_entry *new_ce = NULL, ce;
2886
	struct context_entry *old_ce = NULL;
2887
	struct root_entry re;
2888 2889 2890
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2891
	memcpy(&re, old_re, sizeof(re));
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2907
				memunmap(old_ce);
2908 2909 2910

			ret = 0;
			if (devfn < 0x80)
2911
				old_ce_phys = root_entry_lctp(&re);
2912
			else
2913
				old_ce_phys = root_entry_uctp(&re);
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
2926 2927
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
2939
		memcpy(&ce, old_ce + idx, sizeof(ce));
2940

2941
		if (!__context_present(&ce))
2942 2943
			continue;

2944 2945 2946 2947
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

2967 2968 2969 2970 2971 2972 2973 2974
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
2975
	memunmap(old_ce);
2976 2977 2978 2979 2980 2981 2982 2983

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
2984
	struct root_entry *old_rt;
2985 2986 2987 2988 2989
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
2990
	bool new_ext, ext;
2991 2992 2993

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3004 3005 3006 3007 3008

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3009
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3010 3011 3012 3013 3014 3015
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3016
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3058
	memunmap(old_rt);
3059 3060 3061 3062

	return ret;
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
3123
	if (!vccap_pasid(iommu->vccap))
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3142
static int __init init_dmars(void)
3143 3144 3145
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3146
	int ret;
3147

3148 3149 3150 3151 3152 3153 3154
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3155 3156 3157 3158 3159
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3160
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3161 3162 3163
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3164
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3165 3166
	}

3167 3168 3169 3170
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3171 3172 3173
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3174
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3175 3176 3177 3178
		ret = -ENOMEM;
		goto error;
	}

3179 3180 3181 3182 3183 3184
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3185 3186 3187 3188 3189
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3190
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3191 3192 3193 3194 3195 3196
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3197
		g_iommus[iommu->seq_id] = iommu;
3198

3199 3200
		intel_iommu_init_qi(iommu);

3201 3202
		ret = iommu_init_domains(iommu);
		if (ret)
3203
			goto free_iommu;
3204

3205 3206
		init_translation_status(iommu);

3207 3208 3209 3210 3211 3212
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3213

3214 3215 3216
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3217
		 * among all IOMMU's. Need to Split it later.
3218 3219
		 */
		ret = iommu_alloc_root_entry(iommu);
3220
		if (ret)
3221
			goto free_iommu;
3222

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3247
		if (!ecap_pass_through(iommu->ecap))
3248
			hw_pass_through = 0;
3249
		intel_svm_check(iommu);
3250 3251
	}

3252 3253 3254 3255 3256 3257 3258
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3259 3260 3261
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3262 3263 3264 3265 3266
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3267
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3268
	dmar_map_gfx = 0;
3269
#endif
3270

3271 3272 3273
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3274 3275
	check_tylersburg_isoch();

3276 3277 3278
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3279

3280 3281 3282 3283 3284 3285 3286
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3287
	for_each_iommu(iommu, drhd) {
3288 3289 3290 3291 3292 3293
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3294
				iommu_disable_protect_mem_regions(iommu);
3295
			continue;
3296
		}
3297 3298 3299

		iommu_flush_write_buffer(iommu);

3300
#ifdef CONFIG_INTEL_IOMMU_SVM
3301
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3302 3303 3304 3305 3306
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3307
			ret = intel_svm_enable_prq(iommu);
3308
			down_write(&dmar_global_lock);
3309 3310 3311 3312
			if (ret)
				goto free_iommu;
		}
#endif
3313 3314
		ret = dmar_set_interrupt(iommu);
		if (ret)
3315
			goto free_iommu;
3316 3317 3318
	}

	return 0;
3319 3320

free_iommu:
3321 3322
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3323
		free_dmar_iommu(iommu);
3324
	}
3325

W
Weidong Han 已提交
3326
	kfree(g_iommus);
3327

3328
error:
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	return ret;
}

static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3343
		pr_err("Couldn't create iommu_domain cache\n");
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3360
		pr_err("Couldn't create devinfo cache\n");
3361 3362 3363 3364 3365 3366 3367 3368 3369
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3370
	ret = iova_cache_get();
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3384
	iova_cache_put();
3385 3386 3387 3388 3389 3390 3391 3392

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3393
	iova_cache_put();
3394 3395 3396 3397 3398
}

static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
3399
	struct device *dev;
3400
	int i;
3401 3402 3403

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
3404 3405 3406
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
3407
			/* ignore DMAR unit if no devices exist */
3408 3409 3410 3411 3412
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

3413 3414
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
3415 3416
			continue;

3417 3418
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
3419
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3420 3421 3422 3423
				break;
		if (i < drhd->devices_cnt)
			continue;

3424 3425
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
3426
		drhd->gfx_dedicated = 1;
3427
		if (!dmar_map_gfx)
3428
			drhd->ignored = 1;
3429 3430 3431
	}
}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
3452

3453 3454 3455 3456 3457
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
3458
					   DMA_CCMD_GLOBAL_INVL);
3459 3460
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
3461
		iommu_disable_protect_mem_regions(iommu);
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
3474
					   DMA_CCMD_GLOBAL_INVL);
3475
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3476
					 DMA_TLB_GLOBAL_FLUSH);
3477 3478 3479
	}
}

3480
static int iommu_suspend(void)
3481 3482 3483 3484 3485 3486
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
3487
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
3488
					     GFP_KERNEL);
3489 3490 3491 3492 3493 3494 3495 3496 3497
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

3498
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

3509
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

3520
static void iommu_resume(void)
3521 3522 3523 3524 3525 3526
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
3527 3528 3529 3530
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3531
		return;
3532 3533 3534 3535
	}

	for_each_active_iommu(iommu, drhd) {

3536
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

3547
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3548 3549 3550 3551 3552 3553
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

3554
static struct syscore_ops iommu_syscore_ops = {
3555 3556 3557 3558
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

3559
static void __init init_iommu_pm_ops(void)
3560
{
3561
	register_syscore_ops(&iommu_syscore_ops);
3562 3563 3564
}

#else
3565
static inline void init_iommu_pm_ops(void) {}
3566 3567
#endif	/* CONFIG_PM */

3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

3579
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3580 3581 3582
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
3583 3584

	rmrr = (struct acpi_dmar_reserved_memory *)header;
3585 3586
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
3587 3588 3589 3590 3591 3592
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
3593 3594
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
3595 3596 3597

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
3598
		goto out;
3599 3600

	rmrru->hdr = header;
3601

3602 3603
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
3604

3605 3606 3607
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
3608
	if (rmrru->devices_cnt && rmrru->devices == NULL)
3609
		goto free_rmrru;
3610

3611
	list_add(&rmrru->list, &dmar_rmrr_units);
3612

3613
	return 0;
3614 3615 3616 3617
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
3618 3619
}

3620 3621 3622 3623 3624
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

3625 3626
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3640 3641 3642 3643
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

3644
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3645 3646
		return 0;

3647
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3648 3649 3650 3651 3652
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3653 3654 3655
	if (!atsru)
		return -ENOMEM;

3656 3657 3658 3659 3660 3661 3662
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
3663
	atsru->include_all = atsr->flags & 0x1;
3664 3665 3666 3667 3668 3669 3670 3671 3672
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
3673

3674
	list_add_rcu(&atsru->list, &dmar_atsr_units);
3675 3676 3677 3678

	return 0;
}

3679 3680 3681 3682 3683 3684
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

3713
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
3714 3715 3716
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
3717
	}
3718 3719 3720 3721

	return 0;
}

3722 3723
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
3724
	int sp, ret;
3725 3726 3727 3728 3729 3730
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
3731
		pr_warn("%s: Doesn't support hardware pass through.\n",
3732 3733 3734 3735 3736
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
3737
		pr_warn("%s: Doesn't support snooping.\n",
3738 3739 3740
			iommu->name);
		return -ENXIO;
	}
3741
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
3742
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
3743
		pr_warn("%s: Doesn't support large page.\n",
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

3761
	intel_svm_check(iommu);
3762

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
3774 3775

#ifdef CONFIG_INTEL_IOMMU_SVM
3776
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3777 3778 3779 3780 3781
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

3801 3802
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
3819 3820
}

3821 3822 3823 3824 3825 3826 3827 3828 3829
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
3830 3831
	}

3832 3833 3834 3835
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
3836 3837 3838 3839
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
3840
	int i, ret = 1;
3841
	struct pci_bus *bus;
3842 3843
	struct pci_dev *bridge = NULL;
	struct device *tmp;
3844 3845 3846 3847 3848
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
3849
		bridge = bus->self;
3850 3851 3852 3853 3854
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
3855
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3856
			return 0;
3857
		/* If we found the root port, look it up in the ATSR */
3858
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3859 3860 3861
			break;
	}

3862
	rcu_read_lock();
3863 3864 3865 3866 3867
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

3868
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3869
			if (tmp == &bridge->dev)
3870
				goto out;
3871 3872

		if (atsru->include_all)
3873
			goto out;
3874
	}
3875 3876
	ret = 0;
out:
3877
	rcu_read_unlock();
3878

3879
	return ret;
3880 3881
}

3882 3883
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
3884
	int ret;
3885 3886 3887 3888 3889
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

3890
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
3901
			if (ret < 0)
3902
				return ret;
3903
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3904 3905
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
3921
			else if (ret < 0)
3922
				return ret;
3923
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3924 3925 3926 3927 3928 3929 3930 3931 3932
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

3933 3934 3935 3936
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
3937 3938 3939
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
3940 3941 3942

	switch (val) {
	case MEM_GOING_ONLINE:
3943 3944 3945 3946
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
3947 3948 3949 3950 3951 3952
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
3953
		{
3954 3955
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
3956
			struct page *freelist;
3957

3958
			freelist = domain_unmap(si_domain,
3959 3960
						start_vpfn, last_vpfn,
						NULL);
3961

3962 3963
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
3964
				iommu_flush_iotlb_psi(iommu, si_domain,
3965
					start_vpfn, mhp->nr_pages,
3966
					!freelist, 0);
3967
			rcu_read_unlock();
3968
			dma_free_pagelist(freelist);
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

3981 3982 3983 3984 3985 3986 3987
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
3988
		int did;
3989 3990 3991 3992

		if (!iommu)
			continue;

3993
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
3994
			domain = get_iommu_domain(iommu, (u16)did);
3995

3996
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
3997
				continue;
3998

3999
			iommu_dma_free_cpu_cached_iovas(cpu, &domain->domain);
4000 4001 4002 4003
		}
	}
}

4004
static int intel_iommu_cpu_dead(unsigned int cpu)
4005
{
4006 4007
	free_all_cpu_cached_iovas(cpu);
	return 0;
4008 4009
}

4010 4011 4012 4013 4014 4015 4016 4017 4018
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4039 4040
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4041 4042 4043
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4044 4045
}

4046 4047 4048 4049
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4050
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4061
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4062 4063 4064 4065 4066 4067 4068 4069
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4070
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4071 4072 4073 4074 4075 4076 4077 4078
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4079
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4080 4081 4082 4083
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4084 4085 4086 4087
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4088
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4089 4090 4091 4092 4093 4094 4095 4096
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4097
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4098 4099 4100 4101 4102
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4103 4104 4105 4106 4107
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4108 4109
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4123
static inline bool has_external_pci(void)
4124 4125 4126
{
	struct pci_dev *pdev = NULL;

4127
	for_each_pci_dev(pdev)
4128
		if (pdev->external_facing)
4129
			return true;
4130

4131 4132
	return false;
}
4133

4134 4135
static int __init platform_optin_force_iommu(void)
{
4136
	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4147
		iommu_set_default_passthrough(false);
4148 4149 4150 4151 4152 4153 4154

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4155 4156 4157
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4158 4159
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4198 4199
int __init intel_iommu_init(void)
{
4200
	int ret = -ENODEV;
4201
	struct dmar_drhd_unit *drhd;
4202
	struct intel_iommu *iommu;
4203

4204 4205 4206 4207
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
4208 4209
	force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
		    platform_optin_force_iommu();
4210

4211 4212 4213 4214 4215 4216 4217
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4218 4219 4220
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4221
		goto out_free_dmar;
4222
	}
4223

4224
	if (dmar_dev_scope_init() < 0) {
4225 4226
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4227
		goto out_free_dmar;
4228
	}
4229

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4240 4241 4242
	if (!no_iommu)
		intel_iommu_debugfs_init();

4243
	if (no_iommu || dmar_disabled) {
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4257 4258 4259 4260 4261 4262
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4263
		goto out_free_dmar;
4264
	}
4265

4266
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4267
		pr_info("No RMRR found\n");
4268 4269

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4270
		pr_info("No ATSR found\n");
4271

4272 4273 4274
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4275 4276
	init_no_remapping_devices();

4277
	ret = init_dmars();
4278
	if (ret) {
4279 4280
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4281
		pr_err("Initialization failed\n");
4282
		goto out_free_dmar;
4283
	}
4284
	up_write(&dmar_global_lock);
4285

4286
	init_iommu_pm_ops();
4287

4288
	down_read(&dmar_global_lock);
4289 4290 4291 4292 4293 4294 4295
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4296
	up_read(&dmar_global_lock);
4297

4298
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4299 4300
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4301 4302
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4303

4304
	down_read(&dmar_global_lock);
4305 4306 4307
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4308 4309
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4310
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4311 4312 4313 4314
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
4315 4316
	up_read(&dmar_global_lock);

4317 4318
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4319 4320
	intel_iommu_enabled = 1;

4321
	return 0;
4322 4323 4324

out_free_dmar:
	intel_iommu_free_dmars();
4325 4326
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4327
	return ret;
4328
}
4329

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

4352
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4353
{
4354
	struct dmar_domain *domain;
4355 4356 4357
	struct intel_iommu *iommu;
	unsigned long flags;

4358 4359
	assert_spin_locked(&device_domain_lock);

4360
	if (WARN_ON(!info))
4361 4362
		return;

4363
	iommu = info->iommu;
4364
	domain = info->domain;
4365

4366
	if (info->dev) {
4367 4368
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
4369
					PASID_RID2PASID, false);
4370

4371
		iommu_disable_dev_iotlb(info);
4372 4373
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
4374
		intel_pasid_free_table(info->dev);
4375
	}
4376

4377
	unlink_domain_info(info);
4378

4379
	spin_lock_irqsave(&iommu->lock, flags);
4380
	domain_detach_iommu(domain, iommu);
4381
	spin_unlock_irqrestore(&iommu->lock, flags);
4382

4383
	free_devinfo_mem(info);
4384 4385
}

4386
static void dmar_remove_one_dev_info(struct device *dev)
4387
{
4388
	struct device_domain_info *info;
4389
	unsigned long flags;
4390

4391
	spin_lock_irqsave(&device_domain_lock, flags);
4392 4393
	info = get_domain_info(dev);
	if (info)
4394
		__dmar_remove_one_dev_info(info);
4395
	spin_unlock_irqrestore(&device_domain_lock, flags);
4396 4397
}

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

4420
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
4421
{
4422
	struct dmar_domain *dmar_domain;
4423 4424
	struct iommu_domain *domain;

4425
	switch (type) {
4426
	case IOMMU_DOMAIN_DMA:
4427
	case IOMMU_DOMAIN_UNMANAGED:
4428
		dmar_domain = alloc_domain(0);
4429 4430 4431 4432
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
4433
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4434 4435 4436 4437
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
4438

4439 4440 4441
		if (type == IOMMU_DOMAIN_DMA &&
		    iommu_get_dma_cookie(&dmar_domain->domain))
			return NULL;
4442

4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
4453
		return NULL;
K
Kay, Allen M 已提交
4454
	}
4455

4456
	return NULL;
K
Kay, Allen M 已提交
4457 4458
}

4459
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
4460
{
4461 4462
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
4463 4464
}

4465 4466 4467 4468 4469 4470 4471
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
4472
	struct device_domain_info *info = get_domain_info(dev);
4473 4474 4475 4476 4477 4478 4479 4480

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
4481
	struct device_domain_info *info = get_domain_info(dev);
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
4494
	struct device_domain_info *info = get_domain_info(dev);
4495 4496 4497 4498 4499 4500 4501 4502 4503

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
4504
		ioasid_put(domain->default_pasid);
4505 4506 4507 4508 4509 4510 4511 4512 4513
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	unsigned long flags;
	struct intel_iommu *iommu;

4514
	iommu = device_to_iommu(dev, NULL, NULL);
4515 4516 4517 4518
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
4519
		u32 pasid;
4520

4521 4522 4523 4524 4525
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
4543 4544 4545 4546 4547 4548
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
4565
		ioasid_put(domain->default_pasid);
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
4581
	info = get_domain_info(dev);
4582 4583 4584 4585 4586
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
4587
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
4588 4589 4590 4591 4592 4593
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

4594 4595
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
4596
{
4597
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4598 4599
	struct intel_iommu *iommu;
	int addr_width;
4600

4601
	iommu = device_to_iommu(dev, NULL, NULL);
4602 4603 4604 4605 4606
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
4607 4608 4609 4610
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
4611 4612 4613
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
4614 4615
		return -EFAULT;
	}
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
4626 4627
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
4628
			free_pgtable_page(pte);
4629 4630 4631
		}
		dmar_domain->agaw--;
	}
4632

4633 4634 4635 4636 4637 4638 4639 4640
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

4641 4642
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
4643 4644 4645 4646
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

4647 4648 4649
	if (is_aux_domain(dev, domain))
		return -EPERM;

4650 4651 4652 4653 4654
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
4655
		if (old_domain)
4656 4657 4658 4659 4660 4661 4662 4663
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
4664 4665
}

4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

4681 4682
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
4683
{
4684
	dmar_remove_one_dev_info(dev);
4685
}
4686

4687 4688 4689 4690 4691 4692
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

4693
#ifdef CONFIG_INTEL_IOMMU_SVM
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
4711
static const int
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

4754
	if (!inv_info || !dmar_domain)
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
4769
	info = get_domain_info(dev);
4770 4771 4772 4773 4774 4775 4776 4777
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
L
Liu Yi L 已提交
4778
	if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
4779 4780
		size = to_vtd_size(inv_info->granu.addr_info.granule_size,
				   inv_info->granu.addr_info.nb_granules);
4781 4782 4783 4784 4785 4786

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;
L
Liu Yi L 已提交
4787
		u64 addr = 0;
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
4801 4802
		    (inv_info->granu.pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->granu.pasid_info.pasid;
4803
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
4804 4805
			 (inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->granu.addr_info.pasid;
4806 4807 4808

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
4809
			/* HW will ignore LSB bits based on address mask */
4810 4811
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
4812
			    (inv_info->granu.addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
4813
				pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n",
4814
						   inv_info->granu.addr_info.addr, size);
4815 4816 4817 4818 4819 4820 4821
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
4822
					mm_to_dma_pfn(inv_info->granu.addr_info.addr),
4823
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
4824
					inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);
4825

L
Liu Yi L 已提交
4826 4827
			if (!info->ats_enabled)
				break;
4828 4829 4830 4831 4832
			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
L
Liu Yi L 已提交
4833
			fallthrough;
4834
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
L
Liu Yi L 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
			/*
			 * PASID based device TLB invalidation does not support
			 * IOMMU_INV_GRANU_PASID granularity but only supports
			 * IOMMU_INV_GRANU_ADDR.
			 * The equivalent of that is we set the size to be the
			 * entire range of 64 bit. User only provides PASID info
			 * without address info. So we set addr to 0.
			 */
			if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
				size = 64 - VTD_PAGE_SHIFT;
				addr = 0;
			} else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
4847
				addr = inv_info->granu.addr_info.addr;
L
Liu Yi L 已提交
4848 4849
			}

4850 4851 4852
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
L
Liu Yi L 已提交
4853
						info->ats_qdep, addr,
4854
						size);
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

4872 4873
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
4874
			   size_t size, int iommu_prot, gfp_t gfp)
4875
{
4876
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4877
	u64 max_addr;
4878
	int prot = 0;
4879
	int ret;
4880

4881 4882 4883 4884
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
4885 4886
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
4887

4888
	max_addr = iova + size;
4889
	if (dmar_domain->max_addr < max_addr) {
4890 4891 4892
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
4893
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4894
		if (end < max_addr) {
J
Joerg Roedel 已提交
4895
			pr_err("%s: iommu width (%d) is not "
4896
			       "sufficient for the mapped address (%llx)\n",
4897
			       __func__, dmar_domain->gaw, max_addr);
4898 4899
			return -EFAULT;
		}
4900
		dmar_domain->max_addr = max_addr;
4901
	}
4902 4903
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
4904
	size = aligned_nrpages(hpa, size);
4905 4906
	ret = domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
			     hpa >> VTD_PAGE_SHIFT, size, prot);
4907
	return ret;
K
Kay, Allen M 已提交
4908 4909
}

4910
static size_t intel_iommu_unmap(struct iommu_domain *domain,
4911 4912
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
4913
{
4914
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4915
	unsigned long start_pfn, last_pfn;
4916
	int level = 0;
4917 4918 4919

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
4920
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
4921 4922 4923

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4924

4925 4926 4927
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

4928 4929
	gather->freelist = domain_unmap(dmar_domain, start_pfn,
					last_pfn, gather->freelist);
4930

4931 4932
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
4933

4934 4935
	iommu_iotlb_gather_add_page(domain, gather, iova, size);

4936
	return size;
K
Kay, Allen M 已提交
4937 4938
}

4939 4940 4941 4942 4943 4944
static void intel_iommu_tlb_sync(struct iommu_domain *domain,
				 struct iommu_iotlb_gather *gather)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long iova_pfn = IOVA_PFN(gather->start);
	size_t size = gather->end - gather->start;
4945
	unsigned long start_pfn;
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
	unsigned long nrpages;
	int iommu_id;

	nrpages = aligned_nrpages(gather->start, size);
	start_pfn = mm_to_dma_pfn(iova_pfn);

	for_each_domain_iommu(iommu_id, dmar_domain)
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, nrpages, !gather->freelist, 0);

	dma_free_pagelist(gather->freelist);
}

4959
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4960
					    dma_addr_t iova)
K
Kay, Allen M 已提交
4961
{
4962
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
4963
	struct dma_pte *pte;
4964
	int level = 0;
4965
	u64 phys = 0;
K
Kay, Allen M 已提交
4966

4967
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4968 4969 4970 4971
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
4972

4973
	return phys;
K
Kay, Allen M 已提交
4974
}
4975

4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5030
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5031 5032
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5033
		return domain_update_iommu_snooping(NULL) == 1;
5034
	if (cap == IOMMU_CAP_INTR_REMAP)
5035
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5036

5037
	return false;
S
Sheng Yang 已提交
5038 5039
}

5040
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5041
{
5042
	struct intel_iommu *iommu;
5043

5044
	iommu = device_to_iommu(dev, NULL, NULL);
5045
	if (!iommu)
5046
		return ERR_PTR(-ENODEV);
5047

5048
	if (translation_pre_enabled(iommu))
5049
		dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO);
5050

5051
	return &iommu->iommu;
5052
}
5053

5054
static void intel_iommu_release_device(struct device *dev)
5055
{
5056 5057
	struct intel_iommu *iommu;

5058
	iommu = device_to_iommu(dev, NULL, NULL);
5059 5060 5061
	if (!iommu)
		return;

5062 5063
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5064 5065
	set_dma_ops(dev, NULL);
}
5066

L
Lu Baolu 已提交
5067 5068
static void intel_iommu_probe_finalize(struct device *dev)
{
5069 5070 5071
	dma_addr_t base = IOVA_START_PFN << VTD_PAGE_SHIFT;
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5072

5073 5074 5075
	if (domain && domain->type == IOMMU_DOMAIN_DMA)
		iommu_setup_dma_ops(dev, base,
				    __DOMAIN_MAX_ADDR(dmar_domain->gaw) - base);
L
Lu Baolu 已提交
5076
	else
5077
		set_dma_ops(dev, NULL);
5078 5079
}

5080 5081 5082
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5083
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5084 5085 5086 5087 5088
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5089
	down_read(&dmar_global_lock);
5090 5091 5092
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5093
			struct iommu_resv_region *resv;
5094
			enum iommu_resv_type type;
5095 5096
			size_t length;

5097 5098
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5099 5100
				continue;

5101
			length = rmrr->end_address - rmrr->base_address + 1;
5102 5103 5104 5105

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5106
			resv = iommu_alloc_resv_region(rmrr->base_address,
5107
						       length, prot, type);
5108 5109 5110 5111
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5112 5113
		}
	}
5114
	up_read(&dmar_global_lock);
5115

5116 5117 5118 5119 5120
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5121
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5122
						   IOMMU_RESV_DIRECT_RELAXABLE);
5123 5124 5125 5126 5127 5128
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5129 5130
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5131
				      0, IOMMU_RESV_MSI);
5132 5133 5134 5135 5136
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5137
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5138 5139 5140 5141 5142 5143 5144 5145
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5146
	domain = find_domain(dev);
5147 5148 5149 5150 5151 5152 5153
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5154
	info = get_domain_info(dev);
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5168 5169 5170
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5188 5189 5190 5191 5192 5193 5194
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5195 5196 5197 5198 5199 5200 5201
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int ret;

5202
	iommu = device_to_iommu(dev, NULL, NULL);
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5214
	info = get_domain_info(dev);
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5227
	info = get_domain_info(dev);
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5280 5281 5282 5283 5284 5285 5286 5287
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

5288 5289 5290 5291 5292 5293 5294 5295 5296
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
5322
	struct device_domain_info *info = get_domain_info(dev);
5323 5324 5325 5326 5327 5328 5329

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5330 5331 5332 5333 5334 5335 5336 5337 5338
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5339 5340 5341
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
5342
	return attach_deferred(dev);
5343 5344
}

5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
static int
intel_iommu_domain_get_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		return -ENODEV;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = !intel_iommu_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
	default:
		return -EINVAL;
	}
}

5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
/*
 * Check that the device does not live on an external facing PCI port that is
 * marked as untrusted. Such devices should not be able to apply quirks and
 * thus not be able to bypass the IOMMU restrictions.
 */
static bool risky_device(struct pci_dev *pdev)
{
	if (pdev->untrusted) {
		pci_info(pdev,
			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
			 pdev->vendor, pdev->device);
		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
		return true;
	}
	return false;
}

5414
const struct iommu_ops intel_iommu_ops = {
5415 5416 5417
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
5418
	.domain_get_attr        = intel_iommu_domain_get_attr,
5419
	.domain_set_attr	= intel_iommu_domain_set_attr,
5420 5421
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
5422 5423
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
5424
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
5425 5426
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
5427
	.flush_iotlb_all        = intel_flush_iotlb_all,
5428
	.iotlb_sync		= intel_iommu_tlb_sync,
5429
	.iova_to_phys		= intel_iommu_iova_to_phys,
5430
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
5431
	.probe_finalize		= intel_iommu_probe_finalize,
5432
	.release_device		= intel_iommu_release_device,
5433
	.get_resv_regions	= intel_iommu_get_resv_regions,
5434
	.put_resv_regions	= generic_iommu_put_resv_regions,
5435
	.device_group		= intel_iommu_device_group,
5436 5437 5438 5439
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
5440
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
5441
	.def_domain_type	= device_def_domain_type,
5442
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
5443
#ifdef CONFIG_INTEL_IOMMU_SVM
5444
	.cache_invalidate	= intel_iommu_sva_invalidate,
5445 5446
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
5447 5448 5449
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
5450
	.page_response		= intel_svm_page_response,
5451
#endif
5452
};
5453

5454
static void quirk_iommu_igfx(struct pci_dev *dev)
5455
{
5456 5457 5458
	if (risky_device(dev))
		return;

5459
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5460 5461 5462
	dmar_map_gfx = 0;
}

5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
5497

5498
static void quirk_iommu_rwbf(struct pci_dev *dev)
5499
{
5500 5501 5502
	if (risky_device(dev))
		return;

5503 5504
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
5505
	 * but needs it. Same seems to hold for the desktop versions.
5506
	 */
5507
	pci_info(dev, "Forcing write-buffer flush capability\n");
5508 5509 5510 5511
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5512 5513 5514 5515 5516 5517
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5518

5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

5529
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5530 5531 5532
{
	unsigned short ggc;

5533 5534 5535
	if (risky_device(dev))
		return;

5536
	if (pci_read_config_word(dev, GGC, &ggc))
5537 5538
		return;

5539
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5540
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5541
		dmar_map_gfx = 0;
5542 5543
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
5544
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5545 5546
		intel_iommu_strict = 1;
       }
5547 5548 5549 5550 5551 5552
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
{
	unsigned short ver;

	if (!IS_GFX_DEVICE(dev))
		return;

	ver = (dev->device >> 8) & 0xff;
	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
	    ver != 0x9a)
		return;

	if (risky_device(dev))
		return;

	pci_info(dev, "Skip IOMMU disabling for graphics\n");
	iommu_skip_te_disable = 1;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);

5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
5590 5591 5592 5593 5594 5595

	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

5596 5597 5598 5599 5600 5601 5602 5603 5604
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

5605 5606 5607 5608 5609
	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
5638 5639

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5640 5641
	       vtisochctrl);
}