iommu.c 157.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "../irq_remapping.h"
L
Lu Baolu 已提交
51
#include "intel-pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298

299 300 301 302
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

303 304 305 306 307
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
308
	struct dmar_dev_scope *devices;	/* target devices */
309 310 311 312 313 314
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
315
	struct dmar_dev_scope *devices;	/* target devices */
316 317 318 319 320 321 322 323 324 325
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
326 327 328
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

329
static void domain_exit(struct dmar_domain *domain);
330
static void domain_remove_dev_info(struct dmar_domain *domain);
331
static void dmar_remove_one_dev_info(struct device *dev);
332
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
333 334
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
335 336
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
337

338
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
339 340 341
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
342
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
343

344
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
345 346
int intel_iommu_sm = 1;
#else
347
int intel_iommu_sm;
348
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
349

350 351 352
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

353
static int dmar_map_gfx = 1;
354
static int dmar_forcedac;
M
mark gross 已提交
355
static int intel_iommu_strict;
356
static int intel_iommu_superpage = 1;
357
static int iommu_identity_mapping;
358
static int intel_no_bounce;
359

360 361
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
362

363 364 365
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

366
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
367
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

	info = dev->archdata.iommu;
	if (unlikely(info == DUMMY_DEVICE_DOMAIN_INFO ||
		     info == DEFER_DEVICE_DOMAIN_INFO))
		return NULL;

	return info;
}

383
DEFINE_SPINLOCK(device_domain_lock);
384 385
static LIST_HEAD(device_domain_list);

386 387 388
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

389 390
/*
 * Iterate over elements in device_domain_list and call the specified
391
 * callback @fn against each element.
392 393 394 395 396
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
397
	unsigned long flags;
398 399
	struct device_domain_info *info;

400
	spin_lock_irqsave(&device_domain_lock, flags);
401 402
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
403 404
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
405
			return ret;
406
		}
407
	}
408
	spin_unlock_irqrestore(&device_domain_lock, flags);
409 410 411 412

	return 0;
}

413
const struct iommu_ops intel_iommu_ops;
414

415 416 417 418 419
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

420 421 422 423 424
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

425 426 427 428 429 430 431 432 433
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

434 435 436 437 438
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
439 440
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
441
			pr_info("IOMMU enabled\n");
442
		} else if (!strncmp(str, "off", 3)) {
443
			dmar_disabled = 1;
444
			no_platform_optin = 1;
J
Joerg Roedel 已提交
445
			pr_info("IOMMU disabled\n");
446 447
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
448
			pr_info("Disable GFX device mapping\n");
449
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
450
			pr_info("Forcing DAC for PCI devices\n");
451
			dmar_forcedac = 1;
M
mark gross 已提交
452
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
453
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
454
			intel_iommu_strict = 1;
455
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
456
			pr_info("Disable supported super page\n");
457
			intel_iommu_superpage = 0;
458 459 460
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
461
		} else if (!strncmp(str, "tboot_noforce", 13)) {
462
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
463
			intel_iommu_tboot_noforce = 1;
464 465 466
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
467 468 469 470 471 472 473 474 475 476 477 478 479
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

480 481
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
482 483 484 485 486 487 488 489
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
490 491 492 493 494
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
495 496 497 498 499 500 501 502 503 504 505 506 507
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
508 509
}

510
void *alloc_pgtable_page(int node)
511
{
512 513
	struct page *page;
	void *vaddr = NULL;
514

515 516 517
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
518
	return vaddr;
519 520
}

521
void free_pgtable_page(void *vaddr)
522 523 524 525 526 527
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
528
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
529 530
}

K
Kay, Allen M 已提交
531
static void free_domain_mem(void *vaddr)
532 533 534 535 536 537
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
538
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
539 540 541 542 543 544 545
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

546 547 548 549 550
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

551 552 553 554 555
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

556 557 558 559 560 561 562 563
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
564
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
565 566 567 568 569
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
570
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
571 572 573 574 575 576 577 578
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

597
/* This functionin only returns single iommu in a domain */
598
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
599 600 601
{
	int iommu_id;

602
	/* si_domain and vm domain should not get here. */
603 604 605
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

606 607 608
	for_each_domain_iommu(iommu_id, domain)
		break;

609 610 611 612 613 614
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

615 616 617 618 619 620
static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
{
	return sm_supported(iommu) ?
			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
}

W
Weidong Han 已提交
621 622
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
623 624
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
625 626
	bool found = false;
	int i;
627

628
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
629

630
	for_each_domain_iommu(i, domain) {
631
		found = true;
632
		if (!iommu_paging_structure_coherency(g_iommus[i])) {
W
Weidong Han 已提交
633 634 635 636
			domain->iommu_coherency = 0;
			break;
		}
	}
637 638 639 640 641 642
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
643
		if (!iommu_paging_structure_coherency(iommu)) {
644 645 646 647 648
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
649 650
}

651
static int domain_update_iommu_snooping(struct intel_iommu *skip)
652
{
653 654 655
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
656

657 658 659 660 661 662 663
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
664 665
		}
	}
666 667 668
	rcu_read_unlock();

	return ret;
669 670
}

671 672
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
673
{
674
	struct dmar_drhd_unit *drhd;
675
	struct intel_iommu *iommu;
676
	int mask = 0x3;
677 678

	if (!intel_iommu_superpage) {
679
		return 0;
680 681
	}

682
	/* set iommu_superpage to the smallest common denominator */
683
	rcu_read_lock();
684
	for_each_active_iommu(iommu, drhd) {
685
		if (iommu != skip) {
686 687 688 689 690 691 692
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

693 694
			if (!mask)
				break;
695 696
		}
	}
697 698
	rcu_read_unlock();

699
	return fls(mask);
700 701
}

702 703 704 705
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
706
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
707
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
708 709
}

710 711
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
712 713 714 715 716
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

717
	entry = &root->lo;
718
	if (sm_supported(iommu)) {
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

744 745 746 747 748
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

749 750 751 752 753
static bool attach_deferred(struct device *dev)
{
	return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

781
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
782 783
{
	struct dmar_drhd_unit *drhd = NULL;
784
	struct intel_iommu *iommu;
785
	struct device *tmp;
786
	struct pci_dev *pdev = NULL;
787
	u16 segment = 0;
788 789
	int i;

790 791 792
	if (iommu_dummy(dev))
		return NULL;

793
	if (dev_is_pci(dev)) {
794 795
		struct pci_dev *pf_pdev;

796
		pdev = pci_real_dma_dev(to_pci_dev(dev));
797

798 799 800 801
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
802
		segment = pci_domain_nr(pdev->bus);
803
	} else if (has_acpi_companion(dev))
804 805
		dev = &ACPI_COMPANION(dev)->dev;

806
	rcu_read_lock();
807
	for_each_active_iommu(iommu, drhd) {
808
		if (pdev && segment != drhd->segment)
809
			continue;
810

811
		for_each_active_dev_scope(drhd->devices,
812 813
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
814 815 816 817
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
818
				if (pdev && pdev->is_virtfn)
819 820
					goto got_pdev;

821 822
				*bus = drhd->devices[i].bus;
				*devfn = drhd->devices[i].devfn;
823
				goto out;
824 825
			}

826
			if (is_downstream_to_pci_bridge(dev, tmp))
827
				goto got_pdev;
828
		}
829

830 831 832 833
		if (pdev && drhd->include_all) {
		got_pdev:
			*bus = pdev->bus->number;
			*devfn = pdev->devfn;
834
			goto out;
835
		}
836
	}
837
	iommu = NULL;
838
 out:
839
	rcu_read_unlock();
840

841
	return iommu;
842 843
}

W
Weidong Han 已提交
844 845 846 847 848 849 850
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

851 852 853
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
854
	int ret = 0;
855 856 857
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
858 859 860
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
876
		context = iommu_context_addr(iommu, i, 0, 0);
877 878
		if (context)
			free_pgtable_page(context);
879

880
		if (!sm_supported(iommu))
881 882 883 884 885 886
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

887 888 889 890 891 892 893
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

894
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
895
				      unsigned long pfn, int *target_level)
896
{
897
	struct dma_pte *parent, *pte;
898
	int level = agaw_to_level(domain->agaw);
899
	int offset;
900 901

	BUG_ON(!domain->pgd);
902

903
	if (!domain_pfn_supported(domain, pfn))
904 905 906
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

907 908
	parent = domain->pgd;

909
	while (1) {
910 911
		void *tmp_page;

912
		offset = pfn_level_offset(pfn, level);
913
		pte = &parent[offset];
914
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
915
			break;
916
		if (level == *target_level)
917 918
			break;

919
		if (!dma_pte_present(pte)) {
920 921
			uint64_t pteval;

922
			tmp_page = alloc_pgtable_page(domain->nid);
923

924
			if (!tmp_page)
925
				return NULL;
926

927
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
928
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
929
			if (domain_use_first_level(domain))
930
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
931
			if (cmpxchg64(&pte->val, 0ULL, pteval))
932 933
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
934
			else
935
				domain_flush_cache(domain, pte, sizeof(*pte));
936
		}
937 938 939
		if (level == 1)
			break;

940
		parent = phys_to_virt(dma_pte_addr(pte));
941 942 943
		level--;
	}

944 945 946
	if (!*target_level)
		*target_level = level;

947 948 949 950
	return pte;
}

/* return address's pte at specific level */
951 952
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
953
					 int level, int *large_page)
954
{
955
	struct dma_pte *parent, *pte;
956 957 958 959 960
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
961
		offset = pfn_level_offset(pfn, total);
962 963 964 965
		pte = &parent[offset];
		if (level == total)
			return pte;

966 967
		if (!dma_pte_present(pte)) {
			*large_page = total;
968
			break;
969 970
		}

971
		if (dma_pte_superpage(pte)) {
972 973 974 975
			*large_page = total;
			return pte;
		}

976
		parent = phys_to_virt(dma_pte_addr(pte));
977 978 979 980 981 982
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
983
static void dma_pte_clear_range(struct dmar_domain *domain,
984 985
				unsigned long start_pfn,
				unsigned long last_pfn)
986
{
987
	unsigned int large_page;
988
	struct dma_pte *first_pte, *pte;
989

990 991
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
992
	BUG_ON(start_pfn > last_pfn);
993

994
	/* we don't need lock here; nobody else touches the iova range */
995
	do {
996 997
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
998
		if (!pte) {
999
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1000 1001
			continue;
		}
1002
		do {
1003
			dma_clear_pte(pte);
1004
			start_pfn += lvl_to_nr_pages(large_page);
1005
			pte++;
1006 1007
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1008 1009
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1010 1011

	} while (start_pfn && start_pfn <= last_pfn);
1012 1013
}

1014
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1015 1016 1017
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1029
		level_pfn = pfn & level_mask(level);
1030 1031
		level_pte = phys_to_virt(dma_pte_addr(pte));

1032 1033 1034 1035 1036
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1037

1038 1039 1040 1041 1042
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1043
		      last_pfn < level_pfn + level_size(level) - 1)) {
1044 1045 1046 1047 1048 1049 1050 1051 1052
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1053 1054 1055 1056
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1057
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1058
				   unsigned long start_pfn,
1059 1060
				   unsigned long last_pfn,
				   int retain_level)
1061
{
1062 1063
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1064
	BUG_ON(start_pfn > last_pfn);
1065

1066 1067
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1068
	/* We don't need lock here; nobody else touches the iova range */
1069
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1070
			   domain->pgd, 0, start_pfn, last_pfn);
1071

1072
	/* free pgd */
1073
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1074 1075 1076 1077 1078
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1098 1099
	pte = page_address(pg);
	do {
1100 1101 1102
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1103 1104
		pte++;
	} while (!first_pte_in_page(pte));
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1161 1162 1163
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1164
{
1165
	struct page *freelist;
1166

1167 1168
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1187
static void dma_free_pagelist(struct page *freelist)
1188 1189 1190 1191 1192 1193 1194 1195 1196
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1197 1198 1199 1200 1201 1202 1203
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1204 1205 1206 1207 1208 1209
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1210
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1211
	if (!root) {
J
Joerg Roedel 已提交
1212
		pr_err("Allocating root entry for %s failed\n",
1213
			iommu->name);
1214
		return -ENOMEM;
1215
	}
1216

F
Fenghua Yu 已提交
1217
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1228
	u64 addr;
1229
	u32 sts;
1230 1231
	unsigned long flag;

1232
	addr = virt_to_phys(iommu->root_entry);
1233 1234
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1235

1236
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1237
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1238

1239
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1240 1241 1242

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1243
		      readl, (sts & DMA_GSTS_RTPS), sts);
1244

1245
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1246 1247
}

1248
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1249 1250 1251 1252
{
	u32 val;
	unsigned long flag;

1253
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1254 1255
		return;

1256
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1257
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1258 1259 1260

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1261
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1262

1263
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1264 1265 1266
}

/* return value determine if we need a write buffer flush */
1267 1268 1269
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1290
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1291 1292 1293 1294 1295 1296
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1297
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1298 1299 1300
}

/* return value determine if we need a write buffer flush */
1301 1302
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1318
		/* IH bit is passed in as part of address */
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1336
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1337 1338 1339 1340 1341 1342 1343 1344 1345
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1346
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1347 1348 1349

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1350
		pr_err("Flush IOTLB failed\n");
1351
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1352
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1353 1354
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1355 1356
}

1357 1358 1359
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1360 1361 1362
{
	struct device_domain_info *info;

1363 1364
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1365 1366 1367 1368
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1369 1370
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1371 1372
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1373 1374 1375
			break;
		}

1376
	return NULL;
Y
Yu Zhao 已提交
1377 1378
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1402
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1403
{
1404 1405
	struct pci_dev *pdev;

1406 1407
	assert_spin_locked(&device_domain_lock);

1408
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1409 1410
		return;

1411
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1424
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1425
	}
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1436 1437 1438
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1439 1440
		info->pri_enabled = 1;
#endif
1441
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1442
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1443
		info->ats_enabled = 1;
1444
		domain_update_iotlb(info->domain);
1445 1446
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1447 1448 1449 1450
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1451 1452
	struct pci_dev *pdev;

1453 1454
	assert_spin_locked(&device_domain_lock);

1455
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1456 1457
		return;

1458 1459 1460 1461 1462
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1463
		domain_update_iotlb(info->domain);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1484 1485 1486
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1487 1488
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1489
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1490 1491 1492
			continue;

		sid = info->bus << 8 | info->devfn;
1493
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1494 1495
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1496 1497 1498 1499
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1514 1515 1516 1517
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1518
{
1519
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1520
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1521
	u16 did = domain->iommu_did[iommu->seq_id];
1522 1523 1524

	BUG_ON(pages == 0);

1525 1526
	if (ih)
		ih = 1 << 6;
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1544 1545

	/*
1546 1547
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1548
	 */
1549
	if (!cap_caching_mode(iommu->cap) || !map)
1550
		iommu_flush_dev_iotlb(domain, addr, mask);
1551 1552
}

1553 1554 1555 1556 1557
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1558 1559 1560 1561 1562
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1563 1564 1565 1566 1567
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

1579 1580 1581 1582 1583
		if (domain_use_first_level(domain))
			domain_flush_piotlb(iommu, domain, 0, -1, 0);
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1584 1585 1586 1587 1588 1589 1590

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1591 1592 1593 1594 1595
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1596 1597 1598
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1599
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1600 1601 1602 1603 1604 1605 1606 1607
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1608
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1609 1610
}

1611
static void iommu_enable_translation(struct intel_iommu *iommu)
1612 1613 1614 1615
{
	u32 sts;
	unsigned long flags;

1616
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1617 1618
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1619 1620 1621

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1622
		      readl, (sts & DMA_GSTS_TES), sts);
1623

1624
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1625 1626
}

1627
static void iommu_disable_translation(struct intel_iommu *iommu)
1628 1629 1630 1631
{
	u32 sts;
	unsigned long flag;

1632
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1633 1634 1635 1636 1637
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1638
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1639

1640
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1641 1642 1643 1644
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1645 1646
	u32 ndomains, nlongs;
	size_t size;
1647 1648

	ndomains = cap_ndoms(iommu->cap);
1649
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1650
		 iommu->name, ndomains);
1651 1652
	nlongs = BITS_TO_LONGS(ndomains);

1653 1654
	spin_lock_init(&iommu->lock);

1655 1656
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1657 1658
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1659 1660
		return -ENOMEM;
	}
1661

1662
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1663 1664 1665 1666 1667 1668 1669 1670
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1671 1672
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1673
		kfree(iommu->domain_ids);
1674
		kfree(iommu->domains);
1675
		iommu->domain_ids = NULL;
1676
		iommu->domains    = NULL;
1677 1678 1679 1680
		return -ENOMEM;
	}

	/*
1681 1682 1683 1684
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1685
	 */
1686 1687
	set_bit(0, iommu->domain_ids);

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1698 1699 1700
	return 0;
}

1701
static void disable_dmar_iommu(struct intel_iommu *iommu)
1702
{
1703
	struct device_domain_info *info, *tmp;
1704
	unsigned long flags;
1705

1706 1707
	if (!iommu->domains || !iommu->domain_ids)
		return;
1708

1709
	spin_lock_irqsave(&device_domain_lock, flags);
1710 1711 1712 1713 1714 1715 1716
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1717
		__dmar_remove_one_dev_info(info);
1718
	}
1719
	spin_unlock_irqrestore(&device_domain_lock, flags);
1720 1721 1722

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1723
}
1724

1725 1726 1727
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1728
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1729 1730 1731 1732
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1733 1734 1735 1736 1737
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1738

W
Weidong Han 已提交
1739 1740
	g_iommus[iommu->seq_id] = NULL;

1741 1742
	/* free context mapping */
	free_context_table(iommu);
1743 1744

#ifdef CONFIG_INTEL_IOMMU_SVM
1745
	if (pasid_supported(iommu)) {
1746 1747 1748
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1749 1750 1751
	if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap))
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1752
#endif
1753 1754
}

1755 1756
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1757
 * DMA translation.
1758 1759 1760 1761 1762
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1763
	static int first_level_support = -1;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1782
static struct dmar_domain *alloc_domain(int flags)
1783 1784 1785 1786 1787 1788 1789
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1790
	memset(domain, 0, sizeof(*domain));
1791
	domain->nid = NUMA_NO_NODE;
1792
	domain->flags = flags;
1793 1794
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1795
	domain->has_iotlb_device = false;
1796
	INIT_LIST_HEAD(&domain->devices);
1797 1798 1799 1800

	return domain;
}

1801 1802
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1803 1804
			       struct intel_iommu *iommu)
{
1805
	unsigned long ndomains;
1806
	int num;
1807

1808
	assert_spin_locked(&device_domain_lock);
1809
	assert_spin_locked(&iommu->lock);
1810

1811 1812 1813
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1814
		ndomains = cap_ndoms(iommu->cap);
1815 1816 1817 1818 1819 1820
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1821
			return -ENOSPC;
1822
		}
1823

1824 1825 1826 1827 1828
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1829 1830 1831

		domain_update_iommu_cap(domain);
	}
1832

1833
	return 0;
1834 1835 1836 1837 1838
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1839
	int num, count;
1840

1841
	assert_spin_locked(&device_domain_lock);
1842
	assert_spin_locked(&iommu->lock);
1843

1844 1845 1846
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1847 1848 1849
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1850 1851

		domain_update_iommu_cap(domain);
1852
		domain->iommu_did[iommu->seq_id] = 0;
1853 1854 1855 1856 1857
	}

	return count;
}

1858
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1859
static struct lock_class_key reserved_rbtree_key;
1860

1861
static int dmar_init_reserved_ranges(void)
1862 1863 1864 1865 1866
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1867
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1868

M
Mark Gross 已提交
1869 1870 1871
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1872 1873 1874
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1875
	if (!iova) {
J
Joerg Roedel 已提交
1876
		pr_err("Reserve IOAPIC range failed\n");
1877 1878
		return -ENODEV;
	}
1879 1880 1881 1882 1883 1884 1885 1886 1887

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1888 1889 1890
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1891
			if (!iova) {
1892
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1893 1894
				return -ENODEV;
			}
1895 1896
		}
	}
1897
	return 0;
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

1917
	/* Remove associated devices and clear attached or cached domains */
1918
	domain_remove_dev_info(domain);
1919

1920
	/* destroy iovas */
1921 1922
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
		put_iova_domain(&domain->iovad);
1923

1924 1925
	if (domain->pgd) {
		struct page *freelist;
1926

1927 1928 1929
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
1930

1931 1932 1933
	free_domain_mem(domain);
}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

1983 1984
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
1985
				      struct pasid_table *table,
1986
				      u8 bus, u8 devfn)
1987
{
1988
	u16 did = domain->iommu_did[iommu->seq_id];
1989 1990
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
1991 1992
	struct context_entry *context;
	unsigned long flags;
1993
	int ret;
1994

1995 1996
	WARN_ON(did == 0);

1997 1998
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
1999 2000 2001

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2002

2003
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2004

2005 2006 2007 2008
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2009
	context = iommu_context_addr(iommu, bus, devfn, 1);
2010
	if (!context)
2011
		goto out_unlock;
2012

2013 2014 2015
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2029
		if (did_old < cap_ndoms(iommu->cap)) {
2030 2031 2032 2033
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2034 2035 2036
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2037 2038
	}

2039
	context_clear_entry(context);
2040

2041 2042
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2053 2054

		/*
2055 2056
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2057
		 */
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2097 2098

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2099
	}
F
Fenghua Yu 已提交
2100

2101 2102
	context_set_fault_enable(context);
	context_set_present(context);
2103 2104
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(context, sizeof(*context));
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2117
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2118
	} else {
2119
		iommu_flush_write_buffer(iommu);
2120
	}
Y
Yu Zhao 已提交
2121
	iommu_enable_dev_iotlb(info);
2122

2123 2124 2125 2126 2127
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2128

2129
	return ret;
2130 2131
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2148
static int
2149
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2150
{
2151
	struct domain_context_mapping_data data;
2152
	struct pasid_table *table;
2153
	struct intel_iommu *iommu;
2154
	u8 bus, devfn;
2155

2156
	iommu = device_to_iommu(dev, &bus, &devfn);
2157 2158
	if (!iommu)
		return -ENODEV;
2159

2160
	table = intel_pasid_get_table(dev);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2172 2173 2174 2175 2176 2177 2178 2179
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2180 2181
}

2182
static int domain_context_mapped(struct device *dev)
2183
{
W
Weidong Han 已提交
2184
	struct intel_iommu *iommu;
2185
	u8 bus, devfn;
W
Weidong Han 已提交
2186

2187
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2188 2189
	if (!iommu)
		return -ENODEV;
2190

2191 2192
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2193

2194 2195
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2234 2235 2236
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2237 2238
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2239
	phys_addr_t uninitialized_var(pteval);
2240
	unsigned long sg_res = 0;
2241 2242
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2243
	u64 attr;
2244

2245
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2246 2247 2248 2249

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2250 2251
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
2252
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2253

2254 2255
	if (!sg) {
		sg_res = nr_pages;
2256
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2257 2258
	}

2259
	while (nr_pages > 0) {
2260 2261
		uint64_t tmp;

2262
		if (!sg_res) {
2263 2264
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2265
			sg_res = aligned_nrpages(sg->offset, sg->length);
2266
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2267
			sg->dma_length = sg->length;
2268
			pteval = (sg_phys(sg) - pgoff) | attr;
2269
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2270
		}
2271

2272
		if (!pte) {
2273 2274
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2275
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2276 2277
			if (!pte)
				return -ENOMEM;
2278
			/* It is large page*/
2279
			if (largepage_lvl > 1) {
2280 2281
				unsigned long nr_superpages, end_pfn;

2282
				pteval |= DMA_PTE_LARGE_PAGE;
2283
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2284 2285 2286 2287

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2288 2289
				/*
				 * Ensure that old small page tables are
2290
				 * removed to make room for superpage(s).
2291 2292
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2293
				 */
2294 2295
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2296
			} else {
2297
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2298
			}
2299

2300 2301 2302 2303
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2304
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2305
		if (tmp) {
2306
			static int dumps = 5;
J
Joerg Roedel 已提交
2307 2308
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2309 2310 2311 2312 2313 2314
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2338
		pte++;
2339 2340
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2341 2342 2343 2344
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2345 2346

		if (!sg_res && nr_pages)
2347 2348 2349 2350 2351
			sg = sg_next(sg);
	}
	return 0;
}

2352
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2353 2354 2355
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2356
	int iommu_id, ret;
2357 2358 2359 2360 2361 2362 2363
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2364 2365
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2366 2367 2368 2369
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2370 2371
}

2372 2373 2374
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2375
{
2376
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2377
}
2378

2379 2380 2381 2382
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2383
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2384 2385
}

2386
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2387
{
2388 2389 2390 2391
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2392 2393
	if (!iommu)
		return;
2394

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2415 2416
}

2417 2418 2419 2420 2421 2422
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2423
		info->dev->archdata.iommu = NULL;
2424 2425
}

2426 2427
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2428
	struct device_domain_info *info, *tmp;
2429
	unsigned long flags;
2430 2431

	spin_lock_irqsave(&device_domain_lock, flags);
2432
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2433
		__dmar_remove_one_dev_info(info);
2434 2435 2436
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2437
struct dmar_domain *find_domain(struct device *dev)
2438 2439 2440
{
	struct device_domain_info *info;

2441
	if (unlikely(attach_deferred(dev) || iommu_dummy(dev)))
2442 2443 2444
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2445
	info = get_domain_info(dev);
2446 2447 2448 2449 2450 2451
	if (likely(info))
		return info->domain;

	return NULL;
}

2452
static void do_deferred_attach(struct device *dev)
2453
{
2454
	struct iommu_domain *domain;
2455

2456 2457 2458 2459 2460 2461
	dev->archdata.iommu = NULL;
	domain = iommu_get_domain_for_dev(dev);
	if (domain)
		intel_iommu_attach_device(domain, dev);
}

2462
static inline struct device_domain_info *
2463 2464 2465 2466 2467
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2468
		if (info->segment == segment && info->bus == bus &&
2469
		    info->devfn == devfn)
2470
			return info;
2471 2472 2473 2474

	return NULL;
}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
				    int pasid)
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2505 2506 2507 2508 2509 2510
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2511 2512 2513 2514
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2515
{
2516
	struct dmar_domain *found = NULL;
2517 2518
	struct device_domain_info *info;
	unsigned long flags;
2519
	int ret;
2520 2521 2522

	info = alloc_devinfo_mem();
	if (!info)
2523
		return NULL;
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2537 2538 2539
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2540 2541
	info->dev = dev;
	info->domain = domain;
2542
	info->iommu = iommu;
2543
	info->pasid_table = NULL;
2544
	info->auxd_enabled = 0;
2545
	INIT_LIST_HEAD(&info->auxiliary_domains);
2546

2547 2548 2549
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2550 2551
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2552 2553 2554
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2555 2556
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2568 2569
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2570
		found = find_domain(dev);
2571 2572

	if (!found) {
2573
		struct device_domain_info *info2;
2574 2575
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2576 2577 2578 2579
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2580
	}
2581

2582 2583 2584
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2585 2586
		/* Caller must free the original domain */
		return found;
2587 2588
	}

2589 2590 2591 2592 2593
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2594
		spin_unlock_irqrestore(&device_domain_lock, flags);
2595
		free_devinfo_mem(info);
2596 2597 2598
		return NULL;
	}

2599 2600 2601 2602
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2603
	spin_unlock_irqrestore(&device_domain_lock, flags);
2604

2605 2606
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2607 2608
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2609
			dev_err(dev, "PASID table allocation failed\n");
2610
			dmar_remove_one_dev_info(dev);
2611
			return NULL;
2612
		}
2613 2614 2615 2616 2617 2618

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2619 2620 2621
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2622 2623 2624 2625 2626
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2627
			dev_err(dev, "Setup RID2PASID failed\n");
2628
			dmar_remove_one_dev_info(dev);
2629
			return NULL;
2630 2631
		}
	}
2632

2633
	if (dev && domain_context_mapping(domain, dev)) {
2634
		dev_err(dev, "Domain context map failed\n");
2635
		dmar_remove_one_dev_info(dev);
2636 2637 2638
		return NULL;
	}

2639
	return domain;
2640 2641
}

2642
static int iommu_domain_identity_map(struct dmar_domain *domain,
2643 2644
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2645 2646 2647 2648 2649
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2650
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2651

2652 2653 2654
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2655 2656
}

2657 2658
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2659
static int __init si_domain_init(int hw)
2660
{
2661 2662 2663
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2664

2665
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2666 2667 2668
	if (!si_domain)
		return -EFAULT;

2669
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2670 2671 2672 2673
		domain_exit(si_domain);
		return -EFAULT;
	}

2674 2675 2676
	if (hw)
		return 0;

2677
	for_each_online_node(nid) {
2678 2679 2680 2681 2682
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2683 2684
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2685 2686 2687
			if (ret)
				return ret;
		}
2688 2689
	}

2690
	/*
2691 2692
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

2704 2705 2706
			ret = iommu_domain_identity_map(si_domain,
					mm_to_dma_pfn(start >> PAGE_SHIFT),
					mm_to_dma_pfn(end >> PAGE_SHIFT));
2707 2708 2709 2710 2711
			if (ret)
				return ret;
		}
	}

2712 2713 2714
	return 0;
}

2715
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2716
{
2717
	struct dmar_domain *ndomain;
2718
	struct intel_iommu *iommu;
2719
	u8 bus, devfn;
2720

2721
	iommu = device_to_iommu(dev, &bus, &devfn);
2722 2723 2724
	if (!iommu)
		return -ENODEV;

2725
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2726 2727
	if (ndomain != domain)
		return -EBUSY;
2728 2729 2730 2731

	return 0;
}

2732
static bool device_has_rmrr(struct device *dev)
2733 2734
{
	struct dmar_rmrr_unit *rmrr;
2735
	struct device *tmp;
2736 2737
	int i;

2738
	rcu_read_lock();
2739
	for_each_rmrr_units(rmrr) {
2740 2741 2742 2743 2744 2745
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2746 2747
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2748
				rcu_read_unlock();
2749
				return true;
2750
			}
2751
	}
2752
	rcu_read_unlock();
2753 2754 2755
	return false;
}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2799 2800
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2801 2802 2803 2804 2805 2806
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2807 2808
	if (device_rmrr_is_relaxable(dev))
		return false;
2809 2810 2811 2812

	return true;
}

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2824
static int device_def_domain_type(struct device *dev)
2825
{
2826 2827
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2828

2829 2830 2831 2832 2833
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2834
			return IOMMU_DOMAIN_DMA;
2835

2836
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2837
			return IOMMU_DOMAIN_IDENTITY;
2838

2839
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2840
			return IOMMU_DOMAIN_IDENTITY;
2841
	}
2842

2843
	return 0;
2844 2845
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2872
		pr_info("%s: Using Register based invalidation\n",
2873 2874 2875 2876
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2877
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2878 2879 2880
	}
}

2881
static int copy_context_table(struct intel_iommu *iommu,
2882
			      struct root_entry *old_re,
2883 2884 2885
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2886
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2887
	struct context_entry *new_ce = NULL, ce;
2888
	struct context_entry *old_ce = NULL;
2889
	struct root_entry re;
2890 2891 2892
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2893
	memcpy(&re, old_re, sizeof(re));
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2909
				memunmap(old_ce);
2910 2911 2912

			ret = 0;
			if (devfn < 0x80)
2913
				old_ce_phys = root_entry_lctp(&re);
2914
			else
2915
				old_ce_phys = root_entry_uctp(&re);
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
2928 2929
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
2941
		memcpy(&ce, old_ce + idx, sizeof(ce));
2942

2943
		if (!__context_present(&ce))
2944 2945
			continue;

2946 2947 2948 2949
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

2969 2970 2971 2972 2973 2974 2975 2976
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
2977
	memunmap(old_ce);
2978 2979 2980 2981 2982 2983 2984 2985

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
2986
	struct root_entry *old_rt;
2987 2988 2989 2990 2991
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
2992
	bool new_ext, ext;
2993 2994 2995

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3006 3007 3008 3009 3010

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3011
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3012 3013 3014 3015 3016 3017
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3018
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3060
	memunmap(old_rt);
3061 3062 3063 3064

	return ret;
}

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
	if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap))
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3144
static int __init init_dmars(void)
3145 3146 3147
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3148
	int ret;
3149

3150 3151 3152 3153 3154 3155 3156
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3157 3158 3159 3160 3161
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3162
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3163 3164 3165
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3166
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3167 3168
	}

3169 3170 3171 3172
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3173 3174 3175
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3176
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3177 3178 3179 3180
		ret = -ENOMEM;
		goto error;
	}

3181 3182 3183 3184 3185 3186
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3187 3188 3189 3190 3191
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3192
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3193 3194 3195 3196 3197 3198
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3199
		g_iommus[iommu->seq_id] = iommu;
3200

3201 3202
		intel_iommu_init_qi(iommu);

3203 3204
		ret = iommu_init_domains(iommu);
		if (ret)
3205
			goto free_iommu;
3206

3207 3208
		init_translation_status(iommu);

3209 3210 3211 3212 3213 3214
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3215

3216 3217 3218
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3219
		 * among all IOMMU's. Need to Split it later.
3220 3221
		 */
		ret = iommu_alloc_root_entry(iommu);
3222
		if (ret)
3223
			goto free_iommu;
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3249
		if (!ecap_pass_through(iommu->ecap))
3250
			hw_pass_through = 0;
3251
		intel_svm_check(iommu);
3252 3253
	}

3254 3255 3256 3257 3258 3259 3260
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3261 3262 3263
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3264 3265 3266 3267 3268
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3269
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3270
	dmar_map_gfx = 0;
3271
#endif
3272

3273 3274 3275
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3276 3277
	check_tylersburg_isoch();

3278 3279 3280
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3281

3282 3283 3284 3285 3286 3287 3288
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3289
	for_each_iommu(iommu, drhd) {
3290 3291 3292 3293 3294 3295
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3296
				iommu_disable_protect_mem_regions(iommu);
3297
			continue;
3298
		}
3299 3300 3301

		iommu_flush_write_buffer(iommu);

3302
#ifdef CONFIG_INTEL_IOMMU_SVM
3303
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3304 3305 3306 3307 3308
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3309
			ret = intel_svm_enable_prq(iommu);
3310
			down_write(&dmar_global_lock);
3311 3312 3313 3314
			if (ret)
				goto free_iommu;
		}
#endif
3315 3316
		ret = dmar_set_interrupt(iommu);
		if (ret)
3317
			goto free_iommu;
3318 3319 3320
	}

	return 0;
3321 3322

free_iommu:
3323 3324
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3325
		free_dmar_iommu(iommu);
3326
	}
3327

W
Weidong Han 已提交
3328
	kfree(g_iommus);
3329

3330
error:
3331 3332 3333
	return ret;
}

3334
/* This takes a number of _MM_ pages, not VTD pages */
3335
static unsigned long intel_alloc_iova(struct device *dev,
3336 3337
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3338
{
3339
	unsigned long iova_pfn;
3340

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	/*
	 * Restrict dma_mask to the width that the iommu can handle.
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
				 dma_mask);
	else
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
				 dma_mask);

3356 3357
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3358 3359

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3360 3361
		/*
		 * First try to allocate an io virtual address in
3362
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3363
		 * from higher range
3364
		 */
3365
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3366
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3367 3368
		if (iova_pfn)
			return iova_pfn;
3369
	}
3370 3371
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3372
	if (unlikely(!iova_pfn)) {
3373 3374
		dev_err_once(dev, "Allocating %ld-page iova failed\n",
			     nrpages);
3375
		return 0;
3376 3377
	}

3378
	return iova_pfn;
3379 3380
}

3381 3382
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3383 3384
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3385
	phys_addr_t start_paddr;
3386
	unsigned long iova_pfn;
3387
	int prot = 0;
I
Ingo Molnar 已提交
3388
	int ret;
3389
	struct intel_iommu *iommu;
3390
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3391 3392

	BUG_ON(dir == DMA_NONE);
3393

L
Lu Baolu 已提交
3394 3395 3396
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3397
	domain = find_domain(dev);
3398
	if (!domain)
3399
		return DMA_MAPPING_ERROR;
3400

3401
	iommu = domain_get_iommu(domain);
3402
	size = aligned_nrpages(paddr, size);
3403

3404 3405
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3406 3407
		goto error;

3408 3409 3410 3411 3412
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3413
			!cap_zlr(iommu->cap))
3414 3415 3416 3417
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3418
	 * paddr - (paddr + size) might be partial page, we should map the whole
3419
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3420
	 * might have two guest_addr mapping to the same host paddr, but this
3421 3422
	 * is not a big problem
	 */
3423
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3424
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3425 3426 3427
	if (ret)
		goto error;

3428
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3429
	start_paddr += paddr & ~PAGE_MASK;
3430 3431 3432

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3433
	return start_paddr;
3434 3435

error:
3436
	if (iova_pfn)
3437
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3438 3439
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3440
	return DMA_MAPPING_ERROR;
3441 3442
}

3443 3444 3445
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3446
				 unsigned long attrs)
3447
{
L
Lu Baolu 已提交
3448 3449
	return __intel_map_single(dev, page_to_phys(page) + offset,
				  size, dir, *dev->dma_mask);
3450 3451 3452 3453 3454 3455
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
L
Lu Baolu 已提交
3456
	return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask);
3457 3458
}

3459
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3460
{
3461
	struct dmar_domain *domain;
3462
	unsigned long start_pfn, last_pfn;
3463
	unsigned long nrpages;
3464
	unsigned long iova_pfn;
3465
	struct intel_iommu *iommu;
3466
	struct page *freelist;
3467
	struct pci_dev *pdev = NULL;
3468

3469
	domain = find_domain(dev);
3470 3471
	BUG_ON(!domain);

3472 3473
	iommu = domain_get_iommu(domain);

3474
	iova_pfn = IOVA_PFN(dev_addr);
3475

3476
	nrpages = aligned_nrpages(dev_addr, size);
3477
	start_pfn = mm_to_dma_pfn(iova_pfn);
3478
	last_pfn = start_pfn + nrpages - 1;
3479

3480 3481 3482
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3483
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3484 3485
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3486
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3487
				      nrpages, !freelist, 0);
M
mark gross 已提交
3488
		/* free iova */
3489
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3490
		dma_free_pagelist(freelist);
M
mark gross 已提交
3491
	} else {
3492 3493
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3494 3495 3496 3497 3498
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3499 3500

	trace_unmap_single(dev, dev_addr, size);
3501 3502
}

3503 3504
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3505
			     unsigned long attrs)
3506
{
L
Lu Baolu 已提交
3507
	intel_unmap(dev, dev_addr, size);
3508 3509 3510 3511 3512
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
L
Lu Baolu 已提交
3513
	intel_unmap(dev, dev_addr, size);
3514 3515
}

3516
static void *intel_alloc_coherent(struct device *dev, size_t size,
3517
				  dma_addr_t *dma_handle, gfp_t flags,
3518
				  unsigned long attrs)
3519
{
3520 3521
	struct page *page = NULL;
	int order;
3522

L
Lu Baolu 已提交
3523 3524
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3525

3526 3527 3528 3529 3530 3531
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3532 3533
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3534 3535 3536 3537 3538 3539 3540 3541
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3542 3543 3544
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3545
	if (*dma_handle != DMA_MAPPING_ERROR)
3546 3547 3548
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3549

3550 3551 3552
	return NULL;
}

3553
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3554
				dma_addr_t dma_handle, unsigned long attrs)
3555
{
3556 3557 3558 3559 3560 3561 3562 3563 3564
	int order;
	struct page *page = virt_to_page(vaddr);

	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3565 3566
}

3567
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3568
			   int nelems, enum dma_data_direction dir,
3569
			   unsigned long attrs)
3570
{
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3581 3582

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3583 3584
}

3585
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3586
			enum dma_data_direction dir, unsigned long attrs)
3587 3588 3589
{
	int i;
	struct dmar_domain *domain;
3590 3591
	size_t size = 0;
	int prot = 0;
3592
	unsigned long iova_pfn;
3593
	int ret;
F
FUJITA Tomonori 已提交
3594
	struct scatterlist *sg;
3595
	unsigned long start_vpfn;
3596
	struct intel_iommu *iommu;
3597 3598

	BUG_ON(dir == DMA_NONE);
L
Lu Baolu 已提交
3599 3600 3601

	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3602

3603
	domain = find_domain(dev);
3604 3605 3606
	if (!domain)
		return 0;

3607 3608
	iommu = domain_get_iommu(domain);

3609
	for_each_sg(sglist, sg, nelems, i)
3610
		size += aligned_nrpages(sg->offset, sg->length);
3611

3612
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3613
				*dev->dma_mask);
3614
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3615
		sglist->dma_length = 0;
3616 3617 3618 3619 3620 3621 3622 3623
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3624
			!cap_zlr(iommu->cap))
3625 3626 3627 3628
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3629
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3630

3631
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3632 3633
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3634 3635
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3636
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3637
		return 0;
3638 3639
	}

3640 3641
	for_each_sg(sglist, sg, nelems, i)
		trace_map_sg(dev, i + 1, nelems, sg);
3642

3643 3644 3645
	return nelems;
}

3646 3647 3648 3649 3650
static u64 intel_get_required_mask(struct device *dev)
{
	return DMA_BIT_MASK(32);
}

3651
static const struct dma_map_ops intel_dma_ops = {
3652 3653
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3654 3655
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3656 3657
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3658
	.map_resource = intel_map_resource,
3659
	.unmap_resource = intel_unmap_resource,
3660
	.dma_supported = dma_direct_supported,
3661 3662
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3663
	.get_required_mask = intel_get_required_mask,
3664 3665
};

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3696 3697 3698
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3699
	domain = find_domain(dev);
3700

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
		tlb_addr = swiotlb_tbl_map_single(dev,
				__phys_to_dma(dev, io_tlb_start),
				paddr, size, aligned_size, dir, attrs);
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

3855 3856 3857
	for_each_sg(sglist, sg, nelems, i)
		trace_bounce_map_sg(dev, i + 1, nelems, sg);

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
	.dma_supported		= dma_direct_supported,
};

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3930
		pr_err("Couldn't create iommu_domain cache\n");
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3947
		pr_err("Couldn't create devinfo cache\n");
3948 3949 3950 3951 3952 3953 3954 3955 3956
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3957
	ret = iova_cache_get();
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3971
	iova_cache_put();
3972 3973 3974 3975 3976 3977 3978 3979

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3980
	iova_cache_put();
3981 3982
}

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
4004 4005 4006
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
4007
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4008
	}
4009 4010 4011
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

4012 4013 4014
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4015
	struct device *dev;
4016
	int i;
4017 4018 4019

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4020 4021 4022
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4023
			/* ignore DMAR unit if no devices exist */
4024 4025 4026 4027 4028
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4029 4030
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4031 4032
			continue;

4033 4034
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4035
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4036 4037 4038 4039
				break;
		if (i < drhd->devices_cnt)
			continue;

4040 4041
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4042
		if (!dmar_map_gfx) {
4043
			drhd->ignored = 1;
4044 4045
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
4046
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4047 4048 4049 4050
		}
	}
}

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4071

4072 4073 4074 4075 4076
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4077
					   DMA_CCMD_GLOBAL_INVL);
4078 4079
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4080
		iommu_disable_protect_mem_regions(iommu);
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4093
					   DMA_CCMD_GLOBAL_INVL);
4094
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4095
					 DMA_TLB_GLOBAL_FLUSH);
4096 4097 4098
	}
}

4099
static int iommu_suspend(void)
4100 4101 4102 4103 4104 4105
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4106
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4117
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4128
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4139
static void iommu_resume(void)
4140 4141 4142 4143 4144 4145
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4146 4147 4148 4149
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4150
		return;
4151 4152 4153 4154
	}

	for_each_active_iommu(iommu, drhd) {

4155
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4166
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4167 4168 4169 4170 4171 4172
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4173
static struct syscore_ops iommu_syscore_ops = {
4174 4175 4176 4177
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4178
static void __init init_iommu_pm_ops(void)
4179
{
4180
	register_syscore_ops(&iommu_syscore_ops);
4181 4182 4183
}

#else
4184
static inline void init_iommu_pm_ops(void) {}
4185 4186
#endif	/* CONFIG_PM */

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

4198
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4199 4200 4201
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4202 4203

	rmrr = (struct acpi_dmar_reserved_memory *)header;
4204 4205
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
4206 4207 4208 4209 4210 4211
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
4212 4213
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
4214 4215 4216

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4217
		goto out;
4218 4219

	rmrru->hdr = header;
4220

4221 4222
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4223

4224 4225 4226
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4227
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4228
		goto free_rmrru;
4229

4230
	list_add(&rmrru->list, &dmar_rmrr_units);
4231

4232
	return 0;
4233 4234 4235 4236
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4237 4238
}

4239 4240 4241 4242 4243
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

4244 4245
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4259 4260 4261 4262
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4263
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4264 4265
		return 0;

4266
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4267 4268 4269 4270 4271
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4272 4273 4274
	if (!atsru)
		return -ENOMEM;

4275 4276 4277 4278 4279 4280 4281
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4282
	atsru->include_all = atsr->flags & 0x1;
4283 4284 4285 4286 4287 4288 4289 4290 4291
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4292

4293
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4294 4295 4296 4297

	return 0;
}

4298 4299 4300 4301 4302 4303
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4332
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4333 4334 4335
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4336
	}
4337 4338 4339 4340

	return 0;
}

4341 4342
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4343
	int sp, ret;
4344 4345 4346 4347 4348 4349
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4350
		pr_warn("%s: Doesn't support hardware pass through.\n",
4351 4352 4353 4354 4355
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4356
		pr_warn("%s: Doesn't support snooping.\n",
4357 4358 4359
			iommu->name);
		return -ENXIO;
	}
4360
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
4361
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4362
		pr_warn("%s: Doesn't support large page.\n",
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4380
	intel_svm_check(iommu);
4381

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4393 4394

#ifdef CONFIG_INTEL_IOMMU_SVM
4395
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4396 4397 4398 4399 4400
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4420 4421
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4438 4439
}

4440 4441 4442 4443 4444 4445 4446 4447 4448
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4449 4450
	}

4451 4452 4453 4454
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4455 4456 4457 4458
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4459
	int i, ret = 1;
4460
	struct pci_bus *bus;
4461 4462
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4463 4464 4465 4466 4467
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4468
		bridge = bus->self;
4469 4470 4471 4472 4473
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4474
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4475
			return 0;
4476
		/* If we found the root port, look it up in the ATSR */
4477
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4478 4479 4480
			break;
	}

4481
	rcu_read_lock();
4482 4483 4484 4485 4486
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4487
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4488
			if (tmp == &bridge->dev)
4489
				goto out;
4490 4491

		if (atsru->include_all)
4492
			goto out;
4493
	}
4494 4495
	ret = 0;
out:
4496
	rcu_read_unlock();
4497

4498
	return ret;
4499 4500
}

4501 4502
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4503
	int ret;
4504 4505 4506 4507 4508
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4509
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4520
			if (ret < 0)
4521
				return ret;
4522
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4523 4524
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4540
			else if (ret < 0)
4541
				return ret;
4542
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4543 4544 4545 4546 4547 4548 4549 4550 4551
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4552 4553 4554 4555
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
4556 4557 4558
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
4559 4560 4561

	switch (val) {
	case MEM_GOING_ONLINE:
4562 4563 4564 4565
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
4566 4567 4568 4569 4570 4571
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
4572
		{
4573 4574
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4575
			struct page *freelist;
4576

4577 4578
			freelist = domain_unmap(si_domain,
						start_vpfn, last_vpfn);
4579

4580 4581
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4582
				iommu_flush_iotlb_psi(iommu, si_domain,
4583
					start_vpfn, mhp->nr_pages,
4584
					!freelist, 0);
4585
			rcu_read_unlock();
4586
			dma_free_pagelist(freelist);
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4599 4600 4601 4602 4603 4604 4605
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4606
		int did;
4607 4608 4609 4610

		if (!iommu)
			continue;

4611
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4612
			domain = get_iommu_domain(iommu, (u16)did);
4613

4614
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4615
				continue;
4616

4617 4618 4619 4620 4621
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4622
static int intel_iommu_cpu_dead(unsigned int cpu)
4623
{
4624 4625
	free_all_cpu_cached_iovas(cpu);
	return 0;
4626 4627
}

4628 4629 4630 4631 4632 4633 4634 4635 4636
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4657 4658
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4659 4660 4661
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4662 4663
}

4664 4665 4666 4667
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4668
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4679
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4680 4681 4682 4683 4684 4685 4686 4687
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4688
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4689 4690 4691 4692 4693 4694 4695 4696
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4697
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4698 4699 4700 4701
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4702 4703 4704 4705
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4706
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4707 4708 4709 4710 4711 4712 4713 4714
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4715
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4716 4717 4718 4719 4720
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4721 4722 4723 4724 4725
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4726 4727
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4741
static inline bool has_untrusted_dev(void)
4742 4743 4744
{
	struct pci_dev *pdev = NULL;

4745 4746 4747
	for_each_pci_dev(pdev)
		if (pdev->untrusted)
			return true;
4748

4749 4750
	return false;
}
4751

4752 4753 4754
static int __init platform_optin_force_iommu(void)
{
	if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4765
		iommu_set_default_passthrough(false);
4766 4767 4768 4769 4770 4771 4772

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4773 4774 4775
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4776 4777
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4816 4817
int __init intel_iommu_init(void)
{
4818
	int ret = -ENODEV;
4819
	struct dmar_drhd_unit *drhd;
4820
	struct intel_iommu *iommu;
4821

4822 4823 4824 4825 4826
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4827

4828 4829 4830 4831 4832 4833 4834
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4835 4836 4837
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4838
		goto out_free_dmar;
4839
	}
4840

4841
	if (dmar_dev_scope_init() < 0) {
4842 4843
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4844
		goto out_free_dmar;
4845
	}
4846

4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4857 4858 4859
	if (!no_iommu)
		intel_iommu_debugfs_init();

4860
	if (no_iommu || dmar_disabled) {
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4874 4875 4876 4877 4878 4879
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4880
		goto out_free_dmar;
4881
	}
4882

4883
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4884
		pr_info("No RMRR found\n");
4885 4886

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4887
		pr_info("No ATSR found\n");
4888

4889 4890 4891
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4892
		goto out_free_reserved_range;
4893
	}
4894

4895 4896 4897
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4898 4899
	init_no_remapping_devices();

4900
	ret = init_dmars();
4901
	if (ret) {
4902 4903
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4904
		pr_err("Initialization failed\n");
4905
		goto out_free_reserved_range;
4906
	}
4907
	up_write(&dmar_global_lock);
4908

4909
	init_iommu_pm_ops();
4910

4911
	down_read(&dmar_global_lock);
4912 4913 4914 4915 4916 4917 4918
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4919
	up_read(&dmar_global_lock);
4920

4921
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4922 4923
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4924 4925
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4926

4927
	down_read(&dmar_global_lock);
4928 4929 4930
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4931 4932
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4933
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4934 4935 4936 4937
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
4938 4939
	up_read(&dmar_global_lock);

4940 4941
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4942 4943
	intel_iommu_enabled = 1;

4944
	return 0;
4945 4946 4947 4948 4949

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
4950 4951
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4952
	return ret;
4953
}
4954

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

4977
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4978
{
4979
	struct dmar_domain *domain;
4980 4981 4982
	struct intel_iommu *iommu;
	unsigned long flags;

4983 4984
	assert_spin_locked(&device_domain_lock);

4985
	if (WARN_ON(!info))
4986 4987
		return;

4988
	iommu = info->iommu;
4989
	domain = info->domain;
4990

4991
	if (info->dev) {
4992 4993
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
4994
					PASID_RID2PASID, false);
4995

4996
		iommu_disable_dev_iotlb(info);
4997 4998
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
4999
		intel_pasid_free_table(info->dev);
5000
	}
5001

5002
	unlink_domain_info(info);
5003

5004
	spin_lock_irqsave(&iommu->lock, flags);
5005
	domain_detach_iommu(domain, iommu);
5006
	spin_unlock_irqrestore(&iommu->lock, flags);
5007

5008
	free_devinfo_mem(info);
5009 5010
}

5011
static void dmar_remove_one_dev_info(struct device *dev)
5012
{
5013
	struct device_domain_info *info;
5014
	unsigned long flags;
5015

5016
	spin_lock_irqsave(&device_domain_lock, flags);
5017 5018
	info = get_domain_info(dev);
	if (info)
5019
		__dmar_remove_one_dev_info(info);
5020
	spin_unlock_irqrestore(&device_domain_lock, flags);
5021 5022
}

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
static void intel_init_iova_domain(struct dmar_domain *dmar_domain)
{
	init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad);

	if (!intel_iommu_strict &&
	    init_iova_flush_queue(&dmar_domain->iovad,
				  iommu_flush_iova, iova_entry_free))
		pr_info("iova flush queue initialization failed\n");
}

5056
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5057
{
5058
	struct dmar_domain *dmar_domain;
5059 5060
	struct iommu_domain *domain;

5061
	switch (type) {
5062 5063
	case IOMMU_DOMAIN_DMA:
	/* fallthrough */
5064
	case IOMMU_DOMAIN_UNMANAGED:
5065
		dmar_domain = alloc_domain(0);
5066 5067 5068 5069
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5070
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5071 5072 5073 5074
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5075

5076 5077
		if (type == IOMMU_DOMAIN_DMA)
			intel_init_iova_domain(dmar_domain);
5078

5079
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
5080

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5091
		return NULL;
K
Kay, Allen M 已提交
5092
	}
5093

5094
	return NULL;
K
Kay, Allen M 已提交
5095 5096
}

5097
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5098
{
5099 5100
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5101 5102
}

5103 5104 5105 5106 5107 5108 5109
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
5110
	struct device_domain_info *info = get_domain_info(dev);
5111 5112 5113 5114 5115 5116 5117 5118

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
5119
	struct device_domain_info *info = get_domain_info(dev);
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
5132
	struct device_domain_info *info = get_domain_info(dev);
5133 5134 5135 5136 5137 5138 5139 5140 5141

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5142
		ioasid_free(domain->default_pasid);
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	u8 bus, devfn;
	unsigned long flags;
	struct intel_iommu *iommu;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

5160 5161 5162 5163 5164
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
5182 5183 5184 5185 5186 5187
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5204
		ioasid_free(domain->default_pasid);
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
5220
	info = get_domain_info(dev);
5221 5222 5223 5224 5225
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
5226
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
5227 5228 5229 5230 5231 5232
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5233 5234
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5235
{
5236
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5237 5238
	struct intel_iommu *iommu;
	int addr_width;
5239
	u8 bus, devfn;
5240

5241
	iommu = device_to_iommu(dev, &bus, &devfn);
5242 5243 5244 5245 5246
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5247 5248 5249 5250
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5251 5252 5253
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5254 5255
		return -EFAULT;
	}
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5266 5267
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5268
			free_pgtable_page(pte);
5269 5270 5271
		}
		dmar_domain->agaw--;
	}
5272

5273 5274 5275 5276 5277 5278 5279 5280
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5281 5282
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5283 5284 5285 5286
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5287 5288 5289
	if (is_aux_domain(dev, domain))
		return -EPERM;

5290 5291 5292 5293 5294
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5295
		if (old_domain)
5296 5297 5298 5299 5300 5301 5302 5303
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5304 5305
}

5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5321 5322
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5323
{
5324
	dmar_remove_one_dev_info(dev);
5325
}
5326

5327 5328 5329 5330 5331 5332
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
5350
static const int
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

#ifdef CONFIG_INTEL_IOMMU_SVM
static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

	if (!inv_info || !dmar_domain ||
	    inv_info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
5410
	info = get_domain_info(dev);
5411 5412 5413 5414 5415 5416 5417 5418
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
L
Liu Yi L 已提交
5419
	if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
5420 5421 5422 5423 5424 5425 5426 5427
		size = to_vtd_size(inv_info->addr_info.granule_size,
				   inv_info->addr_info.nb_granules);

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;
L
Liu Yi L 已提交
5428
		u64 addr = 0;
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
		    (inv_info->pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->pasid_info.pasid;
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			 (inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->addr_info.pasid;

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
			    (inv_info->addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
				pr_err_ratelimited("Address out of range, 0x%llx, size order %llu\n",
						   inv_info->addr_info.addr, size);
				ret = -ERANGE;
				goto out_unlock;
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
					mm_to_dma_pfn(inv_info->addr_info.addr),
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
					inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);

L
Liu Yi L 已提交
5468 5469
			if (!info->ats_enabled)
				break;
5470 5471 5472 5473 5474
			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
L
Liu Yi L 已提交
5475
			fallthrough;
5476
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
L
Liu Yi L 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
			/*
			 * PASID based device TLB invalidation does not support
			 * IOMMU_INV_GRANU_PASID granularity but only supports
			 * IOMMU_INV_GRANU_ADDR.
			 * The equivalent of that is we set the size to be the
			 * entire range of 64 bit. User only provides PASID info
			 * without address info. So we set addr to 0.
			 */
			if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
				size = 64 - VTD_PAGE_SHIFT;
				addr = 0;
			} else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
				addr = inv_info->addr_info.addr;
			}

5492 5493 5494
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
L
Liu Yi L 已提交
5495
						info->ats_qdep, addr,
5496
						size);
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

5514 5515
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5516
			   size_t size, int iommu_prot, gfp_t gfp)
5517
{
5518
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5519
	u64 max_addr;
5520
	int prot = 0;
5521
	int ret;
5522

5523 5524 5525 5526
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5527 5528
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5529

5530
	max_addr = iova + size;
5531
	if (dmar_domain->max_addr < max_addr) {
5532 5533 5534
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5535
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5536
		if (end < max_addr) {
J
Joerg Roedel 已提交
5537
			pr_err("%s: iommu width (%d) is not "
5538
			       "sufficient for the mapped address (%llx)\n",
5539
			       __func__, dmar_domain->gaw, max_addr);
5540 5541
			return -EFAULT;
		}
5542
		dmar_domain->max_addr = max_addr;
5543
	}
5544 5545
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5546
	size = aligned_nrpages(hpa, size);
5547 5548
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5549
	return ret;
K
Kay, Allen M 已提交
5550 5551
}

5552
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5553 5554
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5555
{
5556
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5557 5558 5559
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5560
	int iommu_id, level = 0;
5561 5562 5563

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5564
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5565 5566 5567

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5568

5569 5570 5571 5572 5573 5574 5575
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5576
	for_each_domain_iommu(iommu_id, dmar_domain)
5577 5578
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5579 5580

	dma_free_pagelist(freelist);
5581

5582 5583
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5584

5585
	return size;
K
Kay, Allen M 已提交
5586 5587
}

5588
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5589
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5590
{
5591
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5592
	struct dma_pte *pte;
5593
	int level = 0;
5594
	u64 phys = 0;
K
Kay, Allen M 已提交
5595

5596
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5597 5598 5599 5600
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
5601

5602
	return phys;
K
Kay, Allen M 已提交
5603
}
5604

5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5659
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5660 5661
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5662
		return domain_update_iommu_snooping(NULL) == 1;
5663
	if (cap == IOMMU_CAP_INTR_REMAP)
5664
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5665

5666
	return false;
S
Sheng Yang 已提交
5667 5668
}

5669
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5670
{
5671
	struct intel_iommu *iommu;
5672
	u8 bus, devfn;
5673

5674 5675
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
5676
		return ERR_PTR(-ENODEV);
5677

5678 5679 5680
	if (translation_pre_enabled(iommu))
		dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;

5681
	return &iommu->iommu;
5682
}
5683

5684
static void intel_iommu_release_device(struct device *dev)
5685
{
5686 5687 5688 5689 5690 5691 5692
	struct intel_iommu *iommu;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return;

5693 5694
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5695 5696
	set_dma_ops(dev, NULL);
}
5697

L
Lu Baolu 已提交
5698 5699 5700
static void intel_iommu_probe_finalize(struct device *dev)
{
	struct iommu_domain *domain;
5701

L
Lu Baolu 已提交
5702
	domain = iommu_get_domain_for_dev(dev);
5703
	if (device_needs_bounce(dev))
L
Lu Baolu 已提交
5704 5705 5706 5707
		set_dma_ops(dev, &bounce_dma_ops);
	else if (domain && domain->type == IOMMU_DOMAIN_DMA)
		set_dma_ops(dev, &intel_dma_ops);
	else
5708
		set_dma_ops(dev, NULL);
5709 5710
}

5711 5712 5713
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5714
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5715 5716 5717 5718 5719
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5720
	down_read(&dmar_global_lock);
5721 5722 5723
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5724
			struct iommu_resv_region *resv;
5725
			enum iommu_resv_type type;
5726 5727
			size_t length;

5728 5729
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5730 5731
				continue;

5732
			length = rmrr->end_address - rmrr->base_address + 1;
5733 5734 5735 5736

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5737
			resv = iommu_alloc_resv_region(rmrr->base_address,
5738
						       length, prot, type);
5739 5740 5741 5742
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5743 5744
		}
	}
5745
	up_read(&dmar_global_lock);
5746

5747 5748 5749 5750 5751
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5752
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5753
						   IOMMU_RESV_DIRECT_RELAXABLE);
5754 5755 5756 5757 5758 5759
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5760 5761
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5762
				      0, IOMMU_RESV_MSI);
5763 5764 5765 5766 5767
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5768
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5769 5770 5771 5772 5773 5774 5775 5776
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5777
	domain = find_domain(dev);
5778 5779 5780 5781 5782 5783 5784
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5785
	info = get_domain_info(dev);
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5799 5800 5801
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5832 5833 5834 5835 5836 5837 5838
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5839
#ifdef CONFIG_INTEL_IOMMU_SVM
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
{
	struct intel_iommu *iommu;
	u8 bus, devfn;

	if (iommu_dummy(dev)) {
		dev_warn(dev,
			 "No IOMMU translation for device; cannot enable SVM\n");
		return NULL;
	}

	iommu = device_to_iommu(dev, &bus, &devfn);
	if ((!iommu)) {
5853
		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5854 5855 5856 5857 5858 5859 5860
		return NULL;
	}

	return iommu;
}
#endif /* CONFIG_INTEL_IOMMU_SVM */

5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	u8 bus, devfn;
	int ret;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5881
	info = get_domain_info(dev);
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5894
	info = get_domain_info(dev);
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5947 5948 5949 5950 5951 5952 5953 5954
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

5955 5956 5957 5958 5959 5960 5961 5962 5963
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
5989
	struct device_domain_info *info = get_domain_info(dev);
5990 5991 5992 5993 5994 5995 5996

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5997 5998 5999 6000 6001 6002 6003 6004 6005
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

6006 6007 6008
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
6009
	return attach_deferred(dev);
6010 6011
}

6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
/*
 * Check that the device does not live on an external facing PCI port that is
 * marked as untrusted. Such devices should not be able to apply quirks and
 * thus not be able to bypass the IOMMU restrictions.
 */
static bool risky_device(struct pci_dev *pdev)
{
	if (pdev->untrusted) {
		pci_info(pdev,
			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
			 pdev->vendor, pdev->device);
		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
		return true;
	}
	return false;
}

6060
const struct iommu_ops intel_iommu_ops = {
6061 6062 6063
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
6064
	.domain_set_attr	= intel_iommu_domain_set_attr,
6065 6066
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
6067 6068
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
6069
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
6070 6071 6072
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
6073
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
6074
	.probe_finalize		= intel_iommu_probe_finalize,
6075
	.release_device		= intel_iommu_release_device,
6076
	.get_resv_regions	= intel_iommu_get_resv_regions,
6077
	.put_resv_regions	= generic_iommu_put_resv_regions,
6078
	.apply_resv_region	= intel_iommu_apply_resv_region,
6079
	.device_group		= intel_iommu_device_group,
6080 6081 6082 6083
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
6084
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
6085
	.def_domain_type	= device_def_domain_type,
6086
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
6087
#ifdef CONFIG_INTEL_IOMMU_SVM
6088
	.cache_invalidate	= intel_iommu_sva_invalidate,
6089 6090
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
6091 6092 6093
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
6094
#endif
6095
};
6096

6097
static void quirk_iommu_igfx(struct pci_dev *dev)
6098
{
6099 6100 6101
	if (risky_device(dev))
		return;

6102
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6103 6104 6105
	dmar_map_gfx = 0;
}

6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6140

6141
static void quirk_iommu_rwbf(struct pci_dev *dev)
6142
{
6143 6144 6145
	if (risky_device(dev))
		return;

6146 6147
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6148
	 * but needs it. Same seems to hold for the desktop versions.
6149
	 */
6150
	pci_info(dev, "Forcing write-buffer flush capability\n");
6151 6152 6153 6154
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6155 6156 6157 6158 6159 6160
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6161

6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6172
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6173 6174 6175
{
	unsigned short ggc;

6176 6177 6178
	if (risky_device(dev))
		return;

6179
	if (pci_read_config_word(dev, GGC, &ggc))
6180 6181
		return;

6182
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6183
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6184
		dmar_map_gfx = 0;
6185 6186
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6187
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6188 6189
		intel_iommu_strict = 1;
       }
6190 6191 6192 6193 6194 6195
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
6212 6213 6214 6215 6216 6217

	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6218 6219 6220 6221 6222 6223 6224 6225 6226
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

6227 6228 6229 6230 6231
	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6260 6261

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6262 6263
	       vtisochctrl);
}