iommu.c 157.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "../irq_remapping.h"
L
Lu Baolu 已提交
51
#include "intel-pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298

299 300 301 302
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

303 304 305 306 307
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
308
	struct dmar_dev_scope *devices;	/* target devices */
309 310 311 312 313 314
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
315
	struct dmar_dev_scope *devices;	/* target devices */
316 317 318 319 320 321 322 323 324 325
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
326 327 328
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

329
static void domain_exit(struct dmar_domain *domain);
330
static void domain_remove_dev_info(struct dmar_domain *domain);
331
static void dmar_remove_one_dev_info(struct device *dev);
332
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
333 334
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
335 336
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
337

338
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
339 340 341
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
342
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
343

344
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
345 346
int intel_iommu_sm = 1;
#else
347
int intel_iommu_sm;
348
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
349

350 351 352
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

353
static int dmar_map_gfx = 1;
354
static int dmar_forcedac;
M
mark gross 已提交
355
static int intel_iommu_strict;
356
static int intel_iommu_superpage = 1;
357
static int iommu_identity_mapping;
358
static int intel_no_bounce;
359

360 361
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
362

363 364 365
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

366
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
367
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

	info = dev->archdata.iommu;
	if (unlikely(info == DUMMY_DEVICE_DOMAIN_INFO ||
		     info == DEFER_DEVICE_DOMAIN_INFO))
		return NULL;

	return info;
}

383
DEFINE_SPINLOCK(device_domain_lock);
384 385
static LIST_HEAD(device_domain_list);

386 387 388
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

389 390
/*
 * Iterate over elements in device_domain_list and call the specified
391
 * callback @fn against each element.
392 393 394 395 396
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
397
	unsigned long flags;
398 399
	struct device_domain_info *info;

400
	spin_lock_irqsave(&device_domain_lock, flags);
401 402
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
403 404
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
405
			return ret;
406
		}
407
	}
408
	spin_unlock_irqrestore(&device_domain_lock, flags);
409 410 411 412

	return 0;
}

413
const struct iommu_ops intel_iommu_ops;
414

415 416 417 418 419
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

420 421 422 423 424
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

425 426 427 428 429 430 431 432 433
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

434 435 436 437 438
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
439 440
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
441
			pr_info("IOMMU enabled\n");
442
		} else if (!strncmp(str, "off", 3)) {
443
			dmar_disabled = 1;
444
			no_platform_optin = 1;
J
Joerg Roedel 已提交
445
			pr_info("IOMMU disabled\n");
446 447
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
448
			pr_info("Disable GFX device mapping\n");
449
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
450
			pr_info("Forcing DAC for PCI devices\n");
451
			dmar_forcedac = 1;
M
mark gross 已提交
452
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
453
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
454
			intel_iommu_strict = 1;
455
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
456
			pr_info("Disable supported super page\n");
457
			intel_iommu_superpage = 0;
458 459 460
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
461
		} else if (!strncmp(str, "tboot_noforce", 13)) {
462
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
463
			intel_iommu_tboot_noforce = 1;
464 465 466
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
467 468 469 470 471 472 473 474 475 476 477 478 479
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

480 481
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
482 483 484 485 486 487 488 489
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
490 491 492 493 494
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
495 496 497 498 499 500 501 502 503 504 505 506 507
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
508 509
}

510
void *alloc_pgtable_page(int node)
511
{
512 513
	struct page *page;
	void *vaddr = NULL;
514

515 516 517
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
518
	return vaddr;
519 520
}

521
void free_pgtable_page(void *vaddr)
522 523 524 525 526 527
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
528
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
529 530
}

K
Kay, Allen M 已提交
531
static void free_domain_mem(void *vaddr)
532 533 534 535 536 537
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
538
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
539 540 541 542 543 544 545
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

546 547 548 549 550
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

551 552 553 554 555
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

556 557 558 559 560 561 562 563
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
564
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
565 566 567 568 569
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
570
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
571 572 573 574 575 576 577 578
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

597
/* This functionin only returns single iommu in a domain */
598
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
599 600 601
{
	int iommu_id;

602
	/* si_domain and vm domain should not get here. */
603 604 605
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

606 607 608
	for_each_domain_iommu(iommu_id, domain)
		break;

609 610 611 612 613 614
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

615 616 617 618 619 620
static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
{
	return sm_supported(iommu) ?
			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
}

W
Weidong Han 已提交
621 622
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
623 624
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
625 626
	bool found = false;
	int i;
627

628
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
629

630
	for_each_domain_iommu(i, domain) {
631
		found = true;
632
		if (!iommu_paging_structure_coherency(g_iommus[i])) {
W
Weidong Han 已提交
633 634 635 636
			domain->iommu_coherency = 0;
			break;
		}
	}
637 638 639 640 641 642
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
643
		if (!iommu_paging_structure_coherency(iommu)) {
644 645 646 647 648
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
649 650
}

651
static int domain_update_iommu_snooping(struct intel_iommu *skip)
652
{
653 654 655
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
656

657 658 659 660 661 662 663
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
664 665
		}
	}
666 667 668
	rcu_read_unlock();

	return ret;
669 670
}

671 672
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
673
{
674
	struct dmar_drhd_unit *drhd;
675
	struct intel_iommu *iommu;
676
	int mask = 0x3;
677 678

	if (!intel_iommu_superpage) {
679
		return 0;
680 681
	}

682
	/* set iommu_superpage to the smallest common denominator */
683
	rcu_read_lock();
684
	for_each_active_iommu(iommu, drhd) {
685
		if (iommu != skip) {
686 687 688 689 690 691 692
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

693 694
			if (!mask)
				break;
695 696
		}
	}
697 698
	rcu_read_unlock();

699
	return fls(mask);
700 701
}

702 703 704 705
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
706
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
707
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
708 709
}

710 711
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
712 713 714 715 716
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

717
	entry = &root->lo;
718
	if (sm_supported(iommu)) {
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

744 745 746 747 748
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

749 750 751 752 753
static bool attach_deferred(struct device *dev)
{
	return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

781
struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
782 783
{
	struct dmar_drhd_unit *drhd = NULL;
784
	struct pci_dev *pdev = NULL;
785
	struct intel_iommu *iommu;
786
	struct device *tmp;
787
	u16 segment = 0;
788 789
	int i;

790
	if (!dev || iommu_dummy(dev))
791 792
		return NULL;

793
	if (dev_is_pci(dev)) {
794 795
		struct pci_dev *pf_pdev;

796
		pdev = pci_real_dma_dev(to_pci_dev(dev));
797

798 799 800 801
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
802
		segment = pci_domain_nr(pdev->bus);
803
	} else if (has_acpi_companion(dev))
804 805
		dev = &ACPI_COMPANION(dev)->dev;

806
	rcu_read_lock();
807
	for_each_active_iommu(iommu, drhd) {
808
		if (pdev && segment != drhd->segment)
809
			continue;
810

811
		for_each_active_dev_scope(drhd->devices,
812 813
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
814 815 816 817
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
818
				if (pdev && pdev->is_virtfn)
819 820
					goto got_pdev;

821 822 823 824
				if (bus && devfn) {
					*bus = drhd->devices[i].bus;
					*devfn = drhd->devices[i].devfn;
				}
825
				goto out;
826 827
			}

828
			if (is_downstream_to_pci_bridge(dev, tmp))
829
				goto got_pdev;
830
		}
831

832 833
		if (pdev && drhd->include_all) {
		got_pdev:
834 835 836 837
			if (bus && devfn) {
				*bus = pdev->bus->number;
				*devfn = pdev->devfn;
			}
838
			goto out;
839
		}
840
	}
841
	iommu = NULL;
842
 out:
843
	rcu_read_unlock();
844

845
	return iommu;
846 847
}

W
Weidong Han 已提交
848 849 850 851 852 853 854
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

855 856 857
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
858
	int ret = 0;
859 860 861
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
862 863 864
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
880
		context = iommu_context_addr(iommu, i, 0, 0);
881 882
		if (context)
			free_pgtable_page(context);
883

884
		if (!sm_supported(iommu))
885 886 887 888 889 890
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

891 892 893 894 895 896 897
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

898
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
899
				      unsigned long pfn, int *target_level)
900
{
901
	struct dma_pte *parent, *pte;
902
	int level = agaw_to_level(domain->agaw);
903
	int offset;
904 905

	BUG_ON(!domain->pgd);
906

907
	if (!domain_pfn_supported(domain, pfn))
908 909 910
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

911 912
	parent = domain->pgd;

913
	while (1) {
914 915
		void *tmp_page;

916
		offset = pfn_level_offset(pfn, level);
917
		pte = &parent[offset];
918
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
919
			break;
920
		if (level == *target_level)
921 922
			break;

923
		if (!dma_pte_present(pte)) {
924 925
			uint64_t pteval;

926
			tmp_page = alloc_pgtable_page(domain->nid);
927

928
			if (!tmp_page)
929
				return NULL;
930

931
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
932
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
933
			if (domain_use_first_level(domain))
934
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
935
			if (cmpxchg64(&pte->val, 0ULL, pteval))
936 937
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
938
			else
939
				domain_flush_cache(domain, pte, sizeof(*pte));
940
		}
941 942 943
		if (level == 1)
			break;

944
		parent = phys_to_virt(dma_pte_addr(pte));
945 946 947
		level--;
	}

948 949 950
	if (!*target_level)
		*target_level = level;

951 952 953 954
	return pte;
}

/* return address's pte at specific level */
955 956
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
957
					 int level, int *large_page)
958
{
959
	struct dma_pte *parent, *pte;
960 961 962 963 964
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
965
		offset = pfn_level_offset(pfn, total);
966 967 968 969
		pte = &parent[offset];
		if (level == total)
			return pte;

970 971
		if (!dma_pte_present(pte)) {
			*large_page = total;
972
			break;
973 974
		}

975
		if (dma_pte_superpage(pte)) {
976 977 978 979
			*large_page = total;
			return pte;
		}

980
		parent = phys_to_virt(dma_pte_addr(pte));
981 982 983 984 985 986
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
987
static void dma_pte_clear_range(struct dmar_domain *domain,
988 989
				unsigned long start_pfn,
				unsigned long last_pfn)
990
{
991
	unsigned int large_page;
992
	struct dma_pte *first_pte, *pte;
993

994 995
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
996
	BUG_ON(start_pfn > last_pfn);
997

998
	/* we don't need lock here; nobody else touches the iova range */
999
	do {
1000 1001
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1002
		if (!pte) {
1003
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1004 1005
			continue;
		}
1006
		do {
1007
			dma_clear_pte(pte);
1008
			start_pfn += lvl_to_nr_pages(large_page);
1009
			pte++;
1010 1011
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1012 1013
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1014 1015

	} while (start_pfn && start_pfn <= last_pfn);
1016 1017
}

1018
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1019 1020 1021
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1033
		level_pfn = pfn & level_mask(level);
1034 1035
		level_pte = phys_to_virt(dma_pte_addr(pte));

1036 1037 1038 1039 1040
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1041

1042 1043 1044 1045 1046
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1047
		      last_pfn < level_pfn + level_size(level) - 1)) {
1048 1049 1050 1051 1052 1053 1054 1055 1056
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1057 1058 1059 1060
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1061
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1062
				   unsigned long start_pfn,
1063 1064
				   unsigned long last_pfn,
				   int retain_level)
1065
{
1066 1067
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1068
	BUG_ON(start_pfn > last_pfn);
1069

1070 1071
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1072
	/* We don't need lock here; nobody else touches the iova range */
1073
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1074
			   domain->pgd, 0, start_pfn, last_pfn);
1075

1076
	/* free pgd */
1077
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1078 1079 1080 1081 1082
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1102 1103
	pte = page_address(pg);
	do {
1104 1105 1106
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1107 1108
		pte++;
	} while (!first_pte_in_page(pte));
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1165 1166 1167
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1168
{
1169
	struct page *freelist;
1170

1171 1172
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1191
static void dma_free_pagelist(struct page *freelist)
1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1201 1202 1203 1204 1205 1206 1207
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1208 1209 1210 1211 1212 1213
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1214
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1215
	if (!root) {
J
Joerg Roedel 已提交
1216
		pr_err("Allocating root entry for %s failed\n",
1217
			iommu->name);
1218
		return -ENOMEM;
1219
	}
1220

F
Fenghua Yu 已提交
1221
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1232
	u64 addr;
1233
	u32 sts;
1234 1235
	unsigned long flag;

1236
	addr = virt_to_phys(iommu->root_entry);
1237 1238
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1239

1240
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1241
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1242

1243
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1244 1245 1246

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1247
		      readl, (sts & DMA_GSTS_RTPS), sts);
1248

1249
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1250 1251
}

1252
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1253 1254 1255 1256
{
	u32 val;
	unsigned long flag;

1257
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1258 1259
		return;

1260
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1261
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1262 1263 1264

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1265
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1266

1267
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1268 1269 1270
}

/* return value determine if we need a write buffer flush */
1271 1272 1273
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1294
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1295 1296 1297 1298 1299 1300
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1301
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1302 1303 1304
}

/* return value determine if we need a write buffer flush */
1305 1306
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1322
		/* IH bit is passed in as part of address */
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1340
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1341 1342 1343 1344 1345 1346 1347 1348 1349
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1350
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1351 1352 1353

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1354
		pr_err("Flush IOTLB failed\n");
1355
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1356
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1357 1358
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1359 1360
}

1361 1362 1363
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1364 1365 1366
{
	struct device_domain_info *info;

1367 1368
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1369 1370 1371 1372
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1373 1374
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1375 1376
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1377 1378 1379
			break;
		}

1380
	return NULL;
Y
Yu Zhao 已提交
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1406
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1407
{
1408 1409
	struct pci_dev *pdev;

1410 1411
	assert_spin_locked(&device_domain_lock);

1412
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1413 1414
		return;

1415
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1428
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1429
	}
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1440 1441 1442
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1443 1444
		info->pri_enabled = 1;
#endif
1445
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1446
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1447
		info->ats_enabled = 1;
1448
		domain_update_iotlb(info->domain);
1449 1450
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1451 1452 1453 1454
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1455 1456
	struct pci_dev *pdev;

1457 1458
	assert_spin_locked(&device_domain_lock);

1459
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1460 1461
		return;

1462 1463 1464 1465 1466
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1467
		domain_update_iotlb(info->domain);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1488 1489 1490
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1491 1492
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1493
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1494 1495 1496
			continue;

		sid = info->bus << 8 | info->devfn;
1497
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1498 1499
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1500 1501 1502 1503
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1518 1519 1520 1521
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1522
{
1523
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1524
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1525
	u16 did = domain->iommu_did[iommu->seq_id];
1526 1527 1528

	BUG_ON(pages == 0);

1529 1530
	if (ih)
		ih = 1 << 6;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1548 1549

	/*
1550 1551
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1552
	 */
1553
	if (!cap_caching_mode(iommu->cap) || !map)
1554
		iommu_flush_dev_iotlb(domain, addr, mask);
1555 1556
}

1557 1558 1559 1560 1561
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1562 1563 1564 1565 1566
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1567 1568 1569 1570 1571
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

1583 1584 1585 1586 1587
		if (domain_use_first_level(domain))
			domain_flush_piotlb(iommu, domain, 0, -1, 0);
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1588 1589 1590 1591 1592 1593 1594

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1595 1596 1597 1598 1599
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1600 1601 1602
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1603
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1604 1605 1606 1607 1608 1609 1610 1611
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1612
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1613 1614
}

1615
static void iommu_enable_translation(struct intel_iommu *iommu)
1616 1617 1618 1619
{
	u32 sts;
	unsigned long flags;

1620
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1621 1622
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1623 1624 1625

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1626
		      readl, (sts & DMA_GSTS_TES), sts);
1627

1628
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1629 1630
}

1631
static void iommu_disable_translation(struct intel_iommu *iommu)
1632 1633 1634 1635
{
	u32 sts;
	unsigned long flag;

1636
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1637 1638 1639 1640 1641
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1642
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1643

1644
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1645 1646 1647 1648
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1649 1650
	u32 ndomains, nlongs;
	size_t size;
1651 1652

	ndomains = cap_ndoms(iommu->cap);
1653
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1654
		 iommu->name, ndomains);
1655 1656
	nlongs = BITS_TO_LONGS(ndomains);

1657 1658
	spin_lock_init(&iommu->lock);

1659 1660
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1661 1662
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1663 1664
		return -ENOMEM;
	}
1665

1666
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1667 1668 1669 1670 1671 1672 1673 1674
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1675 1676
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1677
		kfree(iommu->domain_ids);
1678
		kfree(iommu->domains);
1679
		iommu->domain_ids = NULL;
1680
		iommu->domains    = NULL;
1681 1682 1683 1684
		return -ENOMEM;
	}

	/*
1685 1686 1687 1688
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1689
	 */
1690 1691
	set_bit(0, iommu->domain_ids);

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1702 1703 1704
	return 0;
}

1705
static void disable_dmar_iommu(struct intel_iommu *iommu)
1706
{
1707
	struct device_domain_info *info, *tmp;
1708
	unsigned long flags;
1709

1710 1711
	if (!iommu->domains || !iommu->domain_ids)
		return;
1712

1713
	spin_lock_irqsave(&device_domain_lock, flags);
1714 1715 1716 1717 1718 1719 1720
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1721
		__dmar_remove_one_dev_info(info);
1722
	}
1723
	spin_unlock_irqrestore(&device_domain_lock, flags);
1724 1725 1726

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1727
}
1728

1729 1730 1731
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1732
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1733 1734 1735 1736
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1737 1738 1739 1740 1741
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1742

W
Weidong Han 已提交
1743 1744
	g_iommus[iommu->seq_id] = NULL;

1745 1746
	/* free context mapping */
	free_context_table(iommu);
1747 1748

#ifdef CONFIG_INTEL_IOMMU_SVM
1749
	if (pasid_supported(iommu)) {
1750 1751 1752
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1753 1754 1755
	if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap))
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1756
#endif
1757 1758
}

1759 1760
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1761
 * DMA translation.
1762 1763 1764 1765 1766
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1767
	static int first_level_support = -1;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1786
static struct dmar_domain *alloc_domain(int flags)
1787 1788 1789 1790 1791 1792 1793
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1794
	memset(domain, 0, sizeof(*domain));
1795
	domain->nid = NUMA_NO_NODE;
1796
	domain->flags = flags;
1797 1798
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1799
	domain->has_iotlb_device = false;
1800
	INIT_LIST_HEAD(&domain->devices);
1801 1802 1803 1804

	return domain;
}

1805 1806
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1807 1808
			       struct intel_iommu *iommu)
{
1809
	unsigned long ndomains;
1810
	int num;
1811

1812
	assert_spin_locked(&device_domain_lock);
1813
	assert_spin_locked(&iommu->lock);
1814

1815 1816 1817
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1818
		ndomains = cap_ndoms(iommu->cap);
1819 1820 1821 1822 1823 1824
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1825
			return -ENOSPC;
1826
		}
1827

1828 1829 1830 1831 1832
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1833 1834 1835

		domain_update_iommu_cap(domain);
	}
1836

1837
	return 0;
1838 1839 1840 1841 1842
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1843
	int num, count;
1844

1845
	assert_spin_locked(&device_domain_lock);
1846
	assert_spin_locked(&iommu->lock);
1847

1848 1849 1850
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1851 1852 1853
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1854 1855

		domain_update_iommu_cap(domain);
1856
		domain->iommu_did[iommu->seq_id] = 0;
1857 1858 1859 1860 1861
	}

	return count;
}

1862
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1863
static struct lock_class_key reserved_rbtree_key;
1864

1865
static int dmar_init_reserved_ranges(void)
1866 1867 1868 1869 1870
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1871
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1872

M
Mark Gross 已提交
1873 1874 1875
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1876 1877 1878
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1879
	if (!iova) {
J
Joerg Roedel 已提交
1880
		pr_err("Reserve IOAPIC range failed\n");
1881 1882
		return -ENODEV;
	}
1883 1884 1885 1886 1887 1888 1889 1890 1891

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1892 1893 1894
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1895
			if (!iova) {
1896
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1897 1898
				return -ENODEV;
			}
1899 1900
		}
	}
1901
	return 0;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

1921
	/* Remove associated devices and clear attached or cached domains */
1922
	domain_remove_dev_info(domain);
1923

1924
	/* destroy iovas */
1925 1926
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
		put_iova_domain(&domain->iovad);
1927

1928 1929
	if (domain->pgd) {
		struct page *freelist;
1930

1931 1932 1933
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
1934

1935 1936 1937
	free_domain_mem(domain);
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

1987 1988
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
1989
				      struct pasid_table *table,
1990
				      u8 bus, u8 devfn)
1991
{
1992
	u16 did = domain->iommu_did[iommu->seq_id];
1993 1994
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
1995 1996
	struct context_entry *context;
	unsigned long flags;
1997
	int ret;
1998

1999 2000
	WARN_ON(did == 0);

2001 2002
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
2003 2004 2005

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2006

2007
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2008

2009 2010 2011 2012
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2013
	context = iommu_context_addr(iommu, bus, devfn, 1);
2014
	if (!context)
2015
		goto out_unlock;
2016

2017 2018 2019
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2033
		if (did_old < cap_ndoms(iommu->cap)) {
2034 2035 2036 2037
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2038 2039 2040
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2041 2042
	}

2043
	context_clear_entry(context);
2044

2045 2046
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2057 2058

		/*
2059 2060
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2061
		 */
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2101 2102

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2103
	}
F
Fenghua Yu 已提交
2104

2105 2106
	context_set_fault_enable(context);
	context_set_present(context);
2107 2108
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(context, sizeof(*context));
2109

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2121
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2122
	} else {
2123
		iommu_flush_write_buffer(iommu);
2124
	}
Y
Yu Zhao 已提交
2125
	iommu_enable_dev_iotlb(info);
2126

2127 2128 2129 2130 2131
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2132

2133
	return ret;
2134 2135
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2152
static int
2153
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2154
{
2155
	struct domain_context_mapping_data data;
2156
	struct pasid_table *table;
2157
	struct intel_iommu *iommu;
2158
	u8 bus, devfn;
2159

2160
	iommu = device_to_iommu(dev, &bus, &devfn);
2161 2162
	if (!iommu)
		return -ENODEV;
2163

2164
	table = intel_pasid_get_table(dev);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2176 2177 2178 2179 2180 2181 2182 2183
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2184 2185
}

2186
static int domain_context_mapped(struct device *dev)
2187
{
W
Weidong Han 已提交
2188
	struct intel_iommu *iommu;
2189
	u8 bus, devfn;
W
Weidong Han 已提交
2190

2191
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2192 2193
	if (!iommu)
		return -ENODEV;
2194

2195 2196
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2197

2198 2199
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2200 2201
}

2202 2203 2204 2205 2206 2207 2208 2209
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2238 2239 2240
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2241 2242
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2243
	phys_addr_t uninitialized_var(pteval);
2244
	unsigned long sg_res = 0;
2245 2246
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2247
	u64 attr;
2248

2249
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2250 2251 2252 2253

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2254 2255
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
2256
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2257

2258 2259
	if (!sg) {
		sg_res = nr_pages;
2260
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2261 2262
	}

2263
	while (nr_pages > 0) {
2264 2265
		uint64_t tmp;

2266
		if (!sg_res) {
2267 2268
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2269
			sg_res = aligned_nrpages(sg->offset, sg->length);
2270
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2271
			sg->dma_length = sg->length;
2272
			pteval = (sg_phys(sg) - pgoff) | attr;
2273
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2274
		}
2275

2276
		if (!pte) {
2277 2278
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2279
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2280 2281
			if (!pte)
				return -ENOMEM;
2282
			/* It is large page*/
2283
			if (largepage_lvl > 1) {
2284 2285
				unsigned long nr_superpages, end_pfn;

2286
				pteval |= DMA_PTE_LARGE_PAGE;
2287
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2288 2289 2290 2291

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2292 2293
				/*
				 * Ensure that old small page tables are
2294
				 * removed to make room for superpage(s).
2295 2296
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2297
				 */
2298 2299
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2300
			} else {
2301
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2302
			}
2303

2304 2305 2306 2307
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2308
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2309
		if (tmp) {
2310
			static int dumps = 5;
J
Joerg Roedel 已提交
2311 2312
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2313 2314 2315 2316 2317 2318
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2342
		pte++;
2343 2344
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2345 2346 2347 2348
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2349 2350

		if (!sg_res && nr_pages)
2351 2352 2353 2354 2355
			sg = sg_next(sg);
	}
	return 0;
}

2356
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2357 2358 2359
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2360
	int iommu_id, ret;
2361 2362 2363 2364 2365 2366 2367
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2368 2369
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2370 2371 2372 2373
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2374 2375
}

2376 2377 2378
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2379
{
2380
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2381
}
2382

2383 2384 2385 2386
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2387
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2388 2389
}

2390
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2391
{
2392 2393 2394 2395
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2396 2397
	if (!iommu)
		return;
2398

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2419 2420
}

2421 2422 2423 2424 2425 2426
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2427
		info->dev->archdata.iommu = NULL;
2428 2429
}

2430 2431
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2432
	struct device_domain_info *info, *tmp;
2433
	unsigned long flags;
2434 2435

	spin_lock_irqsave(&device_domain_lock, flags);
2436
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2437
		__dmar_remove_one_dev_info(info);
2438 2439 2440
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2441
struct dmar_domain *find_domain(struct device *dev)
2442 2443 2444
{
	struct device_domain_info *info;

2445
	if (unlikely(attach_deferred(dev) || iommu_dummy(dev)))
2446 2447 2448
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2449
	info = get_domain_info(dev);
2450 2451 2452 2453 2454 2455
	if (likely(info))
		return info->domain;

	return NULL;
}

2456
static void do_deferred_attach(struct device *dev)
2457
{
2458
	struct iommu_domain *domain;
2459

2460 2461 2462 2463 2464 2465
	dev->archdata.iommu = NULL;
	domain = iommu_get_domain_for_dev(dev);
	if (domain)
		intel_iommu_attach_device(domain, dev);
}

2466
static inline struct device_domain_info *
2467 2468 2469 2470 2471
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2472
		if (info->segment == segment && info->bus == bus &&
2473
		    info->devfn == devfn)
2474
			return info;
2475 2476 2477 2478

	return NULL;
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
				    int pasid)
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2509 2510 2511 2512 2513 2514
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2515 2516 2517 2518
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2519
{
2520
	struct dmar_domain *found = NULL;
2521 2522
	struct device_domain_info *info;
	unsigned long flags;
2523
	int ret;
2524 2525 2526

	info = alloc_devinfo_mem();
	if (!info)
2527
		return NULL;
2528

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2541 2542 2543
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2544 2545
	info->dev = dev;
	info->domain = domain;
2546
	info->iommu = iommu;
2547
	info->pasid_table = NULL;
2548
	info->auxd_enabled = 0;
2549
	INIT_LIST_HEAD(&info->auxiliary_domains);
2550

2551 2552 2553
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2554 2555
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2556 2557 2558
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2559 2560
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2572 2573
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2574
		found = find_domain(dev);
2575 2576

	if (!found) {
2577
		struct device_domain_info *info2;
2578 2579
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2580 2581 2582 2583
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2584
	}
2585

2586 2587 2588
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2589 2590
		/* Caller must free the original domain */
		return found;
2591 2592
	}

2593 2594 2595 2596 2597
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2598
		spin_unlock_irqrestore(&device_domain_lock, flags);
2599
		free_devinfo_mem(info);
2600 2601 2602
		return NULL;
	}

2603 2604 2605 2606
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2607
	spin_unlock_irqrestore(&device_domain_lock, flags);
2608

2609 2610
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2611 2612
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2613
			dev_err(dev, "PASID table allocation failed\n");
2614
			dmar_remove_one_dev_info(dev);
2615
			return NULL;
2616
		}
2617 2618 2619 2620 2621 2622

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2623 2624 2625
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2626 2627 2628 2629 2630
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2631
			dev_err(dev, "Setup RID2PASID failed\n");
2632
			dmar_remove_one_dev_info(dev);
2633
			return NULL;
2634 2635
		}
	}
2636

2637
	if (dev && domain_context_mapping(domain, dev)) {
2638
		dev_err(dev, "Domain context map failed\n");
2639
		dmar_remove_one_dev_info(dev);
2640 2641 2642
		return NULL;
	}

2643
	return domain;
2644 2645
}

2646
static int iommu_domain_identity_map(struct dmar_domain *domain,
2647 2648
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2649 2650 2651 2652 2653
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2654
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2655

2656 2657 2658
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2659 2660
}

2661 2662
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2663
static int __init si_domain_init(int hw)
2664
{
2665 2666 2667
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2668

2669
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2670 2671 2672
	if (!si_domain)
		return -EFAULT;

2673
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2674 2675 2676 2677
		domain_exit(si_domain);
		return -EFAULT;
	}

2678 2679 2680
	if (hw)
		return 0;

2681
	for_each_online_node(nid) {
2682 2683 2684 2685 2686
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2687 2688
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2689 2690 2691
			if (ret)
				return ret;
		}
2692 2693
	}

2694
	/*
2695 2696
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

2708 2709 2710
			ret = iommu_domain_identity_map(si_domain,
					mm_to_dma_pfn(start >> PAGE_SHIFT),
					mm_to_dma_pfn(end >> PAGE_SHIFT));
2711 2712 2713 2714 2715
			if (ret)
				return ret;
		}
	}

2716 2717 2718
	return 0;
}

2719
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2720
{
2721
	struct dmar_domain *ndomain;
2722
	struct intel_iommu *iommu;
2723
	u8 bus, devfn;
2724

2725
	iommu = device_to_iommu(dev, &bus, &devfn);
2726 2727 2728
	if (!iommu)
		return -ENODEV;

2729
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2730 2731
	if (ndomain != domain)
		return -EBUSY;
2732 2733 2734 2735

	return 0;
}

2736
static bool device_has_rmrr(struct device *dev)
2737 2738
{
	struct dmar_rmrr_unit *rmrr;
2739
	struct device *tmp;
2740 2741
	int i;

2742
	rcu_read_lock();
2743
	for_each_rmrr_units(rmrr) {
2744 2745 2746 2747 2748 2749
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2750 2751
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2752
				rcu_read_unlock();
2753
				return true;
2754
			}
2755
	}
2756
	rcu_read_unlock();
2757 2758 2759
	return false;
}

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2803 2804
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2805 2806 2807 2808 2809 2810
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2811 2812
	if (device_rmrr_is_relaxable(dev))
		return false;
2813 2814 2815 2816

	return true;
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2828
static int device_def_domain_type(struct device *dev)
2829
{
2830 2831
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2832

2833 2834 2835 2836 2837
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2838
			return IOMMU_DOMAIN_DMA;
2839

2840
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2841
			return IOMMU_DOMAIN_IDENTITY;
2842

2843
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2844
			return IOMMU_DOMAIN_IDENTITY;
2845
	}
2846

2847
	return 0;
2848 2849
}

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2876
		pr_info("%s: Using Register based invalidation\n",
2877 2878 2879 2880
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2881
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2882 2883 2884
	}
}

2885
static int copy_context_table(struct intel_iommu *iommu,
2886
			      struct root_entry *old_re,
2887 2888 2889
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2890
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2891
	struct context_entry *new_ce = NULL, ce;
2892
	struct context_entry *old_ce = NULL;
2893
	struct root_entry re;
2894 2895 2896
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2897
	memcpy(&re, old_re, sizeof(re));
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2913
				memunmap(old_ce);
2914 2915 2916

			ret = 0;
			if (devfn < 0x80)
2917
				old_ce_phys = root_entry_lctp(&re);
2918
			else
2919
				old_ce_phys = root_entry_uctp(&re);
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
2932 2933
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
2945
		memcpy(&ce, old_ce + idx, sizeof(ce));
2946

2947
		if (!__context_present(&ce))
2948 2949
			continue;

2950 2951 2952 2953
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

2973 2974 2975 2976 2977 2978 2979 2980
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
2981
	memunmap(old_ce);
2982 2983 2984 2985 2986 2987 2988 2989

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
2990
	struct root_entry *old_rt;
2991 2992 2993 2994 2995
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
2996
	bool new_ext, ext;
2997 2998 2999

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3010 3011 3012 3013 3014

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3015
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3016 3017 3018 3019 3020 3021
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3022
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3064
	memunmap(old_rt);
3065 3066 3067 3068

	return ret;
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
	if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap))
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3148
static int __init init_dmars(void)
3149 3150 3151
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3152
	int ret;
3153

3154 3155 3156 3157 3158 3159 3160
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3161 3162 3163 3164 3165
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3166
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3167 3168 3169
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3170
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3171 3172
	}

3173 3174 3175 3176
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3177 3178 3179
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3180
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3181 3182 3183 3184
		ret = -ENOMEM;
		goto error;
	}

3185 3186 3187 3188 3189 3190
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3191 3192 3193 3194 3195
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3196
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3197 3198 3199 3200 3201 3202
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3203
		g_iommus[iommu->seq_id] = iommu;
3204

3205 3206
		intel_iommu_init_qi(iommu);

3207 3208
		ret = iommu_init_domains(iommu);
		if (ret)
3209
			goto free_iommu;
3210

3211 3212
		init_translation_status(iommu);

3213 3214 3215 3216 3217 3218
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3219

3220 3221 3222
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3223
		 * among all IOMMU's. Need to Split it later.
3224 3225
		 */
		ret = iommu_alloc_root_entry(iommu);
3226
		if (ret)
3227
			goto free_iommu;
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3253
		if (!ecap_pass_through(iommu->ecap))
3254
			hw_pass_through = 0;
3255
		intel_svm_check(iommu);
3256 3257
	}

3258 3259 3260 3261 3262 3263 3264
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3265 3266 3267
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3268 3269 3270 3271 3272
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3273
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3274
	dmar_map_gfx = 0;
3275
#endif
3276

3277 3278 3279
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3280 3281
	check_tylersburg_isoch();

3282 3283 3284
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3285

3286 3287 3288 3289 3290 3291 3292
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3293
	for_each_iommu(iommu, drhd) {
3294 3295 3296 3297 3298 3299
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3300
				iommu_disable_protect_mem_regions(iommu);
3301
			continue;
3302
		}
3303 3304 3305

		iommu_flush_write_buffer(iommu);

3306
#ifdef CONFIG_INTEL_IOMMU_SVM
3307
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3308 3309 3310 3311 3312
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3313
			ret = intel_svm_enable_prq(iommu);
3314
			down_write(&dmar_global_lock);
3315 3316 3317 3318
			if (ret)
				goto free_iommu;
		}
#endif
3319 3320
		ret = dmar_set_interrupt(iommu);
		if (ret)
3321
			goto free_iommu;
3322 3323 3324
	}

	return 0;
3325 3326

free_iommu:
3327 3328
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3329
		free_dmar_iommu(iommu);
3330
	}
3331

W
Weidong Han 已提交
3332
	kfree(g_iommus);
3333

3334
error:
3335 3336 3337
	return ret;
}

3338
/* This takes a number of _MM_ pages, not VTD pages */
3339
static unsigned long intel_alloc_iova(struct device *dev,
3340 3341
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3342
{
3343
	unsigned long iova_pfn;
3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	/*
	 * Restrict dma_mask to the width that the iommu can handle.
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
				 dma_mask);
	else
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
				 dma_mask);

3360 3361
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3362 3363

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3364 3365
		/*
		 * First try to allocate an io virtual address in
3366
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3367
		 * from higher range
3368
		 */
3369
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3370
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3371 3372
		if (iova_pfn)
			return iova_pfn;
3373
	}
3374 3375
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3376
	if (unlikely(!iova_pfn)) {
3377 3378
		dev_err_once(dev, "Allocating %ld-page iova failed\n",
			     nrpages);
3379
		return 0;
3380 3381
	}

3382
	return iova_pfn;
3383 3384
}

3385 3386
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3387 3388
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3389
	phys_addr_t start_paddr;
3390
	unsigned long iova_pfn;
3391
	int prot = 0;
I
Ingo Molnar 已提交
3392
	int ret;
3393
	struct intel_iommu *iommu;
3394
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3395 3396

	BUG_ON(dir == DMA_NONE);
3397

L
Lu Baolu 已提交
3398 3399 3400
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3401
	domain = find_domain(dev);
3402
	if (!domain)
3403
		return DMA_MAPPING_ERROR;
3404

3405
	iommu = domain_get_iommu(domain);
3406
	size = aligned_nrpages(paddr, size);
3407

3408 3409
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3410 3411
		goto error;

3412 3413 3414 3415 3416
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3417
			!cap_zlr(iommu->cap))
3418 3419 3420 3421
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3422
	 * paddr - (paddr + size) might be partial page, we should map the whole
3423
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3424
	 * might have two guest_addr mapping to the same host paddr, but this
3425 3426
	 * is not a big problem
	 */
3427
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3428
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3429 3430 3431
	if (ret)
		goto error;

3432
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3433
	start_paddr += paddr & ~PAGE_MASK;
3434 3435 3436

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3437
	return start_paddr;
3438 3439

error:
3440
	if (iova_pfn)
3441
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3442 3443
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3444
	return DMA_MAPPING_ERROR;
3445 3446
}

3447 3448 3449
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3450
				 unsigned long attrs)
3451
{
L
Lu Baolu 已提交
3452 3453
	return __intel_map_single(dev, page_to_phys(page) + offset,
				  size, dir, *dev->dma_mask);
3454 3455 3456 3457 3458 3459
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
L
Lu Baolu 已提交
3460
	return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask);
3461 3462
}

3463
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3464
{
3465
	struct dmar_domain *domain;
3466
	unsigned long start_pfn, last_pfn;
3467
	unsigned long nrpages;
3468
	unsigned long iova_pfn;
3469
	struct intel_iommu *iommu;
3470
	struct page *freelist;
3471
	struct pci_dev *pdev = NULL;
3472

3473
	domain = find_domain(dev);
3474 3475
	BUG_ON(!domain);

3476 3477
	iommu = domain_get_iommu(domain);

3478
	iova_pfn = IOVA_PFN(dev_addr);
3479

3480
	nrpages = aligned_nrpages(dev_addr, size);
3481
	start_pfn = mm_to_dma_pfn(iova_pfn);
3482
	last_pfn = start_pfn + nrpages - 1;
3483

3484 3485 3486
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3487
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3488 3489
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3490
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3491
				      nrpages, !freelist, 0);
M
mark gross 已提交
3492
		/* free iova */
3493
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3494
		dma_free_pagelist(freelist);
M
mark gross 已提交
3495
	} else {
3496 3497
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3498 3499 3500 3501 3502
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3503 3504

	trace_unmap_single(dev, dev_addr, size);
3505 3506
}

3507 3508
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3509
			     unsigned long attrs)
3510
{
L
Lu Baolu 已提交
3511
	intel_unmap(dev, dev_addr, size);
3512 3513 3514 3515 3516
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
L
Lu Baolu 已提交
3517
	intel_unmap(dev, dev_addr, size);
3518 3519
}

3520
static void *intel_alloc_coherent(struct device *dev, size_t size,
3521
				  dma_addr_t *dma_handle, gfp_t flags,
3522
				  unsigned long attrs)
3523
{
3524 3525
	struct page *page = NULL;
	int order;
3526

L
Lu Baolu 已提交
3527 3528
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3529

3530 3531 3532 3533 3534 3535
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3536 3537
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3538 3539 3540 3541 3542 3543 3544 3545
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3546 3547 3548
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3549
	if (*dma_handle != DMA_MAPPING_ERROR)
3550 3551 3552
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3553

3554 3555 3556
	return NULL;
}

3557
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3558
				dma_addr_t dma_handle, unsigned long attrs)
3559
{
3560 3561 3562 3563 3564 3565 3566 3567 3568
	int order;
	struct page *page = virt_to_page(vaddr);

	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3569 3570
}

3571
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3572
			   int nelems, enum dma_data_direction dir,
3573
			   unsigned long attrs)
3574
{
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3585 3586

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3587 3588
}

3589
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3590
			enum dma_data_direction dir, unsigned long attrs)
3591 3592 3593
{
	int i;
	struct dmar_domain *domain;
3594 3595
	size_t size = 0;
	int prot = 0;
3596
	unsigned long iova_pfn;
3597
	int ret;
F
FUJITA Tomonori 已提交
3598
	struct scatterlist *sg;
3599
	unsigned long start_vpfn;
3600
	struct intel_iommu *iommu;
3601 3602

	BUG_ON(dir == DMA_NONE);
L
Lu Baolu 已提交
3603 3604 3605

	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3606

3607
	domain = find_domain(dev);
3608 3609 3610
	if (!domain)
		return 0;

3611 3612
	iommu = domain_get_iommu(domain);

3613
	for_each_sg(sglist, sg, nelems, i)
3614
		size += aligned_nrpages(sg->offset, sg->length);
3615

3616
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3617
				*dev->dma_mask);
3618
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3619
		sglist->dma_length = 0;
3620 3621 3622 3623 3624 3625 3626 3627
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3628
			!cap_zlr(iommu->cap))
3629 3630 3631 3632
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3633
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3634

3635
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3636 3637
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3638 3639
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3640
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3641
		return 0;
3642 3643
	}

3644 3645
	for_each_sg(sglist, sg, nelems, i)
		trace_map_sg(dev, i + 1, nelems, sg);
3646

3647 3648 3649
	return nelems;
}

3650 3651 3652 3653 3654
static u64 intel_get_required_mask(struct device *dev)
{
	return DMA_BIT_MASK(32);
}

3655
static const struct dma_map_ops intel_dma_ops = {
3656 3657
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3658 3659
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3660 3661
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3662
	.map_resource = intel_map_resource,
3663
	.unmap_resource = intel_unmap_resource,
3664
	.dma_supported = dma_direct_supported,
3665 3666
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3667
	.get_required_mask = intel_get_required_mask,
3668 3669
};

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3700 3701 3702
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3703
	domain = find_domain(dev);
3704

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
		tlb_addr = swiotlb_tbl_map_single(dev,
				__phys_to_dma(dev, io_tlb_start),
				paddr, size, aligned_size, dir, attrs);
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

3859 3860 3861
	for_each_sg(sglist, sg, nelems, i)
		trace_bounce_map_sg(dev, i + 1, nelems, sg);

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
	.dma_supported		= dma_direct_supported,
};

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3934
		pr_err("Couldn't create iommu_domain cache\n");
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3951
		pr_err("Couldn't create devinfo cache\n");
3952 3953 3954 3955 3956 3957 3958 3959 3960
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3961
	ret = iova_cache_get();
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3975
	iova_cache_put();
3976 3977 3978 3979 3980 3981 3982 3983

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3984
	iova_cache_put();
3985 3986
}

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
4008 4009 4010
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
4011
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4012
	}
4013 4014 4015
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

4016 4017 4018
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4019
	struct device *dev;
4020
	int i;
4021 4022 4023

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4024 4025 4026
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4027
			/* ignore DMAR unit if no devices exist */
4028 4029 4030 4031 4032
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4033 4034
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4035 4036
			continue;

4037 4038
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4039
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4040 4041 4042 4043
				break;
		if (i < drhd->devices_cnt)
			continue;

4044 4045
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4046
		if (!dmar_map_gfx) {
4047
			drhd->ignored = 1;
4048 4049
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
4050
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4051 4052 4053 4054
		}
	}
}

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4075

4076 4077 4078 4079 4080
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4081
					   DMA_CCMD_GLOBAL_INVL);
4082 4083
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4084
		iommu_disable_protect_mem_regions(iommu);
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4097
					   DMA_CCMD_GLOBAL_INVL);
4098
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4099
					 DMA_TLB_GLOBAL_FLUSH);
4100 4101 4102
	}
}

4103
static int iommu_suspend(void)
4104 4105 4106 4107 4108 4109
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4110
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4121
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4132
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4143
static void iommu_resume(void)
4144 4145 4146 4147 4148 4149
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4150 4151 4152 4153
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4154
		return;
4155 4156 4157 4158
	}

	for_each_active_iommu(iommu, drhd) {

4159
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4170
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4171 4172 4173 4174 4175 4176
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4177
static struct syscore_ops iommu_syscore_ops = {
4178 4179 4180 4181
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4182
static void __init init_iommu_pm_ops(void)
4183
{
4184
	register_syscore_ops(&iommu_syscore_ops);
4185 4186 4187
}

#else
4188
static inline void init_iommu_pm_ops(void) {}
4189 4190
#endif	/* CONFIG_PM */

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

4202
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4203 4204 4205
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4206 4207

	rmrr = (struct acpi_dmar_reserved_memory *)header;
4208 4209
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
4210 4211 4212 4213 4214 4215
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
4216 4217
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
4218 4219 4220

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4221
		goto out;
4222 4223

	rmrru->hdr = header;
4224

4225 4226
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4227

4228 4229 4230
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4231
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4232
		goto free_rmrru;
4233

4234
	list_add(&rmrru->list, &dmar_rmrr_units);
4235

4236
	return 0;
4237 4238 4239 4240
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4241 4242
}

4243 4244 4245 4246 4247
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

4248 4249
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4263 4264 4265 4266
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4267
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4268 4269
		return 0;

4270
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4271 4272 4273 4274 4275
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4276 4277 4278
	if (!atsru)
		return -ENOMEM;

4279 4280 4281 4282 4283 4284 4285
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4286
	atsru->include_all = atsr->flags & 0x1;
4287 4288 4289 4290 4291 4292 4293 4294 4295
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4296

4297
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4298 4299 4300 4301

	return 0;
}

4302 4303 4304 4305 4306 4307
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4336
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4337 4338 4339
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4340
	}
4341 4342 4343 4344

	return 0;
}

4345 4346
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4347
	int sp, ret;
4348 4349 4350 4351 4352 4353
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4354
		pr_warn("%s: Doesn't support hardware pass through.\n",
4355 4356 4357 4358 4359
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4360
		pr_warn("%s: Doesn't support snooping.\n",
4361 4362 4363
			iommu->name);
		return -ENXIO;
	}
4364
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
4365
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4366
		pr_warn("%s: Doesn't support large page.\n",
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4384
	intel_svm_check(iommu);
4385

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4397 4398

#ifdef CONFIG_INTEL_IOMMU_SVM
4399
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4400 4401 4402 4403 4404
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4424 4425
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4442 4443
}

4444 4445 4446 4447 4448 4449 4450 4451 4452
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4453 4454
	}

4455 4456 4457 4458
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4459 4460 4461 4462
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4463
	int i, ret = 1;
4464
	struct pci_bus *bus;
4465 4466
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4467 4468 4469 4470 4471
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4472
		bridge = bus->self;
4473 4474 4475 4476 4477
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4478
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4479
			return 0;
4480
		/* If we found the root port, look it up in the ATSR */
4481
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4482 4483 4484
			break;
	}

4485
	rcu_read_lock();
4486 4487 4488 4489 4490
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4491
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4492
			if (tmp == &bridge->dev)
4493
				goto out;
4494 4495

		if (atsru->include_all)
4496
			goto out;
4497
	}
4498 4499
	ret = 0;
out:
4500
	rcu_read_unlock();
4501

4502
	return ret;
4503 4504
}

4505 4506
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4507
	int ret;
4508 4509 4510 4511 4512
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4513
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4524
			if (ret < 0)
4525
				return ret;
4526
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4527 4528
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4544
			else if (ret < 0)
4545
				return ret;
4546
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4547 4548 4549 4550 4551 4552 4553 4554 4555
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4556 4557 4558 4559
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
4560 4561 4562
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
4563 4564 4565

	switch (val) {
	case MEM_GOING_ONLINE:
4566 4567 4568 4569
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
4570 4571 4572 4573 4574 4575
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
4576
		{
4577 4578
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4579
			struct page *freelist;
4580

4581 4582
			freelist = domain_unmap(si_domain,
						start_vpfn, last_vpfn);
4583

4584 4585
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4586
				iommu_flush_iotlb_psi(iommu, si_domain,
4587
					start_vpfn, mhp->nr_pages,
4588
					!freelist, 0);
4589
			rcu_read_unlock();
4590
			dma_free_pagelist(freelist);
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4603 4604 4605 4606 4607 4608 4609
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4610
		int did;
4611 4612 4613 4614

		if (!iommu)
			continue;

4615
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4616
			domain = get_iommu_domain(iommu, (u16)did);
4617

4618
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4619
				continue;
4620

4621 4622 4623 4624 4625
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4626
static int intel_iommu_cpu_dead(unsigned int cpu)
4627
{
4628 4629
	free_all_cpu_cached_iovas(cpu);
	return 0;
4630 4631
}

4632 4633 4634 4635 4636 4637 4638 4639 4640
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4661 4662
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4663 4664 4665
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4666 4667
}

4668 4669 4670 4671
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4672
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4683
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4684 4685 4686 4687 4688 4689 4690 4691
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4692
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4693 4694 4695 4696 4697 4698 4699 4700
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4701
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4702 4703 4704 4705
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4706 4707 4708 4709
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4710
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4711 4712 4713 4714 4715 4716 4717 4718
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4719
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4720 4721 4722 4723 4724
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4725 4726 4727 4728 4729
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4730 4731
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4745
static inline bool has_untrusted_dev(void)
4746 4747 4748
{
	struct pci_dev *pdev = NULL;

4749 4750 4751
	for_each_pci_dev(pdev)
		if (pdev->untrusted)
			return true;
4752

4753 4754
	return false;
}
4755

4756 4757 4758
static int __init platform_optin_force_iommu(void)
{
	if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4769
		iommu_set_default_passthrough(false);
4770 4771 4772 4773 4774 4775 4776

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4777 4778 4779
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4780 4781
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4820 4821
int __init intel_iommu_init(void)
{
4822
	int ret = -ENODEV;
4823
	struct dmar_drhd_unit *drhd;
4824
	struct intel_iommu *iommu;
4825

4826 4827 4828 4829 4830
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4831

4832 4833 4834 4835 4836 4837 4838
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4839 4840 4841
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4842
		goto out_free_dmar;
4843
	}
4844

4845
	if (dmar_dev_scope_init() < 0) {
4846 4847
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4848
		goto out_free_dmar;
4849
	}
4850

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4861 4862 4863
	if (!no_iommu)
		intel_iommu_debugfs_init();

4864
	if (no_iommu || dmar_disabled) {
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4878 4879 4880 4881 4882 4883
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4884
		goto out_free_dmar;
4885
	}
4886

4887
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4888
		pr_info("No RMRR found\n");
4889 4890

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4891
		pr_info("No ATSR found\n");
4892

4893 4894 4895
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4896
		goto out_free_reserved_range;
4897
	}
4898

4899 4900 4901
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4902 4903
	init_no_remapping_devices();

4904
	ret = init_dmars();
4905
	if (ret) {
4906 4907
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4908
		pr_err("Initialization failed\n");
4909
		goto out_free_reserved_range;
4910
	}
4911
	up_write(&dmar_global_lock);
4912

4913
	init_iommu_pm_ops();
4914

4915
	down_read(&dmar_global_lock);
4916 4917 4918 4919 4920 4921 4922
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4923
	up_read(&dmar_global_lock);
4924

4925
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4926 4927
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4928 4929
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4930

4931
	down_read(&dmar_global_lock);
4932 4933 4934
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4935 4936
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4937
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4938 4939 4940 4941
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
4942 4943
	up_read(&dmar_global_lock);

4944 4945
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4946 4947
	intel_iommu_enabled = 1;

4948
	return 0;
4949 4950 4951 4952 4953

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
4954 4955
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4956
	return ret;
4957
}
4958

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

4981
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4982
{
4983
	struct dmar_domain *domain;
4984 4985 4986
	struct intel_iommu *iommu;
	unsigned long flags;

4987 4988
	assert_spin_locked(&device_domain_lock);

4989
	if (WARN_ON(!info))
4990 4991
		return;

4992
	iommu = info->iommu;
4993
	domain = info->domain;
4994

4995
	if (info->dev) {
4996 4997
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
4998
					PASID_RID2PASID, false);
4999

5000
		iommu_disable_dev_iotlb(info);
5001 5002
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
5003
		intel_pasid_free_table(info->dev);
5004
	}
5005

5006
	unlink_domain_info(info);
5007

5008
	spin_lock_irqsave(&iommu->lock, flags);
5009
	domain_detach_iommu(domain, iommu);
5010
	spin_unlock_irqrestore(&iommu->lock, flags);
5011

5012
	free_devinfo_mem(info);
5013 5014
}

5015
static void dmar_remove_one_dev_info(struct device *dev)
5016
{
5017
	struct device_domain_info *info;
5018
	unsigned long flags;
5019

5020
	spin_lock_irqsave(&device_domain_lock, flags);
5021 5022
	info = get_domain_info(dev);
	if (info)
5023
		__dmar_remove_one_dev_info(info);
5024
	spin_unlock_irqrestore(&device_domain_lock, flags);
5025 5026
}

5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
static void intel_init_iova_domain(struct dmar_domain *dmar_domain)
{
	init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad);

	if (!intel_iommu_strict &&
	    init_iova_flush_queue(&dmar_domain->iovad,
				  iommu_flush_iova, iova_entry_free))
		pr_info("iova flush queue initialization failed\n");
}

5060
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5061
{
5062
	struct dmar_domain *dmar_domain;
5063 5064
	struct iommu_domain *domain;

5065
	switch (type) {
5066 5067
	case IOMMU_DOMAIN_DMA:
	/* fallthrough */
5068
	case IOMMU_DOMAIN_UNMANAGED:
5069
		dmar_domain = alloc_domain(0);
5070 5071 5072 5073
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5074
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5075 5076 5077 5078
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5079

5080 5081
		if (type == IOMMU_DOMAIN_DMA)
			intel_init_iova_domain(dmar_domain);
5082

5083
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
5084

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5095
		return NULL;
K
Kay, Allen M 已提交
5096
	}
5097

5098
	return NULL;
K
Kay, Allen M 已提交
5099 5100
}

5101
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5102
{
5103 5104
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5105 5106
}

5107 5108 5109 5110 5111 5112 5113
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
5114
	struct device_domain_info *info = get_domain_info(dev);
5115 5116 5117 5118 5119 5120 5121 5122

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
5123
	struct device_domain_info *info = get_domain_info(dev);
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
5136
	struct device_domain_info *info = get_domain_info(dev);
5137 5138 5139 5140 5141 5142 5143 5144 5145

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5146
		ioasid_free(domain->default_pasid);
5147 5148 5149 5150 5151 5152 5153 5154 5155
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	unsigned long flags;
	struct intel_iommu *iommu;

5156
	iommu = device_to_iommu(dev, NULL, NULL);
5157 5158 5159 5160 5161 5162
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

5163 5164 5165 5166 5167
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
5185 5186 5187 5188 5189 5190
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5207
		ioasid_free(domain->default_pasid);
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
5223
	info = get_domain_info(dev);
5224 5225 5226 5227 5228
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
5229
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
5230 5231 5232 5233 5234 5235
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5236 5237
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5238
{
5239
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5240 5241
	struct intel_iommu *iommu;
	int addr_width;
5242

5243
	iommu = device_to_iommu(dev, NULL, NULL);
5244 5245 5246 5247 5248
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5249 5250 5251 5252
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5253 5254 5255
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5256 5257
		return -EFAULT;
	}
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5268 5269
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5270
			free_pgtable_page(pte);
5271 5272 5273
		}
		dmar_domain->agaw--;
	}
5274

5275 5276 5277 5278 5279 5280 5281 5282
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5283 5284
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5285 5286 5287 5288
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5289 5290 5291
	if (is_aux_domain(dev, domain))
		return -EPERM;

5292 5293 5294 5295 5296
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5297
		if (old_domain)
5298 5299 5300 5301 5302 5303 5304 5305
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5306 5307
}

5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5323 5324
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5325
{
5326
	dmar_remove_one_dev_info(dev);
5327
}
5328

5329 5330 5331 5332 5333 5334
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
5352
static const int
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

#ifdef CONFIG_INTEL_IOMMU_SVM
static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

	if (!inv_info || !dmar_domain ||
	    inv_info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
5412
	info = get_domain_info(dev);
5413 5414 5415 5416 5417 5418 5419 5420
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
L
Liu Yi L 已提交
5421
	if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
5422 5423 5424 5425 5426 5427 5428 5429
		size = to_vtd_size(inv_info->addr_info.granule_size,
				   inv_info->addr_info.nb_granules);

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;
L
Liu Yi L 已提交
5430
		u64 addr = 0;
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
		    (inv_info->pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->pasid_info.pasid;
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			 (inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->addr_info.pasid;

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
5452
			/* HW will ignore LSB bits based on address mask */
5453 5454 5455
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
			    (inv_info->addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
5456
				pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n",
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
						   inv_info->addr_info.addr, size);
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
					mm_to_dma_pfn(inv_info->addr_info.addr),
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
					inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);

L
Liu Yi L 已提交
5469 5470
			if (!info->ats_enabled)
				break;
5471 5472 5473 5474 5475
			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
L
Liu Yi L 已提交
5476
			fallthrough;
5477
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
L
Liu Yi L 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
			/*
			 * PASID based device TLB invalidation does not support
			 * IOMMU_INV_GRANU_PASID granularity but only supports
			 * IOMMU_INV_GRANU_ADDR.
			 * The equivalent of that is we set the size to be the
			 * entire range of 64 bit. User only provides PASID info
			 * without address info. So we set addr to 0.
			 */
			if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
				size = 64 - VTD_PAGE_SHIFT;
				addr = 0;
			} else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
				addr = inv_info->addr_info.addr;
			}

5493 5494 5495
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
L
Liu Yi L 已提交
5496
						info->ats_qdep, addr,
5497
						size);
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

5515 5516
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5517
			   size_t size, int iommu_prot, gfp_t gfp)
5518
{
5519
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5520
	u64 max_addr;
5521
	int prot = 0;
5522
	int ret;
5523

5524 5525 5526 5527
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5528 5529
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5530

5531
	max_addr = iova + size;
5532
	if (dmar_domain->max_addr < max_addr) {
5533 5534 5535
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5536
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5537
		if (end < max_addr) {
J
Joerg Roedel 已提交
5538
			pr_err("%s: iommu width (%d) is not "
5539
			       "sufficient for the mapped address (%llx)\n",
5540
			       __func__, dmar_domain->gaw, max_addr);
5541 5542
			return -EFAULT;
		}
5543
		dmar_domain->max_addr = max_addr;
5544
	}
5545 5546
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5547
	size = aligned_nrpages(hpa, size);
5548 5549
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5550
	return ret;
K
Kay, Allen M 已提交
5551 5552
}

5553
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5554 5555
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5556
{
5557
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5558 5559 5560
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5561
	int iommu_id, level = 0;
5562 5563 5564

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5565
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5566 5567 5568

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5569

5570 5571 5572 5573 5574 5575 5576
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5577
	for_each_domain_iommu(iommu_id, dmar_domain)
5578 5579
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5580 5581

	dma_free_pagelist(freelist);
5582

5583 5584
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5585

5586
	return size;
K
Kay, Allen M 已提交
5587 5588
}

5589
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5590
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5591
{
5592
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5593
	struct dma_pte *pte;
5594
	int level = 0;
5595
	u64 phys = 0;
K
Kay, Allen M 已提交
5596

5597
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5598 5599 5600 5601
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
5602

5603
	return phys;
K
Kay, Allen M 已提交
5604
}
5605

5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5660
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5661 5662
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5663
		return domain_update_iommu_snooping(NULL) == 1;
5664
	if (cap == IOMMU_CAP_INTR_REMAP)
5665
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5666

5667
	return false;
S
Sheng Yang 已提交
5668 5669
}

5670
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5671
{
5672
	struct intel_iommu *iommu;
5673

5674
	iommu = device_to_iommu(dev, NULL, NULL);
5675
	if (!iommu)
5676
		return ERR_PTR(-ENODEV);
5677

5678 5679 5680
	if (translation_pre_enabled(iommu))
		dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;

5681
	return &iommu->iommu;
5682
}
5683

5684
static void intel_iommu_release_device(struct device *dev)
5685
{
5686 5687
	struct intel_iommu *iommu;

5688
	iommu = device_to_iommu(dev, NULL, NULL);
5689 5690 5691
	if (!iommu)
		return;

5692 5693
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5694 5695
	set_dma_ops(dev, NULL);
}
5696

L
Lu Baolu 已提交
5697 5698 5699
static void intel_iommu_probe_finalize(struct device *dev)
{
	struct iommu_domain *domain;
5700

L
Lu Baolu 已提交
5701
	domain = iommu_get_domain_for_dev(dev);
5702
	if (device_needs_bounce(dev))
L
Lu Baolu 已提交
5703 5704 5705 5706
		set_dma_ops(dev, &bounce_dma_ops);
	else if (domain && domain->type == IOMMU_DOMAIN_DMA)
		set_dma_ops(dev, &intel_dma_ops);
	else
5707
		set_dma_ops(dev, NULL);
5708 5709
}

5710 5711 5712
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5713
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5714 5715 5716 5717 5718
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5719
	down_read(&dmar_global_lock);
5720 5721 5722
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5723
			struct iommu_resv_region *resv;
5724
			enum iommu_resv_type type;
5725 5726
			size_t length;

5727 5728
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5729 5730
				continue;

5731
			length = rmrr->end_address - rmrr->base_address + 1;
5732 5733 5734 5735

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5736
			resv = iommu_alloc_resv_region(rmrr->base_address,
5737
						       length, prot, type);
5738 5739 5740 5741
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5742 5743
		}
	}
5744
	up_read(&dmar_global_lock);
5745

5746 5747 5748 5749 5750
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5751
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5752
						   IOMMU_RESV_DIRECT_RELAXABLE);
5753 5754 5755 5756 5757 5758
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5759 5760
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5761
				      0, IOMMU_RESV_MSI);
5762 5763 5764 5765 5766
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5767
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5768 5769 5770 5771 5772 5773 5774 5775
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5776
	domain = find_domain(dev);
5777 5778 5779 5780 5781 5782 5783
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5784
	info = get_domain_info(dev);
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5798 5799 5800
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5831 5832 5833 5834 5835 5836 5837
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5838 5839 5840 5841 5842 5843 5844
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int ret;

5845
	iommu = device_to_iommu(dev, NULL, NULL);
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5857
	info = get_domain_info(dev);
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5870
	info = get_domain_info(dev);
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5923 5924 5925 5926 5927 5928 5929 5930
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

5931 5932 5933 5934 5935 5936 5937 5938 5939
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
5965
	struct device_domain_info *info = get_domain_info(dev);
5966 5967 5968 5969 5970 5971 5972

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5973 5974 5975 5976 5977 5978 5979 5980 5981
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5982 5983 5984
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
5985
	return attach_deferred(dev);
5986 5987
}

5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
/*
 * Check that the device does not live on an external facing PCI port that is
 * marked as untrusted. Such devices should not be able to apply quirks and
 * thus not be able to bypass the IOMMU restrictions.
 */
static bool risky_device(struct pci_dev *pdev)
{
	if (pdev->untrusted) {
		pci_info(pdev,
			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
			 pdev->vendor, pdev->device);
		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
		return true;
	}
	return false;
}

6036
const struct iommu_ops intel_iommu_ops = {
6037 6038 6039
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
6040
	.domain_set_attr	= intel_iommu_domain_set_attr,
6041 6042
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
6043 6044
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
6045
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
6046 6047 6048
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
6049
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
6050
	.probe_finalize		= intel_iommu_probe_finalize,
6051
	.release_device		= intel_iommu_release_device,
6052
	.get_resv_regions	= intel_iommu_get_resv_regions,
6053
	.put_resv_regions	= generic_iommu_put_resv_regions,
6054
	.apply_resv_region	= intel_iommu_apply_resv_region,
6055
	.device_group		= intel_iommu_device_group,
6056 6057 6058 6059
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
6060
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
6061
	.def_domain_type	= device_def_domain_type,
6062
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
6063
#ifdef CONFIG_INTEL_IOMMU_SVM
6064
	.cache_invalidate	= intel_iommu_sva_invalidate,
6065 6066
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
6067 6068 6069
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
6070
	.page_response		= intel_svm_page_response,
6071
#endif
6072
};
6073

6074
static void quirk_iommu_igfx(struct pci_dev *dev)
6075
{
6076 6077 6078
	if (risky_device(dev))
		return;

6079
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6080 6081 6082
	dmar_map_gfx = 0;
}

6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6117

6118
static void quirk_iommu_rwbf(struct pci_dev *dev)
6119
{
6120 6121 6122
	if (risky_device(dev))
		return;

6123 6124
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6125
	 * but needs it. Same seems to hold for the desktop versions.
6126
	 */
6127
	pci_info(dev, "Forcing write-buffer flush capability\n");
6128 6129 6130 6131
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6132 6133 6134 6135 6136 6137
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6138

6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6149
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6150 6151 6152
{
	unsigned short ggc;

6153 6154 6155
	if (risky_device(dev))
		return;

6156
	if (pci_read_config_word(dev, GGC, &ggc))
6157 6158
		return;

6159
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6160
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6161
		dmar_map_gfx = 0;
6162 6163
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6164
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6165 6166
		intel_iommu_strict = 1;
       }
6167 6168 6169 6170 6171 6172
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
6189 6190 6191 6192 6193 6194

	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6195 6196 6197 6198 6199 6200 6201 6202 6203
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

6204 6205 6206 6207 6208
	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6237 6238

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6239 6240
	       vtisochctrl);
}