“1cc896ed61fa0441dffef726ff678fd82a9e6265”上不存在“drivers/iommu/intel/iommu.c”
iommu.c 156.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "../irq_remapping.h"
L
Lu Baolu 已提交
51
#include "intel-pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298

299 300 301 302
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

303 304 305 306 307
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
308
	struct dmar_dev_scope *devices;	/* target devices */
309 310 311 312 313 314
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
315
	struct dmar_dev_scope *devices;	/* target devices */
316 317 318 319 320 321 322 323 324 325
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
326 327 328
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

329
static void domain_exit(struct dmar_domain *domain);
330
static void domain_remove_dev_info(struct dmar_domain *domain);
331
static void dmar_remove_one_dev_info(struct device *dev);
332
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
333 334
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
335 336
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
337

338
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
339 340 341
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
342
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
343

344
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
345 346
int intel_iommu_sm = 1;
#else
347
int intel_iommu_sm;
348
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
349

350 351 352
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

353
static int dmar_map_gfx = 1;
354
static int dmar_forcedac;
M
mark gross 已提交
355
static int intel_iommu_strict;
356
static int intel_iommu_superpage = 1;
357
static int iommu_identity_mapping;
358
static int intel_no_bounce;
359

360 361
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
362

363 364 365
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

366
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
367
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

	info = dev->archdata.iommu;
	if (unlikely(info == DUMMY_DEVICE_DOMAIN_INFO ||
		     info == DEFER_DEVICE_DOMAIN_INFO))
		return NULL;

	return info;
}

383
DEFINE_SPINLOCK(device_domain_lock);
384 385
static LIST_HEAD(device_domain_list);

386 387 388
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

389 390
/*
 * Iterate over elements in device_domain_list and call the specified
391
 * callback @fn against each element.
392 393 394 395 396
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
397
	unsigned long flags;
398 399
	struct device_domain_info *info;

400
	spin_lock_irqsave(&device_domain_lock, flags);
401 402
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
403 404
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
405
			return ret;
406
		}
407
	}
408
	spin_unlock_irqrestore(&device_domain_lock, flags);
409 410 411 412

	return 0;
}

413
const struct iommu_ops intel_iommu_ops;
414

415 416 417 418 419
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

420 421 422 423 424
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

425 426 427 428 429 430 431 432 433
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

434 435 436 437 438
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
439 440
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
441
			pr_info("IOMMU enabled\n");
442
		} else if (!strncmp(str, "off", 3)) {
443
			dmar_disabled = 1;
444
			no_platform_optin = 1;
J
Joerg Roedel 已提交
445
			pr_info("IOMMU disabled\n");
446 447
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
448
			pr_info("Disable GFX device mapping\n");
449
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
450
			pr_info("Forcing DAC for PCI devices\n");
451
			dmar_forcedac = 1;
M
mark gross 已提交
452
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
453
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
454
			intel_iommu_strict = 1;
455
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
456
			pr_info("Disable supported super page\n");
457
			intel_iommu_superpage = 0;
458 459 460
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
461
		} else if (!strncmp(str, "tboot_noforce", 13)) {
462
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
463
			intel_iommu_tboot_noforce = 1;
464 465 466
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
467 468 469 470 471 472 473 474 475 476 477 478 479
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

480 481
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
482 483 484 485 486 487 488 489
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
490 491 492 493 494
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
495 496 497 498 499 500 501 502 503 504 505 506 507
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
508 509
}

510
void *alloc_pgtable_page(int node)
511
{
512 513
	struct page *page;
	void *vaddr = NULL;
514

515 516 517
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
518
	return vaddr;
519 520
}

521
void free_pgtable_page(void *vaddr)
522 523 524 525 526 527
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
528
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
529 530
}

K
Kay, Allen M 已提交
531
static void free_domain_mem(void *vaddr)
532 533 534 535 536 537
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
538
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
539 540 541 542 543 544 545
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

546 547 548 549 550
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

551 552 553 554 555
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

556 557 558 559 560 561 562 563
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
564
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
565 566 567 568 569
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
570
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
571 572 573 574 575 576 577 578
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

597
/* This functionin only returns single iommu in a domain */
598
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
599 600 601
{
	int iommu_id;

602
	/* si_domain and vm domain should not get here. */
603 604 605
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

606 607 608
	for_each_domain_iommu(iommu_id, domain)
		break;

609 610 611 612 613 614
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

W
Weidong Han 已提交
615 616
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
617 618
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
619 620
	bool found = false;
	int i;
621

622
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
623

624
	for_each_domain_iommu(i, domain) {
625
		found = true;
W
Weidong Han 已提交
626 627 628 629 630
		if (!ecap_coherent(g_iommus[i]->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
631 632 633 634 635 636 637 638 639 640 641 642
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!ecap_coherent(iommu->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
643 644
}

645
static int domain_update_iommu_snooping(struct intel_iommu *skip)
646
{
647 648 649
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
650

651 652 653 654 655 656 657
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
658 659
		}
	}
660 661 662
	rcu_read_unlock();

	return ret;
663 664
}

665 666
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
667
{
668
	struct dmar_drhd_unit *drhd;
669
	struct intel_iommu *iommu;
670
	int mask = 0x3;
671 672

	if (!intel_iommu_superpage) {
673
		return 0;
674 675
	}

676
	/* set iommu_superpage to the smallest common denominator */
677
	rcu_read_lock();
678
	for_each_active_iommu(iommu, drhd) {
679
		if (iommu != skip) {
680 681 682 683 684 685 686
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

687 688
			if (!mask)
				break;
689 690
		}
	}
691 692
	rcu_read_unlock();

693
	return fls(mask);
694 695
}

696 697 698 699
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
700
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
701
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
702 703
}

704 705
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
706 707 708 709 710
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

711
	entry = &root->lo;
712
	if (sm_supported(iommu)) {
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

738 739 740 741 742
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

743 744 745 746 747
static bool attach_deferred(struct device *dev)
{
	return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

775
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
776 777
{
	struct dmar_drhd_unit *drhd = NULL;
778
	struct intel_iommu *iommu;
779
	struct device *tmp;
780
	struct pci_dev *pdev = NULL;
781
	u16 segment = 0;
782 783
	int i;

784 785 786
	if (iommu_dummy(dev))
		return NULL;

787
	if (dev_is_pci(dev)) {
788 789
		struct pci_dev *pf_pdev;

790
		pdev = pci_real_dma_dev(to_pci_dev(dev));
791

792 793 794 795
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
796
		segment = pci_domain_nr(pdev->bus);
797
	} else if (has_acpi_companion(dev))
798 799
		dev = &ACPI_COMPANION(dev)->dev;

800
	rcu_read_lock();
801
	for_each_active_iommu(iommu, drhd) {
802
		if (pdev && segment != drhd->segment)
803
			continue;
804

805
		for_each_active_dev_scope(drhd->devices,
806 807
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
808 809 810 811
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
812
				if (pdev && pdev->is_virtfn)
813 814
					goto got_pdev;

815 816
				*bus = drhd->devices[i].bus;
				*devfn = drhd->devices[i].devfn;
817
				goto out;
818 819
			}

820
			if (is_downstream_to_pci_bridge(dev, tmp))
821
				goto got_pdev;
822
		}
823

824 825 826 827
		if (pdev && drhd->include_all) {
		got_pdev:
			*bus = pdev->bus->number;
			*devfn = pdev->devfn;
828
			goto out;
829
		}
830
	}
831
	iommu = NULL;
832
 out:
833
	rcu_read_unlock();
834

835
	return iommu;
836 837
}

W
Weidong Han 已提交
838 839 840 841 842 843 844
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

845 846 847
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
848
	int ret = 0;
849 850 851
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
852 853 854
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
870
		context = iommu_context_addr(iommu, i, 0, 0);
871 872
		if (context)
			free_pgtable_page(context);
873

874
		if (!sm_supported(iommu))
875 876 877 878 879 880
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

881 882 883 884 885 886 887
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

888
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
889
				      unsigned long pfn, int *target_level)
890
{
891
	struct dma_pte *parent, *pte;
892
	int level = agaw_to_level(domain->agaw);
893
	int offset;
894 895

	BUG_ON(!domain->pgd);
896

897
	if (!domain_pfn_supported(domain, pfn))
898 899 900
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

901 902
	parent = domain->pgd;

903
	while (1) {
904 905
		void *tmp_page;

906
		offset = pfn_level_offset(pfn, level);
907
		pte = &parent[offset];
908
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
909
			break;
910
		if (level == *target_level)
911 912
			break;

913
		if (!dma_pte_present(pte)) {
914 915
			uint64_t pteval;

916
			tmp_page = alloc_pgtable_page(domain->nid);
917

918
			if (!tmp_page)
919
				return NULL;
920

921
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
922
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
923
			if (domain_use_first_level(domain))
924
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
925
			if (cmpxchg64(&pte->val, 0ULL, pteval))
926 927
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
928
			else
929
				domain_flush_cache(domain, pte, sizeof(*pte));
930
		}
931 932 933
		if (level == 1)
			break;

934
		parent = phys_to_virt(dma_pte_addr(pte));
935 936 937
		level--;
	}

938 939 940
	if (!*target_level)
		*target_level = level;

941 942 943 944
	return pte;
}

/* return address's pte at specific level */
945 946
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
947
					 int level, int *large_page)
948
{
949
	struct dma_pte *parent, *pte;
950 951 952 953 954
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
955
		offset = pfn_level_offset(pfn, total);
956 957 958 959
		pte = &parent[offset];
		if (level == total)
			return pte;

960 961
		if (!dma_pte_present(pte)) {
			*large_page = total;
962
			break;
963 964
		}

965
		if (dma_pte_superpage(pte)) {
966 967 968 969
			*large_page = total;
			return pte;
		}

970
		parent = phys_to_virt(dma_pte_addr(pte));
971 972 973 974 975 976
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
977
static void dma_pte_clear_range(struct dmar_domain *domain,
978 979
				unsigned long start_pfn,
				unsigned long last_pfn)
980
{
981
	unsigned int large_page;
982
	struct dma_pte *first_pte, *pte;
983

984 985
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
986
	BUG_ON(start_pfn > last_pfn);
987

988
	/* we don't need lock here; nobody else touches the iova range */
989
	do {
990 991
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
992
		if (!pte) {
993
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
994 995
			continue;
		}
996
		do {
997
			dma_clear_pte(pte);
998
			start_pfn += lvl_to_nr_pages(large_page);
999
			pte++;
1000 1001
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1002 1003
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1004 1005

	} while (start_pfn && start_pfn <= last_pfn);
1006 1007
}

1008
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1009 1010 1011
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1023
		level_pfn = pfn & level_mask(level);
1024 1025
		level_pte = phys_to_virt(dma_pte_addr(pte));

1026 1027 1028 1029 1030
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1031

1032 1033 1034 1035 1036
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1037
		      last_pfn < level_pfn + level_size(level) - 1)) {
1038 1039 1040 1041 1042 1043 1044 1045 1046
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1047 1048 1049 1050
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1051
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1052
				   unsigned long start_pfn,
1053 1054
				   unsigned long last_pfn,
				   int retain_level)
1055
{
1056 1057
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1058
	BUG_ON(start_pfn > last_pfn);
1059

1060 1061
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1062
	/* We don't need lock here; nobody else touches the iova range */
1063
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1064
			   domain->pgd, 0, start_pfn, last_pfn);
1065

1066
	/* free pgd */
1067
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1068 1069 1070 1071 1072
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1092 1093
	pte = page_address(pg);
	do {
1094 1095 1096
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1097 1098
		pte++;
	} while (!first_pte_in_page(pte));
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1155 1156 1157
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1158
{
1159
	struct page *freelist;
1160

1161 1162
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1181
static void dma_free_pagelist(struct page *freelist)
1182 1183 1184 1185 1186 1187 1188 1189 1190
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1191 1192 1193 1194 1195 1196 1197
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1198 1199 1200 1201 1202 1203
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1204
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1205
	if (!root) {
J
Joerg Roedel 已提交
1206
		pr_err("Allocating root entry for %s failed\n",
1207
			iommu->name);
1208
		return -ENOMEM;
1209
	}
1210

F
Fenghua Yu 已提交
1211
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1222
	u64 addr;
1223
	u32 sts;
1224 1225
	unsigned long flag;

1226
	addr = virt_to_phys(iommu->root_entry);
1227 1228
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1229

1230
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1231
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1232

1233
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1234 1235 1236

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1237
		      readl, (sts & DMA_GSTS_RTPS), sts);
1238

1239
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1240 1241
}

1242
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1243 1244 1245 1246
{
	u32 val;
	unsigned long flag;

1247
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1248 1249
		return;

1250
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1251
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1252 1253 1254

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1255
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1256

1257
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1258 1259 1260
}

/* return value determine if we need a write buffer flush */
1261 1262 1263
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1284
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1285 1286 1287 1288 1289 1290
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1291
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1292 1293 1294
}

/* return value determine if we need a write buffer flush */
1295 1296
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1312
		/* IH bit is passed in as part of address */
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1330
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1331 1332 1333 1334 1335 1336 1337 1338 1339
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1340
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1341 1342 1343

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1344
		pr_err("Flush IOTLB failed\n");
1345
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1346
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1347 1348
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1349 1350
}

1351 1352 1353
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1354 1355 1356
{
	struct device_domain_info *info;

1357 1358
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1359 1360 1361 1362
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1363 1364
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1365 1366
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1367 1368 1369
			break;
		}

1370
	return NULL;
Y
Yu Zhao 已提交
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1396
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1397
{
1398 1399
	struct pci_dev *pdev;

1400 1401
	assert_spin_locked(&device_domain_lock);

1402
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1403 1404
		return;

1405
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1418
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1419
	}
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1430 1431 1432
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1433 1434
		info->pri_enabled = 1;
#endif
1435
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1436
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1437
		info->ats_enabled = 1;
1438
		domain_update_iotlb(info->domain);
1439 1440
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1441 1442 1443 1444
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1445 1446
	struct pci_dev *pdev;

1447 1448
	assert_spin_locked(&device_domain_lock);

1449
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1450 1451
		return;

1452 1453 1454 1455 1456
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1457
		domain_update_iotlb(info->domain);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1478 1479 1480
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1481 1482
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1483
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1484 1485 1486
			continue;

		sid = info->bus << 8 | info->devfn;
1487
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1488 1489
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1490 1491 1492 1493
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1508 1509 1510 1511
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1512
{
1513
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1514
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1515
	u16 did = domain->iommu_did[iommu->seq_id];
1516 1517 1518

	BUG_ON(pages == 0);

1519 1520
	if (ih)
		ih = 1 << 6;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1538 1539

	/*
1540 1541
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1542
	 */
1543
	if (!cap_caching_mode(iommu->cap) || !map)
1544
		iommu_flush_dev_iotlb(domain, addr, mask);
1545 1546
}

1547 1548 1549 1550 1551
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1552 1553 1554 1555 1556
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1557 1558 1559 1560 1561
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

1573 1574 1575 1576 1577
		if (domain_use_first_level(domain))
			domain_flush_piotlb(iommu, domain, 0, -1, 0);
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1578 1579 1580 1581 1582 1583 1584

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1585 1586 1587 1588 1589
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1590 1591 1592
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1593
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1594 1595 1596 1597 1598 1599 1600 1601
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1602
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1603 1604
}

1605
static void iommu_enable_translation(struct intel_iommu *iommu)
1606 1607 1608 1609
{
	u32 sts;
	unsigned long flags;

1610
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1611 1612
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1613 1614 1615

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1616
		      readl, (sts & DMA_GSTS_TES), sts);
1617

1618
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1619 1620
}

1621
static void iommu_disable_translation(struct intel_iommu *iommu)
1622 1623 1624 1625
{
	u32 sts;
	unsigned long flag;

1626
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1627 1628 1629 1630 1631
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1632
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1633

1634
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1635 1636 1637 1638
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1639 1640
	u32 ndomains, nlongs;
	size_t size;
1641 1642

	ndomains = cap_ndoms(iommu->cap);
1643
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1644
		 iommu->name, ndomains);
1645 1646
	nlongs = BITS_TO_LONGS(ndomains);

1647 1648
	spin_lock_init(&iommu->lock);

1649 1650
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1651 1652
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1653 1654
		return -ENOMEM;
	}
1655

1656
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1657 1658 1659 1660 1661 1662 1663 1664
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1665 1666
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1667
		kfree(iommu->domain_ids);
1668
		kfree(iommu->domains);
1669
		iommu->domain_ids = NULL;
1670
		iommu->domains    = NULL;
1671 1672 1673 1674
		return -ENOMEM;
	}

	/*
1675 1676 1677 1678
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1679
	 */
1680 1681
	set_bit(0, iommu->domain_ids);

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1692 1693 1694
	return 0;
}

1695
static void disable_dmar_iommu(struct intel_iommu *iommu)
1696
{
1697
	struct device_domain_info *info, *tmp;
1698
	unsigned long flags;
1699

1700 1701
	if (!iommu->domains || !iommu->domain_ids)
		return;
1702

1703
	spin_lock_irqsave(&device_domain_lock, flags);
1704 1705 1706 1707 1708 1709 1710
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1711
		__dmar_remove_one_dev_info(info);
1712
	}
1713
	spin_unlock_irqrestore(&device_domain_lock, flags);
1714 1715 1716

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1717
}
1718

1719 1720 1721
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1722
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1723 1724 1725 1726
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1727 1728 1729 1730 1731
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1732

W
Weidong Han 已提交
1733 1734
	g_iommus[iommu->seq_id] = NULL;

1735 1736
	/* free context mapping */
	free_context_table(iommu);
1737 1738

#ifdef CONFIG_INTEL_IOMMU_SVM
1739
	if (pasid_supported(iommu)) {
1740 1741 1742
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1743 1744 1745
	if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap))
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1746
#endif
1747 1748
}

1749 1750
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1751
 * DMA translation.
1752 1753 1754 1755 1756
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1757
	static int first_level_support = -1;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1776
static struct dmar_domain *alloc_domain(int flags)
1777 1778 1779 1780 1781 1782 1783
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1784
	memset(domain, 0, sizeof(*domain));
1785
	domain->nid = NUMA_NO_NODE;
1786
	domain->flags = flags;
1787 1788
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1789
	domain->has_iotlb_device = false;
1790
	INIT_LIST_HEAD(&domain->devices);
1791 1792 1793 1794

	return domain;
}

1795 1796
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1797 1798
			       struct intel_iommu *iommu)
{
1799
	unsigned long ndomains;
1800
	int num;
1801

1802
	assert_spin_locked(&device_domain_lock);
1803
	assert_spin_locked(&iommu->lock);
1804

1805 1806 1807
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1808
		ndomains = cap_ndoms(iommu->cap);
1809 1810 1811 1812 1813 1814
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1815
			return -ENOSPC;
1816
		}
1817

1818 1819 1820 1821 1822
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1823 1824 1825

		domain_update_iommu_cap(domain);
	}
1826

1827
	return 0;
1828 1829 1830 1831 1832
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1833
	int num, count;
1834

1835
	assert_spin_locked(&device_domain_lock);
1836
	assert_spin_locked(&iommu->lock);
1837

1838 1839 1840
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1841 1842 1843
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1844 1845

		domain_update_iommu_cap(domain);
1846
		domain->iommu_did[iommu->seq_id] = 0;
1847 1848 1849 1850 1851
	}

	return count;
}

1852
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1853
static struct lock_class_key reserved_rbtree_key;
1854

1855
static int dmar_init_reserved_ranges(void)
1856 1857 1858 1859 1860
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1861
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1862

M
Mark Gross 已提交
1863 1864 1865
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1866 1867 1868
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1869
	if (!iova) {
J
Joerg Roedel 已提交
1870
		pr_err("Reserve IOAPIC range failed\n");
1871 1872
		return -ENODEV;
	}
1873 1874 1875 1876 1877 1878 1879 1880 1881

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1882 1883 1884
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1885
			if (!iova) {
1886
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1887 1888
				return -ENODEV;
			}
1889 1890
		}
	}
1891
	return 0;
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

1911
	/* Remove associated devices and clear attached or cached domains */
1912
	domain_remove_dev_info(domain);
1913

1914
	/* destroy iovas */
1915 1916
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
		put_iova_domain(&domain->iovad);
1917

1918 1919
	if (domain->pgd) {
		struct page *freelist;
1920

1921 1922 1923
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
1924

1925 1926 1927
	free_domain_mem(domain);
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

1977 1978
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
1979
				      struct pasid_table *table,
1980
				      u8 bus, u8 devfn)
1981
{
1982
	u16 did = domain->iommu_did[iommu->seq_id];
1983 1984
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
1985 1986
	struct context_entry *context;
	unsigned long flags;
1987
	int ret;
1988

1989 1990
	WARN_ON(did == 0);

1991 1992
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
1993 1994 1995

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
1996

1997
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
1998

1999 2000 2001 2002
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2003
	context = iommu_context_addr(iommu, bus, devfn, 1);
2004
	if (!context)
2005
		goto out_unlock;
2006

2007 2008 2009
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2023
		if (did_old < cap_ndoms(iommu->cap)) {
2024 2025 2026 2027
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2028 2029 2030
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2031 2032
	}

2033
	context_clear_entry(context);
2034

2035 2036
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2037

2038 2039 2040 2041 2042 2043 2044 2045 2046
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2047 2048

		/*
2049 2050
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2051
		 */
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2091 2092

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2093
	}
F
Fenghua Yu 已提交
2094

2095 2096
	context_set_fault_enable(context);
	context_set_present(context);
W
Weidong Han 已提交
2097
	domain_flush_cache(domain, context, sizeof(*context));
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2110
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2111
	} else {
2112
		iommu_flush_write_buffer(iommu);
2113
	}
Y
Yu Zhao 已提交
2114
	iommu_enable_dev_iotlb(info);
2115

2116 2117 2118 2119 2120
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2121

2122
	return ret;
2123 2124
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2141
static int
2142
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2143
{
2144
	struct domain_context_mapping_data data;
2145
	struct pasid_table *table;
2146
	struct intel_iommu *iommu;
2147
	u8 bus, devfn;
2148

2149
	iommu = device_to_iommu(dev, &bus, &devfn);
2150 2151
	if (!iommu)
		return -ENODEV;
2152

2153
	table = intel_pasid_get_table(dev);
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2165 2166 2167 2168 2169 2170 2171 2172
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2173 2174
}

2175
static int domain_context_mapped(struct device *dev)
2176
{
W
Weidong Han 已提交
2177
	struct intel_iommu *iommu;
2178
	u8 bus, devfn;
W
Weidong Han 已提交
2179

2180
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2181 2182
	if (!iommu)
		return -ENODEV;
2183

2184 2185
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2186

2187 2188
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2189 2190
}

2191 2192 2193 2194 2195 2196 2197 2198
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2227 2228 2229
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2230 2231
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2232
	phys_addr_t uninitialized_var(pteval);
2233
	unsigned long sg_res = 0;
2234 2235
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2236
	u64 attr;
2237

2238
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2239 2240 2241 2242

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2243 2244
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
2245
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2246

2247 2248
	if (!sg) {
		sg_res = nr_pages;
2249
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2250 2251
	}

2252
	while (nr_pages > 0) {
2253 2254
		uint64_t tmp;

2255
		if (!sg_res) {
2256 2257
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2258
			sg_res = aligned_nrpages(sg->offset, sg->length);
2259
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2260
			sg->dma_length = sg->length;
2261
			pteval = (sg_phys(sg) - pgoff) | attr;
2262
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2263
		}
2264

2265
		if (!pte) {
2266 2267
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2268
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2269 2270
			if (!pte)
				return -ENOMEM;
2271
			/* It is large page*/
2272
			if (largepage_lvl > 1) {
2273 2274
				unsigned long nr_superpages, end_pfn;

2275
				pteval |= DMA_PTE_LARGE_PAGE;
2276
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2277 2278 2279 2280

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2281 2282
				/*
				 * Ensure that old small page tables are
2283
				 * removed to make room for superpage(s).
2284 2285
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2286
				 */
2287 2288
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2289
			} else {
2290
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2291
			}
2292

2293 2294 2295 2296
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2297
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2298
		if (tmp) {
2299
			static int dumps = 5;
J
Joerg Roedel 已提交
2300 2301
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2302 2303 2304 2305 2306 2307
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2331
		pte++;
2332 2333
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2334 2335 2336 2337
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2338 2339

		if (!sg_res && nr_pages)
2340 2341 2342 2343 2344
			sg = sg_next(sg);
	}
	return 0;
}

2345
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2346 2347 2348
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2349
	int iommu_id, ret;
2350 2351 2352 2353 2354 2355 2356
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2357 2358
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2359 2360 2361 2362
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2363 2364
}

2365 2366 2367
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2368
{
2369
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2370
}
2371

2372 2373 2374 2375
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2376
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2377 2378
}

2379
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2380
{
2381 2382 2383 2384
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2385 2386
	if (!iommu)
		return;
2387

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2408 2409
}

2410 2411 2412 2413 2414 2415
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2416
		info->dev->archdata.iommu = NULL;
2417 2418
}

2419 2420
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2421
	struct device_domain_info *info, *tmp;
2422
	unsigned long flags;
2423 2424

	spin_lock_irqsave(&device_domain_lock, flags);
2425
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2426
		__dmar_remove_one_dev_info(info);
2427 2428 2429
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2430
struct dmar_domain *find_domain(struct device *dev)
2431 2432 2433
{
	struct device_domain_info *info;

2434
	if (unlikely(attach_deferred(dev) || iommu_dummy(dev)))
2435 2436 2437
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2438
	info = get_domain_info(dev);
2439 2440 2441 2442 2443 2444
	if (likely(info))
		return info->domain;

	return NULL;
}

2445
static void do_deferred_attach(struct device *dev)
2446
{
2447
	struct iommu_domain *domain;
2448

2449 2450 2451 2452 2453 2454
	dev->archdata.iommu = NULL;
	domain = iommu_get_domain_for_dev(dev);
	if (domain)
		intel_iommu_attach_device(domain, dev);
}

2455
static inline struct device_domain_info *
2456 2457 2458 2459 2460
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2461
		if (info->segment == segment && info->bus == bus &&
2462
		    info->devfn == devfn)
2463
			return info;
2464 2465 2466 2467

	return NULL;
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
				    int pasid)
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2498 2499 2500 2501 2502 2503
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2504 2505 2506 2507
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2508
{
2509
	struct dmar_domain *found = NULL;
2510 2511
	struct device_domain_info *info;
	unsigned long flags;
2512
	int ret;
2513 2514 2515

	info = alloc_devinfo_mem();
	if (!info)
2516
		return NULL;
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2530 2531 2532
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2533 2534
	info->dev = dev;
	info->domain = domain;
2535
	info->iommu = iommu;
2536
	info->pasid_table = NULL;
2537
	info->auxd_enabled = 0;
2538
	INIT_LIST_HEAD(&info->auxiliary_domains);
2539

2540 2541 2542
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2543 2544
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2545 2546 2547
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2548 2549
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2561 2562
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2563
		found = find_domain(dev);
2564 2565

	if (!found) {
2566
		struct device_domain_info *info2;
2567 2568
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2569 2570 2571 2572
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2573
	}
2574

2575 2576 2577
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2578 2579
		/* Caller must free the original domain */
		return found;
2580 2581
	}

2582 2583 2584 2585 2586
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2587
		spin_unlock_irqrestore(&device_domain_lock, flags);
2588
		free_devinfo_mem(info);
2589 2590 2591
		return NULL;
	}

2592 2593 2594 2595
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2596
	spin_unlock_irqrestore(&device_domain_lock, flags);
2597

2598 2599
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2600 2601
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2602
			dev_err(dev, "PASID table allocation failed\n");
2603
			dmar_remove_one_dev_info(dev);
2604
			return NULL;
2605
		}
2606 2607 2608 2609 2610 2611

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2612 2613 2614
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2615 2616 2617 2618 2619
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2620
			dev_err(dev, "Setup RID2PASID failed\n");
2621
			dmar_remove_one_dev_info(dev);
2622
			return NULL;
2623 2624
		}
	}
2625

2626
	if (dev && domain_context_mapping(domain, dev)) {
2627
		dev_err(dev, "Domain context map failed\n");
2628
		dmar_remove_one_dev_info(dev);
2629 2630 2631
		return NULL;
	}

2632
	return domain;
2633 2634
}

2635
static int iommu_domain_identity_map(struct dmar_domain *domain,
2636 2637
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2638 2639 2640 2641 2642
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2643
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2644

2645 2646 2647
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2648 2649
}

2650 2651
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2652
static int __init si_domain_init(int hw)
2653
{
2654 2655 2656
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2657

2658
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2659 2660 2661
	if (!si_domain)
		return -EFAULT;

2662
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2663 2664 2665 2666
		domain_exit(si_domain);
		return -EFAULT;
	}

2667 2668 2669
	if (hw)
		return 0;

2670
	for_each_online_node(nid) {
2671 2672 2673 2674 2675
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2676 2677
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2678 2679 2680
			if (ret)
				return ret;
		}
2681 2682
	}

2683
	/*
2684 2685
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

			ret = iommu_domain_identity_map(si_domain, start, end);
			if (ret)
				return ret;
		}
	}

2703 2704 2705
	return 0;
}

2706
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2707
{
2708
	struct dmar_domain *ndomain;
2709
	struct intel_iommu *iommu;
2710
	u8 bus, devfn;
2711

2712
	iommu = device_to_iommu(dev, &bus, &devfn);
2713 2714 2715
	if (!iommu)
		return -ENODEV;

2716
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2717 2718
	if (ndomain != domain)
		return -EBUSY;
2719 2720 2721 2722

	return 0;
}

2723
static bool device_has_rmrr(struct device *dev)
2724 2725
{
	struct dmar_rmrr_unit *rmrr;
2726
	struct device *tmp;
2727 2728
	int i;

2729
	rcu_read_lock();
2730
	for_each_rmrr_units(rmrr) {
2731 2732 2733 2734 2735 2736
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2737 2738
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2739
				rcu_read_unlock();
2740
				return true;
2741
			}
2742
	}
2743
	rcu_read_unlock();
2744 2745 2746
	return false;
}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2790 2791
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2792 2793 2794 2795 2796 2797
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2798 2799
	if (device_rmrr_is_relaxable(dev))
		return false;
2800 2801 2802 2803

	return true;
}

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2815
static int device_def_domain_type(struct device *dev)
2816
{
2817 2818
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2819

2820 2821 2822 2823 2824
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2825
			return IOMMU_DOMAIN_DMA;
2826

2827
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2828
			return IOMMU_DOMAIN_IDENTITY;
2829

2830
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2831
			return IOMMU_DOMAIN_IDENTITY;
2832
	}
2833

2834
	return 0;
2835 2836
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2863
		pr_info("%s: Using Register based invalidation\n",
2864 2865 2866 2867
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2868
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2869 2870 2871
	}
}

2872
static int copy_context_table(struct intel_iommu *iommu,
2873
			      struct root_entry *old_re,
2874 2875 2876
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2877
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2878
	struct context_entry *new_ce = NULL, ce;
2879
	struct context_entry *old_ce = NULL;
2880
	struct root_entry re;
2881 2882 2883
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2884
	memcpy(&re, old_re, sizeof(re));
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2900
				memunmap(old_ce);
2901 2902 2903

			ret = 0;
			if (devfn < 0x80)
2904
				old_ce_phys = root_entry_lctp(&re);
2905
			else
2906
				old_ce_phys = root_entry_uctp(&re);
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
2919 2920
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
2932
		memcpy(&ce, old_ce + idx, sizeof(ce));
2933

2934
		if (!__context_present(&ce))
2935 2936
			continue;

2937 2938 2939 2940
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

2960 2961 2962 2963 2964 2965 2966 2967
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
2968
	memunmap(old_ce);
2969 2970 2971 2972 2973 2974 2975 2976

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
2977
	struct root_entry *old_rt;
2978 2979 2980 2981 2982
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
2983
	bool new_ext, ext;
2984 2985 2986

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
2997 2998 2999 3000 3001

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3002
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3003 3004 3005 3006 3007 3008
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3009
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3051
	memunmap(old_rt);
3052 3053 3054 3055

	return ret;
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
	if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap))
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3135
static int __init init_dmars(void)
3136 3137 3138
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3139
	int ret;
3140

3141 3142 3143 3144 3145 3146 3147
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3148 3149 3150 3151 3152
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3153
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3154 3155 3156
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3157
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3158 3159
	}

3160 3161 3162 3163
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3164 3165 3166
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3167
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3168 3169 3170 3171
		ret = -ENOMEM;
		goto error;
	}

3172 3173 3174 3175 3176 3177
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3178 3179 3180 3181 3182
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3183
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3184 3185 3186 3187 3188 3189
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3190
		g_iommus[iommu->seq_id] = iommu;
3191

3192 3193
		intel_iommu_init_qi(iommu);

3194 3195
		ret = iommu_init_domains(iommu);
		if (ret)
3196
			goto free_iommu;
3197

3198 3199
		init_translation_status(iommu);

3200 3201 3202 3203 3204 3205
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3206

3207 3208 3209
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3210
		 * among all IOMMU's. Need to Split it later.
3211 3212
		 */
		ret = iommu_alloc_root_entry(iommu);
3213
		if (ret)
3214
			goto free_iommu;
3215

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3240
		if (!ecap_pass_through(iommu->ecap))
3241
			hw_pass_through = 0;
3242
		intel_svm_check(iommu);
3243 3244
	}

3245 3246 3247 3248 3249 3250 3251
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3252 3253 3254
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3255 3256 3257 3258 3259
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3260
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3261
	dmar_map_gfx = 0;
3262
#endif
3263

3264 3265 3266
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3267 3268
	check_tylersburg_isoch();

3269 3270 3271
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3272

3273 3274 3275 3276 3277 3278 3279
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3280
	for_each_iommu(iommu, drhd) {
3281 3282 3283 3284 3285 3286
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3287
				iommu_disable_protect_mem_regions(iommu);
3288
			continue;
3289
		}
3290 3291 3292

		iommu_flush_write_buffer(iommu);

3293
#ifdef CONFIG_INTEL_IOMMU_SVM
3294
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3295 3296 3297 3298 3299
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3300
			ret = intel_svm_enable_prq(iommu);
3301
			down_write(&dmar_global_lock);
3302 3303 3304 3305
			if (ret)
				goto free_iommu;
		}
#endif
3306 3307
		ret = dmar_set_interrupt(iommu);
		if (ret)
3308
			goto free_iommu;
3309 3310 3311
	}

	return 0;
3312 3313

free_iommu:
3314 3315
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3316
		free_dmar_iommu(iommu);
3317
	}
3318

W
Weidong Han 已提交
3319
	kfree(g_iommus);
3320

3321
error:
3322 3323 3324
	return ret;
}

3325
/* This takes a number of _MM_ pages, not VTD pages */
3326
static unsigned long intel_alloc_iova(struct device *dev,
3327 3328
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3329
{
3330
	unsigned long iova_pfn;
3331

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	/*
	 * Restrict dma_mask to the width that the iommu can handle.
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
				 dma_mask);
	else
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
				 dma_mask);

3347 3348
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3349 3350

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3351 3352
		/*
		 * First try to allocate an io virtual address in
3353
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3354
		 * from higher range
3355
		 */
3356
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3357
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3358 3359
		if (iova_pfn)
			return iova_pfn;
3360
	}
3361 3362
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3363
	if (unlikely(!iova_pfn)) {
3364 3365
		dev_err_once(dev, "Allocating %ld-page iova failed\n",
			     nrpages);
3366
		return 0;
3367 3368
	}

3369
	return iova_pfn;
3370 3371
}

3372 3373
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3374 3375
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3376
	phys_addr_t start_paddr;
3377
	unsigned long iova_pfn;
3378
	int prot = 0;
I
Ingo Molnar 已提交
3379
	int ret;
3380
	struct intel_iommu *iommu;
3381
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3382 3383

	BUG_ON(dir == DMA_NONE);
3384

L
Lu Baolu 已提交
3385 3386 3387
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3388
	domain = find_domain(dev);
3389
	if (!domain)
3390
		return DMA_MAPPING_ERROR;
3391

3392
	iommu = domain_get_iommu(domain);
3393
	size = aligned_nrpages(paddr, size);
3394

3395 3396
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3397 3398
		goto error;

3399 3400 3401 3402 3403
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3404
			!cap_zlr(iommu->cap))
3405 3406 3407 3408
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3409
	 * paddr - (paddr + size) might be partial page, we should map the whole
3410
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3411
	 * might have two guest_addr mapping to the same host paddr, but this
3412 3413
	 * is not a big problem
	 */
3414
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3415
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3416 3417 3418
	if (ret)
		goto error;

3419
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3420
	start_paddr += paddr & ~PAGE_MASK;
3421 3422 3423

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3424
	return start_paddr;
3425 3426

error:
3427
	if (iova_pfn)
3428
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3429 3430
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3431
	return DMA_MAPPING_ERROR;
3432 3433
}

3434 3435 3436
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3437
				 unsigned long attrs)
3438
{
L
Lu Baolu 已提交
3439 3440
	return __intel_map_single(dev, page_to_phys(page) + offset,
				  size, dir, *dev->dma_mask);
3441 3442 3443 3444 3445 3446
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
L
Lu Baolu 已提交
3447
	return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask);
3448 3449
}

3450
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3451
{
3452
	struct dmar_domain *domain;
3453
	unsigned long start_pfn, last_pfn;
3454
	unsigned long nrpages;
3455
	unsigned long iova_pfn;
3456
	struct intel_iommu *iommu;
3457
	struct page *freelist;
3458
	struct pci_dev *pdev = NULL;
3459

3460
	domain = find_domain(dev);
3461 3462
	BUG_ON(!domain);

3463 3464
	iommu = domain_get_iommu(domain);

3465
	iova_pfn = IOVA_PFN(dev_addr);
3466

3467
	nrpages = aligned_nrpages(dev_addr, size);
3468
	start_pfn = mm_to_dma_pfn(iova_pfn);
3469
	last_pfn = start_pfn + nrpages - 1;
3470

3471 3472 3473
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3474
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3475 3476
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3477
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3478
				      nrpages, !freelist, 0);
M
mark gross 已提交
3479
		/* free iova */
3480
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3481
		dma_free_pagelist(freelist);
M
mark gross 已提交
3482
	} else {
3483 3484
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3485 3486 3487 3488 3489
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3490 3491

	trace_unmap_single(dev, dev_addr, size);
3492 3493
}

3494 3495
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3496
			     unsigned long attrs)
3497
{
L
Lu Baolu 已提交
3498
	intel_unmap(dev, dev_addr, size);
3499 3500 3501 3502 3503
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
L
Lu Baolu 已提交
3504
	intel_unmap(dev, dev_addr, size);
3505 3506
}

3507
static void *intel_alloc_coherent(struct device *dev, size_t size,
3508
				  dma_addr_t *dma_handle, gfp_t flags,
3509
				  unsigned long attrs)
3510
{
3511 3512
	struct page *page = NULL;
	int order;
3513

L
Lu Baolu 已提交
3514 3515
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3516

3517 3518 3519 3520 3521 3522
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3523 3524
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3525 3526 3527 3528 3529 3530 3531 3532
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3533 3534 3535
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3536
	if (*dma_handle != DMA_MAPPING_ERROR)
3537 3538 3539
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3540

3541 3542 3543
	return NULL;
}

3544
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3545
				dma_addr_t dma_handle, unsigned long attrs)
3546
{
3547 3548 3549 3550 3551 3552 3553 3554 3555
	int order;
	struct page *page = virt_to_page(vaddr);

	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3556 3557
}

3558
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3559
			   int nelems, enum dma_data_direction dir,
3560
			   unsigned long attrs)
3561
{
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3572 3573

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3574 3575
}

3576
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3577
			enum dma_data_direction dir, unsigned long attrs)
3578 3579 3580
{
	int i;
	struct dmar_domain *domain;
3581 3582
	size_t size = 0;
	int prot = 0;
3583
	unsigned long iova_pfn;
3584
	int ret;
F
FUJITA Tomonori 已提交
3585
	struct scatterlist *sg;
3586
	unsigned long start_vpfn;
3587
	struct intel_iommu *iommu;
3588 3589

	BUG_ON(dir == DMA_NONE);
L
Lu Baolu 已提交
3590 3591 3592

	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3593

3594
	domain = find_domain(dev);
3595 3596 3597
	if (!domain)
		return 0;

3598 3599
	iommu = domain_get_iommu(domain);

3600
	for_each_sg(sglist, sg, nelems, i)
3601
		size += aligned_nrpages(sg->offset, sg->length);
3602

3603
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3604
				*dev->dma_mask);
3605
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3606
		sglist->dma_length = 0;
3607 3608 3609 3610 3611 3612 3613 3614
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3615
			!cap_zlr(iommu->cap))
3616 3617 3618 3619
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3620
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3621

3622
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3623 3624
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3625 3626
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3627
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3628
		return 0;
3629 3630
	}

3631 3632
	for_each_sg(sglist, sg, nelems, i)
		trace_map_sg(dev, i + 1, nelems, sg);
3633

3634 3635 3636
	return nelems;
}

3637 3638 3639 3640 3641
static u64 intel_get_required_mask(struct device *dev)
{
	return DMA_BIT_MASK(32);
}

3642
static const struct dma_map_ops intel_dma_ops = {
3643 3644
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3645 3646
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3647 3648
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3649
	.map_resource = intel_map_resource,
3650
	.unmap_resource = intel_unmap_resource,
3651
	.dma_supported = dma_direct_supported,
3652 3653
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3654
	.get_required_mask = intel_get_required_mask,
3655 3656
};

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3687 3688 3689
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3690
	domain = find_domain(dev);
3691

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
		tlb_addr = swiotlb_tbl_map_single(dev,
				__phys_to_dma(dev, io_tlb_start),
				paddr, size, aligned_size, dir, attrs);
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

3846 3847 3848
	for_each_sg(sglist, sg, nelems, i)
		trace_bounce_map_sg(dev, i + 1, nelems, sg);

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
	.dma_supported		= dma_direct_supported,
};

3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3921
		pr_err("Couldn't create iommu_domain cache\n");
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3938
		pr_err("Couldn't create devinfo cache\n");
3939 3940 3941 3942 3943 3944 3945 3946 3947
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3948
	ret = iova_cache_get();
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3962
	iova_cache_put();
3963 3964 3965 3966 3967 3968 3969 3970

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3971
	iova_cache_put();
3972 3973
}

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
3995 3996 3997
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
3998
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3999
	}
4000 4001 4002
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

4003 4004 4005
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4006
	struct device *dev;
4007
	int i;
4008 4009 4010

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4011 4012 4013
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4014
			/* ignore DMAR unit if no devices exist */
4015 4016 4017 4018 4019
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4020 4021
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4022 4023
			continue;

4024 4025
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4026
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4027 4028 4029 4030
				break;
		if (i < drhd->devices_cnt)
			continue;

4031 4032
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4033
		if (!dmar_map_gfx) {
4034
			drhd->ignored = 1;
4035 4036
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
4037
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4038 4039 4040 4041
		}
	}
}

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4062

4063 4064 4065 4066 4067
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4068
					   DMA_CCMD_GLOBAL_INVL);
4069 4070
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4071
		iommu_disable_protect_mem_regions(iommu);
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4084
					   DMA_CCMD_GLOBAL_INVL);
4085
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4086
					 DMA_TLB_GLOBAL_FLUSH);
4087 4088 4089
	}
}

4090
static int iommu_suspend(void)
4091 4092 4093 4094 4095 4096
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4097
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4108
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4119
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4130
static void iommu_resume(void)
4131 4132 4133 4134 4135 4136
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4137 4138 4139 4140
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4141
		return;
4142 4143 4144 4145
	}

	for_each_active_iommu(iommu, drhd) {

4146
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4157
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4158 4159 4160 4161 4162 4163
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4164
static struct syscore_ops iommu_syscore_ops = {
4165 4166 4167 4168
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4169
static void __init init_iommu_pm_ops(void)
4170
{
4171
	register_syscore_ops(&iommu_syscore_ops);
4172 4173 4174
}

#else
4175
static inline void init_iommu_pm_ops(void) {}
4176 4177
#endif	/* CONFIG_PM */

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

4189
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4190 4191 4192
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4193 4194

	rmrr = (struct acpi_dmar_reserved_memory *)header;
4195 4196
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
4197 4198 4199 4200 4201 4202
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
4203 4204
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
4205 4206 4207

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4208
		goto out;
4209 4210

	rmrru->hdr = header;
4211

4212 4213
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4214

4215 4216 4217
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4218
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4219
		goto free_rmrru;
4220

4221
	list_add(&rmrru->list, &dmar_rmrr_units);
4222

4223
	return 0;
4224 4225 4226 4227
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4228 4229
}

4230 4231 4232 4233 4234
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

4235 4236
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4250 4251 4252 4253
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4254
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4255 4256
		return 0;

4257
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4258 4259 4260 4261 4262
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4263 4264 4265
	if (!atsru)
		return -ENOMEM;

4266 4267 4268 4269 4270 4271 4272
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4273
	atsru->include_all = atsr->flags & 0x1;
4274 4275 4276 4277 4278 4279 4280 4281 4282
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4283

4284
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4285 4286 4287 4288

	return 0;
}

4289 4290 4291 4292 4293 4294
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4323
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4324 4325 4326
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4327
	}
4328 4329 4330 4331

	return 0;
}

4332 4333
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4334
	int sp, ret;
4335 4336 4337 4338 4339 4340
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4341
		pr_warn("%s: Doesn't support hardware pass through.\n",
4342 4343 4344 4345 4346
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4347
		pr_warn("%s: Doesn't support snooping.\n",
4348 4349 4350
			iommu->name);
		return -ENXIO;
	}
4351
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
4352
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4353
		pr_warn("%s: Doesn't support large page.\n",
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4371
	intel_svm_check(iommu);
4372

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4384 4385

#ifdef CONFIG_INTEL_IOMMU_SVM
4386
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4387 4388 4389 4390 4391
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4411 4412
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4429 4430
}

4431 4432 4433 4434 4435 4436 4437 4438 4439
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4440 4441
	}

4442 4443 4444 4445
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4446 4447 4448 4449
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4450
	int i, ret = 1;
4451
	struct pci_bus *bus;
4452 4453
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4454 4455 4456 4457 4458
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4459
		bridge = bus->self;
4460 4461 4462 4463 4464
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4465
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4466
			return 0;
4467
		/* If we found the root port, look it up in the ATSR */
4468
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4469 4470 4471
			break;
	}

4472
	rcu_read_lock();
4473 4474 4475 4476 4477
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4478
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4479
			if (tmp == &bridge->dev)
4480
				goto out;
4481 4482

		if (atsru->include_all)
4483
			goto out;
4484
	}
4485 4486
	ret = 0;
out:
4487
	rcu_read_unlock();
4488

4489
	return ret;
4490 4491
}

4492 4493
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4494
	int ret;
4495 4496 4497 4498 4499
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4500
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4511
			if (ret < 0)
4512
				return ret;
4513
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4514 4515
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4531
			else if (ret < 0)
4532
				return ret;
4533
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4534 4535 4536 4537 4538 4539 4540 4541 4542
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4543 4544 4545 4546
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
4547 4548 4549
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
4550 4551 4552

	switch (val) {
	case MEM_GOING_ONLINE:
4553 4554 4555 4556
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
4557 4558 4559 4560 4561 4562
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
4563
		{
4564 4565
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4566
			struct page *freelist;
4567

4568 4569
			freelist = domain_unmap(si_domain,
						start_vpfn, last_vpfn);
4570

4571 4572
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4573
				iommu_flush_iotlb_psi(iommu, si_domain,
4574
					start_vpfn, mhp->nr_pages,
4575
					!freelist, 0);
4576
			rcu_read_unlock();
4577
			dma_free_pagelist(freelist);
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4590 4591 4592 4593 4594 4595 4596
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4597
		int did;
4598 4599 4600 4601

		if (!iommu)
			continue;

4602
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4603
			domain = get_iommu_domain(iommu, (u16)did);
4604

4605
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4606
				continue;
4607

4608 4609 4610 4611 4612
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4613
static int intel_iommu_cpu_dead(unsigned int cpu)
4614
{
4615 4616
	free_all_cpu_cached_iovas(cpu);
	return 0;
4617 4618
}

4619 4620 4621 4622 4623 4624 4625 4626 4627
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4648 4649
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4650 4651 4652
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4653 4654
}

4655 4656 4657 4658
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4659
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4670
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4671 4672 4673 4674 4675 4676 4677 4678
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4679
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4680 4681 4682 4683 4684 4685 4686 4687
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4688
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4689 4690 4691 4692
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4693 4694 4695 4696
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4697
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4698 4699 4700 4701 4702 4703 4704 4705
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4706
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4707 4708 4709 4710 4711
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4712 4713 4714 4715 4716
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4717 4718
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4732
static inline bool has_untrusted_dev(void)
4733 4734 4735
{
	struct pci_dev *pdev = NULL;

4736 4737 4738
	for_each_pci_dev(pdev)
		if (pdev->untrusted)
			return true;
4739

4740 4741
	return false;
}
4742

4743 4744 4745
static int __init platform_optin_force_iommu(void)
{
	if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4756
		iommu_set_default_passthrough(false);
4757 4758 4759 4760 4761 4762 4763

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4764 4765 4766
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4767 4768
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4807 4808
int __init intel_iommu_init(void)
{
4809
	int ret = -ENODEV;
4810
	struct dmar_drhd_unit *drhd;
4811
	struct intel_iommu *iommu;
4812

4813 4814 4815 4816 4817
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4818

4819 4820 4821 4822 4823 4824 4825
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4826 4827 4828
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4829
		goto out_free_dmar;
4830
	}
4831

4832
	if (dmar_dev_scope_init() < 0) {
4833 4834
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4835
		goto out_free_dmar;
4836
	}
4837

4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4848 4849 4850
	if (!no_iommu)
		intel_iommu_debugfs_init();

4851
	if (no_iommu || dmar_disabled) {
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4865 4866 4867 4868 4869 4870
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4871
		goto out_free_dmar;
4872
	}
4873

4874
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4875
		pr_info("No RMRR found\n");
4876 4877

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4878
		pr_info("No ATSR found\n");
4879

4880 4881 4882
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4883
		goto out_free_reserved_range;
4884
	}
4885

4886 4887 4888
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4889 4890
	init_no_remapping_devices();

4891
	ret = init_dmars();
4892
	if (ret) {
4893 4894
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4895
		pr_err("Initialization failed\n");
4896
		goto out_free_reserved_range;
4897
	}
4898
	up_write(&dmar_global_lock);
4899

4900
	init_iommu_pm_ops();
4901

4902
	down_read(&dmar_global_lock);
4903 4904 4905 4906 4907 4908 4909
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4910
	up_read(&dmar_global_lock);
4911

4912
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4913 4914
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4915 4916
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4917

4918
	down_read(&dmar_global_lock);
4919 4920 4921
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4922 4923
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4924
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4925 4926 4927 4928
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
4929 4930
	up_read(&dmar_global_lock);

4931 4932
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4933 4934
	intel_iommu_enabled = 1;

4935
	return 0;
4936 4937 4938 4939 4940

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
4941 4942
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4943
	return ret;
4944
}
4945

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

4968
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4969
{
4970
	struct dmar_domain *domain;
4971 4972 4973
	struct intel_iommu *iommu;
	unsigned long flags;

4974 4975
	assert_spin_locked(&device_domain_lock);

4976
	if (WARN_ON(!info))
4977 4978
		return;

4979
	iommu = info->iommu;
4980
	domain = info->domain;
4981

4982
	if (info->dev) {
4983 4984
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
4985
					PASID_RID2PASID, false);
4986

4987
		iommu_disable_dev_iotlb(info);
4988 4989
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
4990
		intel_pasid_free_table(info->dev);
4991
	}
4992

4993
	unlink_domain_info(info);
4994

4995
	spin_lock_irqsave(&iommu->lock, flags);
4996
	domain_detach_iommu(domain, iommu);
4997
	spin_unlock_irqrestore(&iommu->lock, flags);
4998

4999
	free_devinfo_mem(info);
5000 5001
}

5002
static void dmar_remove_one_dev_info(struct device *dev)
5003
{
5004
	struct device_domain_info *info;
5005
	unsigned long flags;
5006

5007
	spin_lock_irqsave(&device_domain_lock, flags);
5008 5009
	info = get_domain_info(dev);
	if (info)
5010
		__dmar_remove_one_dev_info(info);
5011
	spin_unlock_irqrestore(&device_domain_lock, flags);
5012 5013
}

5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
static void intel_init_iova_domain(struct dmar_domain *dmar_domain)
{
	init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad);

	if (!intel_iommu_strict &&
	    init_iova_flush_queue(&dmar_domain->iovad,
				  iommu_flush_iova, iova_entry_free))
		pr_info("iova flush queue initialization failed\n");
}

5047
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5048
{
5049
	struct dmar_domain *dmar_domain;
5050 5051
	struct iommu_domain *domain;

5052
	switch (type) {
5053 5054
	case IOMMU_DOMAIN_DMA:
	/* fallthrough */
5055
	case IOMMU_DOMAIN_UNMANAGED:
5056
		dmar_domain = alloc_domain(0);
5057 5058 5059 5060
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5061
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5062 5063 5064 5065
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5066

5067 5068
		if (type == IOMMU_DOMAIN_DMA)
			intel_init_iova_domain(dmar_domain);
5069

5070
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
5071

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5082
		return NULL;
K
Kay, Allen M 已提交
5083
	}
5084

5085
	return NULL;
K
Kay, Allen M 已提交
5086 5087
}

5088
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5089
{
5090 5091
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5092 5093
}

5094 5095 5096 5097 5098 5099 5100
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
5101
	struct device_domain_info *info = get_domain_info(dev);
5102 5103 5104 5105 5106 5107 5108 5109

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
5110
	struct device_domain_info *info = get_domain_info(dev);
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
5123
	struct device_domain_info *info = get_domain_info(dev);
5124 5125 5126 5127 5128 5129 5130 5131 5132

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5133
		ioasid_free(domain->default_pasid);
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	u8 bus, devfn;
	unsigned long flags;
	struct intel_iommu *iommu;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

5151 5152 5153 5154 5155
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
5173 5174 5175 5176 5177 5178
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5195
		ioasid_free(domain->default_pasid);
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
5211
	info = get_domain_info(dev);
5212 5213 5214 5215 5216
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
5217
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
5218 5219 5220 5221 5222 5223
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5224 5225
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5226
{
5227
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5228 5229
	struct intel_iommu *iommu;
	int addr_width;
5230
	u8 bus, devfn;
5231

5232
	iommu = device_to_iommu(dev, &bus, &devfn);
5233 5234 5235 5236 5237
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5238 5239 5240 5241
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5242 5243 5244
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5245 5246
		return -EFAULT;
	}
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5257 5258
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5259
			free_pgtable_page(pte);
5260 5261 5262
		}
		dmar_domain->agaw--;
	}
5263

5264 5265 5266 5267 5268 5269 5270 5271
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5272 5273
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5274 5275 5276 5277
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5278 5279 5280
	if (is_aux_domain(dev, domain))
		return -EPERM;

5281 5282 5283 5284 5285
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5286
		if (old_domain)
5287 5288 5289 5290 5291 5292 5293 5294
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5295 5296
}

5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5312 5313
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5314
{
5315
	dmar_remove_one_dev_info(dev);
5316
}
5317

5318 5319 5320 5321 5322 5323
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
5341
static const int
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

#ifdef CONFIG_INTEL_IOMMU_SVM
static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

	if (!inv_info || !dmar_domain ||
	    inv_info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
5401
	info = get_domain_info(dev);
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
	if (inv_info->granularity != IOMMU_INV_GRANU_PASID)
		size = to_vtd_size(inv_info->addr_info.granule_size,
				   inv_info->addr_info.nb_granules);

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
		    (inv_info->pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->pasid_info.pasid;
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			 (inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->addr_info.pasid;

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
			    (inv_info->addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
				pr_err_ratelimited("Address out of range, 0x%llx, size order %llu\n",
						   inv_info->addr_info.addr, size);
				ret = -ERANGE;
				goto out_unlock;
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
					mm_to_dma_pfn(inv_info->addr_info.addr),
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
					inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);

			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
						info->ats_qdep,
						inv_info->addr_info.addr,
						size, granu);
			break;
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
						info->ats_qdep,
						inv_info->addr_info.addr,
						size, granu);
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

5494 5495
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5496
			   size_t size, int iommu_prot, gfp_t gfp)
5497
{
5498
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5499
	u64 max_addr;
5500
	int prot = 0;
5501
	int ret;
5502

5503 5504 5505 5506
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5507 5508
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5509

5510
	max_addr = iova + size;
5511
	if (dmar_domain->max_addr < max_addr) {
5512 5513 5514
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5515
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5516
		if (end < max_addr) {
J
Joerg Roedel 已提交
5517
			pr_err("%s: iommu width (%d) is not "
5518
			       "sufficient for the mapped address (%llx)\n",
5519
			       __func__, dmar_domain->gaw, max_addr);
5520 5521
			return -EFAULT;
		}
5522
		dmar_domain->max_addr = max_addr;
5523
	}
5524 5525
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5526
	size = aligned_nrpages(hpa, size);
5527 5528
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5529
	return ret;
K
Kay, Allen M 已提交
5530 5531
}

5532
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5533 5534
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5535
{
5536
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5537 5538 5539
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5540
	int iommu_id, level = 0;
5541 5542 5543

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5544
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5545 5546 5547

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5548

5549 5550 5551 5552 5553 5554 5555
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5556
	for_each_domain_iommu(iommu_id, dmar_domain)
5557 5558
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5559 5560

	dma_free_pagelist(freelist);
5561

5562 5563
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5564

5565
	return size;
K
Kay, Allen M 已提交
5566 5567
}

5568
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5569
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5570
{
5571
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5572
	struct dma_pte *pte;
5573
	int level = 0;
5574
	u64 phys = 0;
K
Kay, Allen M 已提交
5575

5576
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5577 5578 5579 5580
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
5581

5582
	return phys;
K
Kay, Allen M 已提交
5583
}
5584

5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5639
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5640 5641
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5642
		return domain_update_iommu_snooping(NULL) == 1;
5643
	if (cap == IOMMU_CAP_INTR_REMAP)
5644
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5645

5646
	return false;
S
Sheng Yang 已提交
5647 5648
}

5649
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5650
{
5651
	struct intel_iommu *iommu;
5652
	u8 bus, devfn;
5653

5654 5655
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
5656
		return ERR_PTR(-ENODEV);
5657

5658 5659 5660
	if (translation_pre_enabled(iommu))
		dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;

5661
	return &iommu->iommu;
5662
}
5663

5664
static void intel_iommu_release_device(struct device *dev)
5665
{
5666 5667 5668 5669 5670 5671 5672
	struct intel_iommu *iommu;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return;

5673 5674
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5675 5676
	set_dma_ops(dev, NULL);
}
5677

L
Lu Baolu 已提交
5678 5679 5680
static void intel_iommu_probe_finalize(struct device *dev)
{
	struct iommu_domain *domain;
5681

L
Lu Baolu 已提交
5682
	domain = iommu_get_domain_for_dev(dev);
5683
	if (device_needs_bounce(dev))
L
Lu Baolu 已提交
5684 5685 5686 5687
		set_dma_ops(dev, &bounce_dma_ops);
	else if (domain && domain->type == IOMMU_DOMAIN_DMA)
		set_dma_ops(dev, &intel_dma_ops);
	else
5688
		set_dma_ops(dev, NULL);
5689 5690
}

5691 5692 5693
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5694
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5695 5696 5697 5698 5699
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5700
	down_read(&dmar_global_lock);
5701 5702 5703
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5704
			struct iommu_resv_region *resv;
5705
			enum iommu_resv_type type;
5706 5707
			size_t length;

5708 5709
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5710 5711
				continue;

5712
			length = rmrr->end_address - rmrr->base_address + 1;
5713 5714 5715 5716

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5717
			resv = iommu_alloc_resv_region(rmrr->base_address,
5718
						       length, prot, type);
5719 5720 5721 5722
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5723 5724
		}
	}
5725
	up_read(&dmar_global_lock);
5726

5727 5728 5729 5730 5731
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5732
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5733
						   IOMMU_RESV_DIRECT_RELAXABLE);
5734 5735 5736 5737 5738 5739
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5740 5741
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5742
				      0, IOMMU_RESV_MSI);
5743 5744 5745 5746 5747
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5748
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5749 5750 5751 5752 5753 5754 5755 5756
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5757
	domain = find_domain(dev);
5758 5759 5760 5761 5762 5763 5764
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5765
	info = get_domain_info(dev);
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5779 5780 5781
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5812 5813 5814 5815 5816 5817 5818
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5819
#ifdef CONFIG_INTEL_IOMMU_SVM
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
{
	struct intel_iommu *iommu;
	u8 bus, devfn;

	if (iommu_dummy(dev)) {
		dev_warn(dev,
			 "No IOMMU translation for device; cannot enable SVM\n");
		return NULL;
	}

	iommu = device_to_iommu(dev, &bus, &devfn);
	if ((!iommu)) {
5833
		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5834 5835 5836 5837 5838 5839 5840
		return NULL;
	}

	return iommu;
}
#endif /* CONFIG_INTEL_IOMMU_SVM */

5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	u8 bus, devfn;
	int ret;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5861
	info = get_domain_info(dev);
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5874
	info = get_domain_info(dev);
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5927 5928 5929 5930 5931 5932 5933 5934
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

5935 5936 5937 5938 5939 5940 5941 5942 5943
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
5969
	struct device_domain_info *info = get_domain_info(dev);
5970 5971 5972 5973 5974 5975 5976

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5977 5978 5979 5980 5981 5982 5983 5984 5985
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5986 5987 5988
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
5989
	return attach_deferred(dev);
5990 5991
}

5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

6023
const struct iommu_ops intel_iommu_ops = {
6024 6025 6026
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
6027
	.domain_set_attr	= intel_iommu_domain_set_attr,
6028 6029
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
6030 6031
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
6032
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
6033 6034 6035
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
6036
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
6037
	.probe_finalize		= intel_iommu_probe_finalize,
6038
	.release_device		= intel_iommu_release_device,
6039
	.get_resv_regions	= intel_iommu_get_resv_regions,
6040
	.put_resv_regions	= generic_iommu_put_resv_regions,
6041
	.apply_resv_region	= intel_iommu_apply_resv_region,
6042
	.device_group		= intel_iommu_device_group,
6043 6044 6045 6046
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
6047
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
6048
	.def_domain_type	= device_def_domain_type,
6049
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
6050
#ifdef CONFIG_INTEL_IOMMU_SVM
6051
	.cache_invalidate	= intel_iommu_sva_invalidate,
6052 6053
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
6054 6055 6056
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
6057
#endif
6058
};
6059

6060
static void quirk_iommu_igfx(struct pci_dev *dev)
6061
{
6062
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6063 6064 6065
	dmar_map_gfx = 0;
}

6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6100

6101
static void quirk_iommu_rwbf(struct pci_dev *dev)
6102 6103 6104
{
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6105
	 * but needs it. Same seems to hold for the desktop versions.
6106
	 */
6107
	pci_info(dev, "Forcing write-buffer flush capability\n");
6108 6109 6110 6111
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6112 6113 6114 6115 6116 6117
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6118

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6129
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6130 6131 6132
{
	unsigned short ggc;

6133
	if (pci_read_config_word(dev, GGC, &ggc))
6134 6135
		return;

6136
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6137
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6138
		dmar_map_gfx = 0;
6139 6140
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6141
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6142 6143
		intel_iommu_strict = 1;
       }
6144 6145 6146 6147 6148 6149
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6203 6204

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6205 6206
	       vtisochctrl);
}