iommu.c 159.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
26
#include <linux/dma-map-ops.h>
27
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
40
#include <linux/dma-map-ops.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "../irq_remapping.h"
51
#include "pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

126
static inline int pfn_level_offset(u64 pfn, int level)
127 128 129 130
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

131
static inline u64 level_mask(int level)
132
{
133
	return -1ULL << level_to_offset_bits(level);
134 135
}

136
static inline u64 level_size(int level)
137
{
138
	return 1ULL << level_to_offset_bits(level);
139 140
}

141
static inline u64 align_to_level(u64 pfn, int level)
142 143 144
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298

299 300 301 302
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

303 304 305 306 307
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
308
	struct dmar_dev_scope *devices;	/* target devices */
309 310 311 312 313 314
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
315
	struct dmar_dev_scope *devices;	/* target devices */
316 317 318 319 320 321 322 323 324 325
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
326 327 328
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

329
static void domain_exit(struct dmar_domain *domain);
330
static void domain_remove_dev_info(struct dmar_domain *domain);
331
static void dmar_remove_one_dev_info(struct device *dev);
332
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
333 334
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
335 336
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
337

338
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
339 340 341
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
342
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
343

344
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
345 346
int intel_iommu_sm = 1;
#else
347
int intel_iommu_sm;
348
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
349

350 351 352
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

353
static int dmar_map_gfx = 1;
354
static int dmar_forcedac;
M
mark gross 已提交
355
static int intel_iommu_strict;
356
static int intel_iommu_superpage = 1;
357
static int iommu_identity_mapping;
358
static int intel_no_bounce;
359
static int iommu_skip_te_disable;
360

361 362
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
363

364 365 366
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

367
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
368 369 370 371 372 373 374
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

375
	info = dev_iommu_priv_get(dev);
376
	if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO))
377 378 379 380 381
		return NULL;

	return info;
}

382
DEFINE_SPINLOCK(device_domain_lock);
383 384
static LIST_HEAD(device_domain_list);

385 386 387
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

388 389
/*
 * Iterate over elements in device_domain_list and call the specified
390
 * callback @fn against each element.
391 392 393 394 395
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
396
	unsigned long flags;
397 398
	struct device_domain_info *info;

399
	spin_lock_irqsave(&device_domain_lock, flags);
400 401
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
402 403
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
404
			return ret;
405
		}
406
	}
407
	spin_unlock_irqrestore(&device_domain_lock, flags);
408 409 410 411

	return 0;
}

412
const struct iommu_ops intel_iommu_ops;
413

414 415 416 417 418
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

419 420 421 422 423
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

424 425 426 427 428 429 430 431 432
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

433 434 435 436 437
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
438 439
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
440
			pr_info("IOMMU enabled\n");
441
		} else if (!strncmp(str, "off", 3)) {
442
			dmar_disabled = 1;
443
			no_platform_optin = 1;
J
Joerg Roedel 已提交
444
			pr_info("IOMMU disabled\n");
445 446
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
447
			pr_info("Disable GFX device mapping\n");
448
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
449
			pr_info("Forcing DAC for PCI devices\n");
450
			dmar_forcedac = 1;
M
mark gross 已提交
451
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
452
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
453
			intel_iommu_strict = 1;
454
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
455
			pr_info("Disable supported super page\n");
456
			intel_iommu_superpage = 0;
457 458 459
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
460
		} else if (!strncmp(str, "tboot_noforce", 13)) {
461
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
462
			intel_iommu_tboot_noforce = 1;
463 464 465
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
466 467 468 469 470 471 472 473 474 475 476 477 478
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

479 480
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
481 482 483 484 485 486 487 488
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
489 490 491 492 493
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
494 495 496 497 498 499 500 501 502 503 504 505 506
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
507 508
}

509
void *alloc_pgtable_page(int node)
510
{
511 512
	struct page *page;
	void *vaddr = NULL;
513

514 515 516
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
517
	return vaddr;
518 519
}

520
void free_pgtable_page(void *vaddr)
521 522 523 524 525 526
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
527
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
528 529
}

K
Kay, Allen M 已提交
530
static void free_domain_mem(void *vaddr)
531 532 533 534 535 536
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
537
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
538 539 540 541 542 543 544
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

545 546 547 548 549
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

550 551 552 553 554
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

555 556 557 558 559 560 561 562
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
563
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
564 565 566 567 568
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
569
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
570 571 572 573 574 575 576 577
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

596
/* This functionin only returns single iommu in a domain */
597
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
598 599 600
{
	int iommu_id;

601
	/* si_domain and vm domain should not get here. */
602 603 604
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

605 606 607
	for_each_domain_iommu(iommu_id, domain)
		break;

608 609 610 611 612 613
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

614 615 616 617 618 619
static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
{
	return sm_supported(iommu) ?
			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
}

W
Weidong Han 已提交
620 621
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
622 623
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
624 625
	bool found = false;
	int i;
626

627
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
628

629
	for_each_domain_iommu(i, domain) {
630
		found = true;
631
		if (!iommu_paging_structure_coherency(g_iommus[i])) {
W
Weidong Han 已提交
632 633 634 635
			domain->iommu_coherency = 0;
			break;
		}
	}
636 637 638 639 640 641
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
642
		if (!iommu_paging_structure_coherency(iommu)) {
643 644 645 646 647
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
648 649
}

650
static int domain_update_iommu_snooping(struct intel_iommu *skip)
651
{
652 653 654
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
655

656 657 658 659 660 661 662
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
663 664
		}
	}
665 666 667
	rcu_read_unlock();

	return ret;
668 669
}

670 671
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
672
{
673
	struct dmar_drhd_unit *drhd;
674
	struct intel_iommu *iommu;
675
	int mask = 0x3;
676 677

	if (!intel_iommu_superpage) {
678
		return 0;
679 680
	}

681
	/* set iommu_superpage to the smallest common denominator */
682
	rcu_read_lock();
683
	for_each_active_iommu(iommu, drhd) {
684
		if (iommu != skip) {
685 686 687 688 689 690 691
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

692 693
			if (!mask)
				break;
694 695
		}
	}
696 697
	rcu_read_unlock();

698
	return fls(mask);
699 700
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
static int domain_update_device_node(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	int nid = NUMA_NO_NODE;

	assert_spin_locked(&device_domain_lock);

	if (list_empty(&domain->devices))
		return NUMA_NO_NODE;

	list_for_each_entry(info, &domain->devices, link) {
		if (!info->dev)
			continue;

		/*
		 * There could possibly be multiple device numa nodes as devices
		 * within the same domain may sit behind different IOMMUs. There
		 * isn't perfect answer in such situation, so we select first
		 * come first served policy.
		 */
		nid = dev_to_node(info->dev);
		if (nid != NUMA_NO_NODE)
			break;
	}

	return nid;
}

729 730 731 732
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
733
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
734
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
735 736 737 738 739 740 741

	/*
	 * If RHSA is missing, we should default to the device numa domain
	 * as fall back.
	 */
	if (domain->nid == NUMA_NO_NODE)
		domain->nid = domain_update_device_node(domain);
742 743
}

744 745
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
746 747 748 749 750
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

751
	entry = &root->lo;
752
	if (sm_supported(iommu)) {
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

778 779
static bool attach_deferred(struct device *dev)
{
780
	return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO;
781 782
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return false;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return true;
	}

	return false;
}

static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || iommu->drhd->ignored)
		return true;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
		    quirk_ioat_snb_local_iommu(pdev))
			return true;
	}

	return false;
}

857
struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
858 859
{
	struct dmar_drhd_unit *drhd = NULL;
860
	struct pci_dev *pdev = NULL;
861
	struct intel_iommu *iommu;
862
	struct device *tmp;
863
	u16 segment = 0;
864 865
	int i;

866
	if (!dev)
867 868
		return NULL;

869
	if (dev_is_pci(dev)) {
870 871
		struct pci_dev *pf_pdev;

872
		pdev = pci_real_dma_dev(to_pci_dev(dev));
873

874 875 876 877
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
878
		segment = pci_domain_nr(pdev->bus);
879
	} else if (has_acpi_companion(dev))
880 881
		dev = &ACPI_COMPANION(dev)->dev;

882
	rcu_read_lock();
883
	for_each_iommu(iommu, drhd) {
884
		if (pdev && segment != drhd->segment)
885
			continue;
886

887
		for_each_active_dev_scope(drhd->devices,
888 889
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
890 891 892 893
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
894
				if (pdev && pdev->is_virtfn)
895 896
					goto got_pdev;

897 898 899 900
				if (bus && devfn) {
					*bus = drhd->devices[i].bus;
					*devfn = drhd->devices[i].devfn;
				}
901
				goto out;
902 903
			}

904
			if (is_downstream_to_pci_bridge(dev, tmp))
905
				goto got_pdev;
906
		}
907

908 909
		if (pdev && drhd->include_all) {
		got_pdev:
910 911 912 913
			if (bus && devfn) {
				*bus = pdev->bus->number;
				*devfn = pdev->devfn;
			}
914
			goto out;
915
		}
916
	}
917
	iommu = NULL;
918
 out:
919 920 921
	if (iommu_is_dummy(iommu, dev))
		iommu = NULL;

922
	rcu_read_unlock();
923

924
	return iommu;
925 926
}

W
Weidong Han 已提交
927 928 929 930 931 932 933
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

934 935 936
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
937
	int ret = 0;
938 939 940
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
941 942 943
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
959
		context = iommu_context_addr(iommu, i, 0, 0);
960 961
		if (context)
			free_pgtable_page(context);
962

963
		if (!sm_supported(iommu))
964 965 966 967 968 969
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

970 971 972 973 974 975 976
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

977
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
978
				      unsigned long pfn, int *target_level)
979
{
980
	struct dma_pte *parent, *pte;
981
	int level = agaw_to_level(domain->agaw);
982
	int offset;
983 984

	BUG_ON(!domain->pgd);
985

986
	if (!domain_pfn_supported(domain, pfn))
987 988 989
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

990 991
	parent = domain->pgd;

992
	while (1) {
993 994
		void *tmp_page;

995
		offset = pfn_level_offset(pfn, level);
996
		pte = &parent[offset];
997
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
998
			break;
999
		if (level == *target_level)
1000 1001
			break;

1002
		if (!dma_pte_present(pte)) {
1003 1004
			uint64_t pteval;

1005
			tmp_page = alloc_pgtable_page(domain->nid);
1006

1007
			if (!tmp_page)
1008
				return NULL;
1009

1010
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1011
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1012
			if (domain_use_first_level(domain))
1013
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
1014
			if (cmpxchg64(&pte->val, 0ULL, pteval))
1015 1016
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
1017
			else
1018
				domain_flush_cache(domain, pte, sizeof(*pte));
1019
		}
1020 1021 1022
		if (level == 1)
			break;

1023
		parent = phys_to_virt(dma_pte_addr(pte));
1024 1025 1026
		level--;
	}

1027 1028 1029
	if (!*target_level)
		*target_level = level;

1030 1031 1032 1033
	return pte;
}

/* return address's pte at specific level */
1034 1035
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
1036
					 int level, int *large_page)
1037
{
1038
	struct dma_pte *parent, *pte;
1039 1040 1041 1042 1043
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
1044
		offset = pfn_level_offset(pfn, total);
1045 1046 1047 1048
		pte = &parent[offset];
		if (level == total)
			return pte;

1049 1050
		if (!dma_pte_present(pte)) {
			*large_page = total;
1051
			break;
1052 1053
		}

1054
		if (dma_pte_superpage(pte)) {
1055 1056 1057 1058
			*large_page = total;
			return pte;
		}

1059
		parent = phys_to_virt(dma_pte_addr(pte));
1060 1061 1062 1063 1064 1065
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
1066
static void dma_pte_clear_range(struct dmar_domain *domain,
1067 1068
				unsigned long start_pfn,
				unsigned long last_pfn)
1069
{
1070
	unsigned int large_page;
1071
	struct dma_pte *first_pte, *pte;
1072

1073 1074
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1075
	BUG_ON(start_pfn > last_pfn);
1076

1077
	/* we don't need lock here; nobody else touches the iova range */
1078
	do {
1079 1080
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1081
		if (!pte) {
1082
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1083 1084
			continue;
		}
1085
		do {
1086
			dma_clear_pte(pte);
1087
			start_pfn += lvl_to_nr_pages(large_page);
1088
			pte++;
1089 1090
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1091 1092
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1093 1094

	} while (start_pfn && start_pfn <= last_pfn);
1095 1096
}

1097
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1098 1099 1100
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1112
		level_pfn = pfn & level_mask(level);
1113 1114
		level_pte = phys_to_virt(dma_pte_addr(pte));

1115 1116 1117 1118 1119
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1120

1121 1122 1123 1124 1125
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1126
		      last_pfn < level_pfn + level_size(level) - 1)) {
1127 1128 1129 1130 1131 1132 1133 1134 1135
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1136 1137 1138 1139
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1140
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1141
				   unsigned long start_pfn,
1142 1143
				   unsigned long last_pfn,
				   int retain_level)
1144
{
1145 1146
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1147
	BUG_ON(start_pfn > last_pfn);
1148

1149 1150
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1151
	/* We don't need lock here; nobody else touches the iova range */
1152
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1153
			   domain->pgd, 0, start_pfn, last_pfn);
1154

1155
	/* free pgd */
1156
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1157 1158 1159 1160 1161
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1181 1182
	pte = page_address(pg);
	do {
1183 1184 1185
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1186 1187
		pte++;
	} while (!first_pte_in_page(pte));
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1244 1245
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
1246 1247
				 unsigned long last_pfn,
				 struct page *freelist)
1248
{
1249 1250
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1251 1252 1253 1254
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1255 1256
				       domain->pgd, 0, start_pfn, last_pfn,
				       freelist);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1270
static void dma_free_pagelist(struct page *freelist)
1271 1272 1273 1274 1275 1276 1277 1278 1279
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1280 1281 1282 1283 1284 1285 1286
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1287 1288 1289 1290 1291 1292
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1293
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1294
	if (!root) {
J
Joerg Roedel 已提交
1295
		pr_err("Allocating root entry for %s failed\n",
1296
			iommu->name);
1297
		return -ENOMEM;
1298
	}
1299

F
Fenghua Yu 已提交
1300
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1311
	u64 addr;
1312
	u32 sts;
1313 1314
	unsigned long flag;

1315
	addr = virt_to_phys(iommu->root_entry);
1316 1317
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1318

1319
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1320
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1321

1322
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1323 1324 1325

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1326
		      readl, (sts & DMA_GSTS_RTPS), sts);
1327

1328
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1329 1330
}

1331
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1332 1333 1334 1335
{
	u32 val;
	unsigned long flag;

1336
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1337 1338
		return;

1339
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1340
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1341 1342 1343

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1344
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1345

1346
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1347 1348 1349
}

/* return value determine if we need a write buffer flush */
1350 1351 1352
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1373
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1374 1375 1376 1377 1378 1379
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1380
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1381 1382 1383
}

/* return value determine if we need a write buffer flush */
1384 1385
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1401
		/* IH bit is passed in as part of address */
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1419
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1420 1421 1422 1423 1424 1425 1426 1427 1428
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1429
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1430 1431 1432

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1433
		pr_err("Flush IOTLB failed\n");
1434
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1435
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1436 1437
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1438 1439
}

1440 1441 1442
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1443 1444 1445
{
	struct device_domain_info *info;

1446 1447
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1448 1449 1450 1451
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1452 1453
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1454 1455
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1456 1457 1458
			break;
		}

1459
	return NULL;
Y
Yu Zhao 已提交
1460 1461
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1485
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1486
{
1487 1488
	struct pci_dev *pdev;

1489 1490
	assert_spin_locked(&device_domain_lock);

1491
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1492 1493
		return;

1494
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1507
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1508
	}
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1519 1520 1521
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1522 1523
		info->pri_enabled = 1;
#endif
1524
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1525
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1526
		info->ats_enabled = 1;
1527
		domain_update_iotlb(info->domain);
1528 1529
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1530 1531 1532 1533
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1534 1535
	struct pci_dev *pdev;

1536 1537
	assert_spin_locked(&device_domain_lock);

1538
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1539 1540
		return;

1541 1542 1543 1544 1545
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1546
		domain_update_iotlb(info->domain);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1567 1568 1569
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1570 1571
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1572
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1573 1574 1575
			continue;

		sid = info->bus << 8 | info->devfn;
1576
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1577 1578
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1579 1580 1581 1582
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1597 1598 1599 1600
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1601
{
1602
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1603
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1604
	u16 did = domain->iommu_did[iommu->seq_id];
1605 1606 1607

	BUG_ON(pages == 0);

1608 1609
	if (ih)
		ih = 1 << 6;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1627 1628

	/*
1629 1630
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1631
	 */
1632
	if (!cap_caching_mode(iommu->cap) || !map)
1633
		iommu_flush_dev_iotlb(domain, addr, mask);
1634 1635
}

1636 1637 1638 1639 1640
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1641 1642 1643 1644 1645
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1646 1647 1648 1649 1650
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

1662 1663 1664 1665 1666
		if (domain_use_first_level(domain))
			domain_flush_piotlb(iommu, domain, 0, -1, 0);
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1667 1668 1669 1670 1671 1672 1673

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1674 1675 1676 1677 1678
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1679 1680 1681
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1682
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1683 1684 1685 1686 1687 1688 1689 1690
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1691
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1692 1693
}

1694
static void iommu_enable_translation(struct intel_iommu *iommu)
1695 1696 1697 1698
{
	u32 sts;
	unsigned long flags;

1699
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1700 1701
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1702 1703 1704

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1705
		      readl, (sts & DMA_GSTS_TES), sts);
1706

1707
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1708 1709
}

1710
static void iommu_disable_translation(struct intel_iommu *iommu)
1711 1712 1713 1714
{
	u32 sts;
	unsigned long flag;

1715 1716 1717 1718
	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
		return;

1719
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1720 1721 1722 1723 1724
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1725
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1726

1727
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1728 1729 1730 1731
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1732 1733
	u32 ndomains, nlongs;
	size_t size;
1734 1735

	ndomains = cap_ndoms(iommu->cap);
1736
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1737
		 iommu->name, ndomains);
1738 1739
	nlongs = BITS_TO_LONGS(ndomains);

1740 1741
	spin_lock_init(&iommu->lock);

1742 1743
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1744 1745
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1746 1747
		return -ENOMEM;
	}
1748

1749
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1750 1751 1752 1753 1754 1755 1756 1757
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1758 1759
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1760
		kfree(iommu->domain_ids);
1761
		kfree(iommu->domains);
1762
		iommu->domain_ids = NULL;
1763
		iommu->domains    = NULL;
1764 1765 1766 1767
		return -ENOMEM;
	}

	/*
1768 1769 1770 1771
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1772
	 */
1773 1774
	set_bit(0, iommu->domain_ids);

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1785 1786 1787
	return 0;
}

1788
static void disable_dmar_iommu(struct intel_iommu *iommu)
1789
{
1790
	struct device_domain_info *info, *tmp;
1791
	unsigned long flags;
1792

1793 1794
	if (!iommu->domains || !iommu->domain_ids)
		return;
1795

1796
	spin_lock_irqsave(&device_domain_lock, flags);
1797 1798 1799 1800 1801 1802 1803
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1804
		__dmar_remove_one_dev_info(info);
1805
	}
1806
	spin_unlock_irqrestore(&device_domain_lock, flags);
1807 1808 1809

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1810
}
1811

1812 1813 1814
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1815
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1816 1817 1818 1819
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1820 1821 1822 1823 1824
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1825

W
Weidong Han 已提交
1826 1827
	g_iommus[iommu->seq_id] = NULL;

1828 1829
	/* free context mapping */
	free_context_table(iommu);
1830 1831

#ifdef CONFIG_INTEL_IOMMU_SVM
1832
	if (pasid_supported(iommu)) {
1833 1834 1835
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1836 1837 1838
	if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap))
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1839
#endif
1840 1841
}

1842 1843
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1844
 * DMA translation.
1845 1846 1847 1848 1849
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1850
	static int first_level_support = -1;
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1869
static struct dmar_domain *alloc_domain(int flags)
1870 1871 1872 1873 1874 1875 1876
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1877
	memset(domain, 0, sizeof(*domain));
1878
	domain->nid = NUMA_NO_NODE;
1879
	domain->flags = flags;
1880 1881
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1882
	domain->has_iotlb_device = false;
1883
	INIT_LIST_HEAD(&domain->devices);
1884 1885 1886 1887

	return domain;
}

1888 1889
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1890 1891
			       struct intel_iommu *iommu)
{
1892
	unsigned long ndomains;
1893
	int num;
1894

1895
	assert_spin_locked(&device_domain_lock);
1896
	assert_spin_locked(&iommu->lock);
1897

1898 1899 1900
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1901
		ndomains = cap_ndoms(iommu->cap);
1902 1903 1904 1905 1906 1907
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1908
			return -ENOSPC;
1909
		}
1910

1911 1912 1913 1914 1915
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1916 1917 1918

		domain_update_iommu_cap(domain);
	}
1919

1920
	return 0;
1921 1922 1923 1924 1925
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1926
	int num, count;
1927

1928
	assert_spin_locked(&device_domain_lock);
1929
	assert_spin_locked(&iommu->lock);
1930

1931 1932 1933
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1934 1935 1936
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1937 1938

		domain_update_iommu_cap(domain);
1939
		domain->iommu_did[iommu->seq_id] = 0;
1940 1941 1942 1943 1944
	}

	return count;
}

1945
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1946
static struct lock_class_key reserved_rbtree_key;
1947

1948
static int dmar_init_reserved_ranges(void)
1949 1950 1951 1952 1953
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1954
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1955

M
Mark Gross 已提交
1956 1957 1958
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1959 1960 1961
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1962
	if (!iova) {
J
Joerg Roedel 已提交
1963
		pr_err("Reserve IOAPIC range failed\n");
1964 1965
		return -ENODEV;
	}
1966 1967 1968 1969 1970 1971 1972 1973 1974

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1975 1976 1977
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1978
			if (!iova) {
1979
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1980 1981
				return -ENODEV;
			}
1982 1983
		}
	}
1984
	return 0;
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

2004
	/* Remove associated devices and clear attached or cached domains */
2005
	domain_remove_dev_info(domain);
2006

2007
	/* destroy iovas */
2008 2009
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
		put_iova_domain(&domain->iovad);
2010

2011 2012
	if (domain->pgd) {
		struct page *freelist;
2013

2014 2015
		freelist = domain_unmap(domain, 0,
					DOMAIN_MAX_PFN(domain->gaw), NULL);
2016 2017
		dma_free_pagelist(freelist);
	}
2018

2019 2020 2021
	free_domain_mem(domain);
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

2071 2072
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
2073
				      struct pasid_table *table,
2074
				      u8 bus, u8 devfn)
2075
{
2076
	u16 did = domain->iommu_did[iommu->seq_id];
2077 2078
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
2079 2080
	struct context_entry *context;
	unsigned long flags;
2081
	int ret;
2082

2083 2084
	WARN_ON(did == 0);

2085 2086
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
2087 2088 2089

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2090

2091
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2092

2093 2094 2095 2096
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2097
	context = iommu_context_addr(iommu, bus, devfn, 1);
2098
	if (!context)
2099
		goto out_unlock;
2100

2101 2102 2103
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2104

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2117
		if (did_old < cap_ndoms(iommu->cap)) {
2118 2119 2120 2121
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2122 2123 2124
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2125 2126
	}

2127
	context_clear_entry(context);
2128

2129 2130
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2141 2142

		/*
2143 2144
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2145
		 */
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2185 2186

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2187
	}
F
Fenghua Yu 已提交
2188

2189 2190
	context_set_fault_enable(context);
	context_set_present(context);
2191 2192
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(context, sizeof(*context));
2193

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2205
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2206
	} else {
2207
		iommu_flush_write_buffer(iommu);
2208
	}
Y
Yu Zhao 已提交
2209
	iommu_enable_dev_iotlb(info);
2210

2211 2212 2213 2214 2215
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2216

2217
	return ret;
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2236
static int
2237
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2238
{
2239
	struct domain_context_mapping_data data;
2240
	struct pasid_table *table;
2241
	struct intel_iommu *iommu;
2242
	u8 bus, devfn;
2243

2244
	iommu = device_to_iommu(dev, &bus, &devfn);
2245 2246
	if (!iommu)
		return -ENODEV;
2247

2248
	table = intel_pasid_get_table(dev);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2260 2261 2262 2263 2264 2265 2266 2267
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2268 2269
}

2270
static int domain_context_mapped(struct device *dev)
2271
{
W
Weidong Han 已提交
2272
	struct intel_iommu *iommu;
2273
	u8 bus, devfn;
W
Weidong Han 已提交
2274

2275
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2276 2277
	if (!iommu)
		return -ENODEV;
2278

2279 2280
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2281

2282 2283
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2284 2285
}

2286 2287 2288 2289 2290 2291 2292 2293
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2322 2323 2324
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2325 2326
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2327
	phys_addr_t pteval;
2328
	unsigned long sg_res = 0;
2329 2330
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2331
	u64 attr;
2332

2333
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2334 2335 2336 2337

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2338 2339
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
2340
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2341

2342 2343
	if (!sg) {
		sg_res = nr_pages;
2344
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2345 2346
	}

2347
	while (nr_pages > 0) {
2348 2349
		uint64_t tmp;

2350
		if (!sg_res) {
2351 2352
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2353
			sg_res = aligned_nrpages(sg->offset, sg->length);
2354
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2355
			sg->dma_length = sg->length;
2356
			pteval = (sg_phys(sg) - pgoff) | attr;
2357
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2358
		}
2359

2360
		if (!pte) {
2361 2362
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2363
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2364 2365
			if (!pte)
				return -ENOMEM;
2366
			/* It is large page*/
2367
			if (largepage_lvl > 1) {
2368 2369
				unsigned long nr_superpages, end_pfn;

2370
				pteval |= DMA_PTE_LARGE_PAGE;
2371
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2372 2373 2374 2375

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2376 2377
				/*
				 * Ensure that old small page tables are
2378
				 * removed to make room for superpage(s).
2379 2380
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2381
				 */
2382 2383
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2384
			} else {
2385
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2386
			}
2387

2388 2389 2390 2391
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2392
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2393
		if (tmp) {
2394
			static int dumps = 5;
J
Joerg Roedel 已提交
2395 2396
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2397 2398 2399 2400 2401 2402
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2426
		pte++;
2427 2428
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2429 2430 2431 2432
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2433 2434

		if (!sg_res && nr_pages)
2435 2436 2437 2438 2439
			sg = sg_next(sg);
	}
	return 0;
}

2440
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2441 2442 2443
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2444
	int iommu_id, ret;
2445 2446 2447 2448 2449 2450 2451
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2452 2453
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2454 2455 2456 2457
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2458 2459
}

2460 2461 2462
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2463
{
2464
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2465
}
2466

2467 2468 2469 2470
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2471
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2472 2473
}

2474
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2475
{
2476 2477 2478 2479
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2480 2481
	if (!iommu)
		return;
2482

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2503 2504
}

2505 2506 2507 2508 2509 2510
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2511
		dev_iommu_priv_set(info->dev, NULL);
2512 2513
}

2514 2515
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2516
	struct device_domain_info *info, *tmp;
2517
	unsigned long flags;
2518 2519

	spin_lock_irqsave(&device_domain_lock, flags);
2520
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2521
		__dmar_remove_one_dev_info(info);
2522 2523 2524
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2525
struct dmar_domain *find_domain(struct device *dev)
2526 2527 2528
{
	struct device_domain_info *info;

2529 2530 2531
	if (unlikely(!dev || !dev->iommu))
		return NULL;

2532
	if (unlikely(attach_deferred(dev)))
2533 2534 2535
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2536
	info = get_domain_info(dev);
2537 2538 2539 2540 2541 2542
	if (likely(info))
		return info->domain;

	return NULL;
}

2543
static void do_deferred_attach(struct device *dev)
2544
{
2545
	struct iommu_domain *domain;
2546

2547
	dev_iommu_priv_set(dev, NULL);
2548 2549 2550 2551 2552
	domain = iommu_get_domain_for_dev(dev);
	if (domain)
		intel_iommu_attach_device(domain, dev);
}

2553
static inline struct device_domain_info *
2554 2555 2556 2557 2558
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2559
		if (info->segment == segment && info->bus == bus &&
2560
		    info->devfn == devfn)
2561
			return info;
2562 2563 2564 2565

	return NULL;
}

2566 2567 2568
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
2569
				    u32 pasid)
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2596 2597 2598 2599 2600 2601
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2602 2603 2604 2605
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2606
{
2607
	struct dmar_domain *found = NULL;
2608 2609
	struct device_domain_info *info;
	unsigned long flags;
2610
	int ret;
2611 2612 2613

	info = alloc_devinfo_mem();
	if (!info)
2614
		return NULL;
2615

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2628 2629 2630
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2631 2632
	info->dev = dev;
	info->domain = domain;
2633
	info->iommu = iommu;
2634
	info->pasid_table = NULL;
2635
	info->auxd_enabled = 0;
2636
	INIT_LIST_HEAD(&info->auxiliary_domains);
2637

2638 2639 2640
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2641 2642
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2643 2644 2645
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2646 2647
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2648 2649 2650 2651 2652 2653
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
2654
			    pci_pri_supported(pdev))
2655 2656 2657 2658
				info->pri_supported = 1;
		}
	}

2659 2660
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2661
		found = find_domain(dev);
2662 2663

	if (!found) {
2664
		struct device_domain_info *info2;
2665 2666
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2667 2668 2669 2670
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2671
	}
2672

2673 2674 2675
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2676 2677
		/* Caller must free the original domain */
		return found;
2678 2679
	}

2680 2681 2682 2683 2684
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2685
		spin_unlock_irqrestore(&device_domain_lock, flags);
2686
		free_devinfo_mem(info);
2687 2688 2689
		return NULL;
	}

2690 2691 2692
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
2693
		dev_iommu_priv_set(dev, info);
2694
	spin_unlock_irqrestore(&device_domain_lock, flags);
2695

2696 2697
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2698 2699
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2700
			dev_err(dev, "PASID table allocation failed\n");
2701
			dmar_remove_one_dev_info(dev);
2702
			return NULL;
2703
		}
2704 2705

		/* Setup the PASID entry for requests without PASID: */
2706
		spin_lock_irqsave(&iommu->lock, flags);
2707 2708 2709
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2710 2711 2712
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2713 2714 2715
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
2716
		spin_unlock_irqrestore(&iommu->lock, flags);
2717
		if (ret) {
2718
			dev_err(dev, "Setup RID2PASID failed\n");
2719
			dmar_remove_one_dev_info(dev);
2720
			return NULL;
2721 2722
		}
	}
2723

2724
	if (dev && domain_context_mapping(domain, dev)) {
2725
		dev_err(dev, "Domain context map failed\n");
2726
		dmar_remove_one_dev_info(dev);
2727 2728 2729
		return NULL;
	}

2730
	return domain;
2731 2732
}

2733
static int iommu_domain_identity_map(struct dmar_domain *domain,
2734 2735
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2736 2737 2738 2739 2740
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2741
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2742

2743 2744 2745
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2746 2747
}

2748 2749
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2750
static int __init si_domain_init(int hw)
2751
{
2752 2753 2754
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2755

2756
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2757 2758 2759
	if (!si_domain)
		return -EFAULT;

2760
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2761 2762 2763 2764
		domain_exit(si_domain);
		return -EFAULT;
	}

2765 2766 2767
	if (hw)
		return 0;

2768
	for_each_online_node(nid) {
2769 2770 2771 2772 2773
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2774 2775
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2776 2777 2778
			if (ret)
				return ret;
		}
2779 2780
	}

2781
	/*
2782 2783
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

2795 2796 2797
			ret = iommu_domain_identity_map(si_domain,
					mm_to_dma_pfn(start >> PAGE_SHIFT),
					mm_to_dma_pfn(end >> PAGE_SHIFT));
2798 2799 2800 2801 2802
			if (ret)
				return ret;
		}
	}

2803 2804 2805
	return 0;
}

2806
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2807
{
2808
	struct dmar_domain *ndomain;
2809
	struct intel_iommu *iommu;
2810
	u8 bus, devfn;
2811

2812
	iommu = device_to_iommu(dev, &bus, &devfn);
2813 2814 2815
	if (!iommu)
		return -ENODEV;

2816
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2817 2818
	if (ndomain != domain)
		return -EBUSY;
2819 2820 2821 2822

	return 0;
}

2823
static bool device_has_rmrr(struct device *dev)
2824 2825
{
	struct dmar_rmrr_unit *rmrr;
2826
	struct device *tmp;
2827 2828
	int i;

2829
	rcu_read_lock();
2830
	for_each_rmrr_units(rmrr) {
2831 2832 2833 2834 2835 2836
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2837 2838
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2839
				rcu_read_unlock();
2840
				return true;
2841
			}
2842
	}
2843
	rcu_read_unlock();
2844 2845 2846
	return false;
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2890 2891
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2892 2893 2894 2895 2896 2897
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2898 2899
	if (device_rmrr_is_relaxable(dev))
		return false;
2900 2901 2902 2903

	return true;
}

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2915
static int device_def_domain_type(struct device *dev)
2916
{
2917 2918
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2919

2920 2921 2922 2923 2924
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2925
			return IOMMU_DOMAIN_DMA;
2926

2927
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2928
			return IOMMU_DOMAIN_IDENTITY;
2929

2930
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2931
			return IOMMU_DOMAIN_IDENTITY;
2932
	}
2933

2934
	return 0;
2935 2936
}

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2963
		pr_info("%s: Using Register based invalidation\n",
2964 2965 2966 2967
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2968
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2969 2970 2971
	}
}

2972
static int copy_context_table(struct intel_iommu *iommu,
2973
			      struct root_entry *old_re,
2974 2975 2976
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2977
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2978
	struct context_entry *new_ce = NULL, ce;
2979
	struct context_entry *old_ce = NULL;
2980
	struct root_entry re;
2981 2982 2983
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2984
	memcpy(&re, old_re, sizeof(re));
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
3000
				memunmap(old_ce);
3001 3002 3003

			ret = 0;
			if (devfn < 0x80)
3004
				old_ce_phys = root_entry_lctp(&re);
3005
			else
3006
				old_ce_phys = root_entry_uctp(&re);
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
3019 3020
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
3032
		memcpy(&ce, old_ce + idx, sizeof(ce));
3033

3034
		if (!__context_present(&ce))
3035 3036
			continue;

3037 3038 3039 3040
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

3060 3061 3062 3063 3064 3065 3066 3067
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
3068
	memunmap(old_ce);
3069 3070 3071 3072 3073 3074 3075 3076

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3077
	struct root_entry *old_rt;
3078 3079 3080 3081 3082
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3083
	bool new_ext, ext;
3084 3085 3086

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3097 3098 3099 3100 3101

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3102
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3103 3104 3105 3106 3107 3108
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3109
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3151
	memunmap(old_rt);
3152 3153 3154 3155

	return ret;
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
	if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap))
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3235
static int __init init_dmars(void)
3236 3237 3238
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3239
	int ret;
3240

3241 3242 3243 3244 3245 3246 3247
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3248 3249 3250 3251 3252
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3253
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3254 3255 3256
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3257
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3258 3259
	}

3260 3261 3262 3263
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3264 3265 3266
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3267
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3268 3269 3270 3271
		ret = -ENOMEM;
		goto error;
	}

3272 3273 3274 3275 3276 3277
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3278 3279 3280 3281 3282
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3283
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3284 3285 3286 3287 3288 3289
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3290
		g_iommus[iommu->seq_id] = iommu;
3291

3292 3293
		intel_iommu_init_qi(iommu);

3294 3295
		ret = iommu_init_domains(iommu);
		if (ret)
3296
			goto free_iommu;
3297

3298 3299
		init_translation_status(iommu);

3300 3301 3302 3303 3304 3305
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3306

3307 3308 3309
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3310
		 * among all IOMMU's. Need to Split it later.
3311 3312
		 */
		ret = iommu_alloc_root_entry(iommu);
3313
		if (ret)
3314
			goto free_iommu;
3315

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3340
		if (!ecap_pass_through(iommu->ecap))
3341
			hw_pass_through = 0;
3342
		intel_svm_check(iommu);
3343 3344
	}

3345 3346 3347 3348 3349 3350 3351
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3352 3353 3354
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3355 3356 3357 3358 3359
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3360
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3361
	dmar_map_gfx = 0;
3362
#endif
3363

3364 3365 3366
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3367 3368
	check_tylersburg_isoch();

3369 3370 3371
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3372

3373 3374 3375 3376 3377 3378 3379
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3380
	for_each_iommu(iommu, drhd) {
3381 3382 3383 3384 3385 3386
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3387
				iommu_disable_protect_mem_regions(iommu);
3388
			continue;
3389
		}
3390 3391 3392

		iommu_flush_write_buffer(iommu);

3393
#ifdef CONFIG_INTEL_IOMMU_SVM
3394
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3395 3396 3397 3398 3399
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3400
			ret = intel_svm_enable_prq(iommu);
3401
			down_write(&dmar_global_lock);
3402 3403 3404 3405
			if (ret)
				goto free_iommu;
		}
#endif
3406 3407
		ret = dmar_set_interrupt(iommu);
		if (ret)
3408
			goto free_iommu;
3409 3410 3411
	}

	return 0;
3412 3413

free_iommu:
3414 3415
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3416
		free_dmar_iommu(iommu);
3417
	}
3418

W
Weidong Han 已提交
3419
	kfree(g_iommus);
3420

3421
error:
3422 3423 3424
	return ret;
}

3425
/* This takes a number of _MM_ pages, not VTD pages */
3426
static unsigned long intel_alloc_iova(struct device *dev,
3427 3428
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3429
{
3430
	unsigned long iova_pfn;
3431

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	/*
	 * Restrict dma_mask to the width that the iommu can handle.
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
				 dma_mask);
	else
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
				 dma_mask);

3447 3448
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3449 3450

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3451 3452
		/*
		 * First try to allocate an io virtual address in
3453
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3454
		 * from higher range
3455
		 */
3456
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3457
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3458 3459
		if (iova_pfn)
			return iova_pfn;
3460
	}
3461 3462
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3463
	if (unlikely(!iova_pfn)) {
3464 3465
		dev_err_once(dev, "Allocating %ld-page iova failed\n",
			     nrpages);
3466
		return 0;
3467 3468
	}

3469
	return iova_pfn;
3470 3471
}

3472 3473
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3474 3475
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3476
	phys_addr_t start_paddr;
3477
	unsigned long iova_pfn;
3478
	int prot = 0;
I
Ingo Molnar 已提交
3479
	int ret;
3480
	struct intel_iommu *iommu;
3481
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3482 3483

	BUG_ON(dir == DMA_NONE);
3484

L
Lu Baolu 已提交
3485 3486 3487
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3488
	domain = find_domain(dev);
3489
	if (!domain)
3490
		return DMA_MAPPING_ERROR;
3491

3492
	iommu = domain_get_iommu(domain);
3493
	size = aligned_nrpages(paddr, size);
3494

3495 3496
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3497 3498
		goto error;

3499 3500 3501 3502 3503
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3504
			!cap_zlr(iommu->cap))
3505 3506 3507 3508
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3509
	 * paddr - (paddr + size) might be partial page, we should map the whole
3510
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3511
	 * might have two guest_addr mapping to the same host paddr, but this
3512 3513
	 * is not a big problem
	 */
3514
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3515
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3516 3517 3518
	if (ret)
		goto error;

3519
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3520
	start_paddr += paddr & ~PAGE_MASK;
3521 3522 3523

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3524
	return start_paddr;
3525 3526

error:
3527
	if (iova_pfn)
3528
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3529 3530
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3531
	return DMA_MAPPING_ERROR;
3532 3533
}

3534 3535 3536
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3537
				 unsigned long attrs)
3538
{
L
Lu Baolu 已提交
3539 3540
	return __intel_map_single(dev, page_to_phys(page) + offset,
				  size, dir, *dev->dma_mask);
3541 3542 3543 3544 3545 3546
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
L
Lu Baolu 已提交
3547
	return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask);
3548 3549
}

3550
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3551
{
3552
	struct dmar_domain *domain;
3553
	unsigned long start_pfn, last_pfn;
3554
	unsigned long nrpages;
3555
	unsigned long iova_pfn;
3556
	struct intel_iommu *iommu;
3557
	struct page *freelist;
3558
	struct pci_dev *pdev = NULL;
3559

3560
	domain = find_domain(dev);
3561 3562
	BUG_ON(!domain);

3563 3564
	iommu = domain_get_iommu(domain);

3565
	iova_pfn = IOVA_PFN(dev_addr);
3566

3567
	nrpages = aligned_nrpages(dev_addr, size);
3568
	start_pfn = mm_to_dma_pfn(iova_pfn);
3569
	last_pfn = start_pfn + nrpages - 1;
3570

3571 3572 3573
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3574
	freelist = domain_unmap(domain, start_pfn, last_pfn, NULL);
3575 3576
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3577
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3578
				      nrpages, !freelist, 0);
M
mark gross 已提交
3579
		/* free iova */
3580
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3581
		dma_free_pagelist(freelist);
M
mark gross 已提交
3582
	} else {
3583 3584
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3585 3586 3587 3588 3589
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3590 3591

	trace_unmap_single(dev, dev_addr, size);
3592 3593
}

3594 3595
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3596
			     unsigned long attrs)
3597
{
L
Lu Baolu 已提交
3598
	intel_unmap(dev, dev_addr, size);
3599 3600 3601 3602 3603
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
L
Lu Baolu 已提交
3604
	intel_unmap(dev, dev_addr, size);
3605 3606
}

3607
static void *intel_alloc_coherent(struct device *dev, size_t size,
3608
				  dma_addr_t *dma_handle, gfp_t flags,
3609
				  unsigned long attrs)
3610
{
3611 3612
	struct page *page = NULL;
	int order;
3613

L
Lu Baolu 已提交
3614 3615
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3616

3617 3618 3619 3620 3621 3622
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3623 3624
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3625 3626 3627 3628 3629 3630 3631 3632
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3633 3634 3635
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3636
	if (*dma_handle != DMA_MAPPING_ERROR)
3637 3638 3639
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3640

3641 3642 3643
	return NULL;
}

3644
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3645
				dma_addr_t dma_handle, unsigned long attrs)
3646
{
3647 3648 3649 3650 3651 3652 3653 3654 3655
	int order;
	struct page *page = virt_to_page(vaddr);

	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3656 3657
}

3658
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3659
			   int nelems, enum dma_data_direction dir,
3660
			   unsigned long attrs)
3661
{
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3672 3673

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3674 3675
}

3676
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3677
			enum dma_data_direction dir, unsigned long attrs)
3678 3679 3680
{
	int i;
	struct dmar_domain *domain;
3681 3682
	size_t size = 0;
	int prot = 0;
3683
	unsigned long iova_pfn;
3684
	int ret;
F
FUJITA Tomonori 已提交
3685
	struct scatterlist *sg;
3686
	unsigned long start_vpfn;
3687
	struct intel_iommu *iommu;
3688 3689

	BUG_ON(dir == DMA_NONE);
L
Lu Baolu 已提交
3690 3691 3692

	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3693

3694
	domain = find_domain(dev);
3695 3696 3697
	if (!domain)
		return 0;

3698 3699
	iommu = domain_get_iommu(domain);

3700
	for_each_sg(sglist, sg, nelems, i)
3701
		size += aligned_nrpages(sg->offset, sg->length);
3702

3703
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3704
				*dev->dma_mask);
3705
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3706
		sglist->dma_length = 0;
3707 3708 3709 3710 3711 3712 3713 3714
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3715
			!cap_zlr(iommu->cap))
3716 3717 3718 3719
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3720
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3721

3722
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3723 3724
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3725 3726
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3727
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3728
		return 0;
3729 3730
	}

3731 3732
	for_each_sg(sglist, sg, nelems, i)
		trace_map_sg(dev, i + 1, nelems, sg);
3733

3734 3735 3736
	return nelems;
}

3737 3738 3739 3740 3741
static u64 intel_get_required_mask(struct device *dev)
{
	return DMA_BIT_MASK(32);
}

3742
static const struct dma_map_ops intel_dma_ops = {
3743 3744
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3745 3746
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3747 3748
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3749
	.map_resource = intel_map_resource,
3750
	.unmap_resource = intel_unmap_resource,
3751
	.dma_supported = dma_direct_supported,
3752 3753
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3754 3755
	.alloc_pages = dma_common_alloc_pages,
	.free_pages = dma_common_free_pages,
3756
	.get_required_mask = intel_get_required_mask,
3757 3758
};

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3789 3790 3791
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3792
	domain = find_domain(dev);
3793

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
3822 3823
		tlb_addr = swiotlb_tbl_map_single(dev, paddr, size,
				aligned_size, dir, attrs);
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

3947 3948 3949
	for_each_sg(sglist, sg, nelems, i)
		trace_bounce_map_sg(dev, i + 1, nelems, sg);

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
4008 4009
	.alloc_pages		= dma_common_alloc_pages,
	.free_pages		= dma_common_free_pages,
4010 4011 4012
	.dma_supported		= dma_direct_supported,
};

4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
4024
		pr_err("Couldn't create iommu_domain cache\n");
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
4041
		pr_err("Couldn't create devinfo cache\n");
4042 4043 4044 4045 4046 4047 4048 4049 4050
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
4051
	ret = iova_cache_get();
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
4065
	iova_cache_put();
4066 4067 4068 4069 4070 4071 4072 4073

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
4074
	iova_cache_put();
4075 4076 4077 4078 4079
}

static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4080
	struct device *dev;
4081
	int i;
4082 4083 4084

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4085 4086 4087
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4088
			/* ignore DMAR unit if no devices exist */
4089 4090 4091 4092 4093
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4094 4095
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4096 4097
			continue;

4098 4099
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4100
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4101 4102 4103 4104
				break;
		if (i < drhd->devices_cnt)
			continue;

4105 4106
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4107
		drhd->gfx_dedicated = 1;
4108
		if (!dmar_map_gfx)
4109
			drhd->ignored = 1;
4110 4111 4112
	}
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4133

4134 4135 4136 4137 4138
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4139
					   DMA_CCMD_GLOBAL_INVL);
4140 4141
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4142
		iommu_disable_protect_mem_regions(iommu);
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4155
					   DMA_CCMD_GLOBAL_INVL);
4156
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4157
					 DMA_TLB_GLOBAL_FLUSH);
4158 4159 4160
	}
}

4161
static int iommu_suspend(void)
4162 4163 4164 4165 4166 4167
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4168
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4179
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4190
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4201
static void iommu_resume(void)
4202 4203 4204 4205 4206 4207
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4208 4209 4210 4211
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4212
		return;
4213 4214 4215 4216
	}

	for_each_active_iommu(iommu, drhd) {

4217
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4228
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4229 4230 4231 4232 4233 4234
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4235
static struct syscore_ops iommu_syscore_ops = {
4236 4237 4238 4239
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4240
static void __init init_iommu_pm_ops(void)
4241
{
4242
	register_syscore_ops(&iommu_syscore_ops);
4243 4244 4245
}

#else
4246
static inline void init_iommu_pm_ops(void) {}
4247 4248
#endif	/* CONFIG_PM */

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

4260
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4261 4262 4263
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4264 4265

	rmrr = (struct acpi_dmar_reserved_memory *)header;
4266 4267
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
4268 4269 4270 4271 4272 4273
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
4274 4275
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
4276 4277 4278

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4279
		goto out;
4280 4281

	rmrru->hdr = header;
4282

4283 4284
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4285

4286 4287 4288
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4289
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4290
		goto free_rmrru;
4291

4292
	list_add(&rmrru->list, &dmar_rmrr_units);
4293

4294
	return 0;
4295 4296 4297 4298
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4299 4300
}

4301 4302 4303 4304 4305
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

4306 4307
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4321 4322 4323 4324
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4325
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4326 4327
		return 0;

4328
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4329 4330 4331 4332 4333
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4334 4335 4336
	if (!atsru)
		return -ENOMEM;

4337 4338 4339 4340 4341 4342 4343
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4344
	atsru->include_all = atsr->flags & 0x1;
4345 4346 4347 4348 4349 4350 4351 4352 4353
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4354

4355
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4356 4357 4358 4359

	return 0;
}

4360 4361 4362 4363 4364 4365
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4394
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4395 4396 4397
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4398
	}
4399 4400 4401 4402

	return 0;
}

4403 4404
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4405
	int sp, ret;
4406 4407 4408 4409 4410 4411
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4412
		pr_warn("%s: Doesn't support hardware pass through.\n",
4413 4414 4415 4416 4417
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4418
		pr_warn("%s: Doesn't support snooping.\n",
4419 4420 4421
			iommu->name);
		return -ENXIO;
	}
4422
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
4423
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4424
		pr_warn("%s: Doesn't support large page.\n",
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4442
	intel_svm_check(iommu);
4443

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4455 4456

#ifdef CONFIG_INTEL_IOMMU_SVM
4457
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4458 4459 4460 4461 4462
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4482 4483
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4500 4501
}

4502 4503 4504 4505 4506 4507 4508 4509 4510
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4511 4512
	}

4513 4514 4515 4516
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4517 4518 4519 4520
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4521
	int i, ret = 1;
4522
	struct pci_bus *bus;
4523 4524
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4525 4526 4527 4528 4529
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4530
		bridge = bus->self;
4531 4532 4533 4534 4535
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4536
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4537
			return 0;
4538
		/* If we found the root port, look it up in the ATSR */
4539
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4540 4541 4542
			break;
	}

4543
	rcu_read_lock();
4544 4545 4546 4547 4548
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4549
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4550
			if (tmp == &bridge->dev)
4551
				goto out;
4552 4553

		if (atsru->include_all)
4554
			goto out;
4555
	}
4556 4557
	ret = 0;
out:
4558
	rcu_read_unlock();
4559

4560
	return ret;
4561 4562
}

4563 4564
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4565
	int ret;
4566 4567 4568 4569 4570
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4571
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4582
			if (ret < 0)
4583
				return ret;
4584
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4585 4586
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4602
			else if (ret < 0)
4603
				return ret;
4604
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4605 4606 4607 4608 4609 4610 4611 4612 4613
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4614 4615 4616 4617
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
4618 4619 4620
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
4621 4622 4623

	switch (val) {
	case MEM_GOING_ONLINE:
4624 4625 4626 4627
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
4628 4629 4630 4631 4632 4633
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
4634
		{
4635 4636
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4637
			struct page *freelist;
4638

4639
			freelist = domain_unmap(si_domain,
4640 4641
						start_vpfn, last_vpfn,
						NULL);
4642

4643 4644
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4645
				iommu_flush_iotlb_psi(iommu, si_domain,
4646
					start_vpfn, mhp->nr_pages,
4647
					!freelist, 0);
4648
			rcu_read_unlock();
4649
			dma_free_pagelist(freelist);
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4662 4663 4664 4665 4666 4667 4668
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4669
		int did;
4670 4671 4672 4673

		if (!iommu)
			continue;

4674
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4675
			domain = get_iommu_domain(iommu, (u16)did);
4676

4677
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4678
				continue;
4679

4680 4681 4682 4683 4684
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4685
static int intel_iommu_cpu_dead(unsigned int cpu)
4686
{
4687 4688
	free_all_cpu_cached_iovas(cpu);
	return 0;
4689 4690
}

4691 4692 4693 4694 4695 4696 4697 4698 4699
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4720 4721
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4722 4723 4724
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4725 4726
}

4727 4728 4729 4730
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4731
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4742
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4743 4744 4745 4746 4747 4748 4749 4750
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4751
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4752 4753 4754 4755 4756 4757 4758 4759
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4760
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4761 4762 4763 4764
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4765 4766 4767 4768
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4769
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4770 4771 4772 4773 4774 4775 4776 4777
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4778
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4779 4780 4781 4782 4783
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4784 4785 4786 4787 4788
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4789 4790
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4804
static inline bool has_external_pci(void)
4805 4806 4807
{
	struct pci_dev *pdev = NULL;

4808
	for_each_pci_dev(pdev)
4809
		if (pdev->external_facing)
4810
			return true;
4811

4812 4813
	return false;
}
4814

4815 4816
static int __init platform_optin_force_iommu(void)
{
4817
	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4828
		iommu_set_default_passthrough(false);
4829 4830 4831 4832 4833 4834 4835

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4836 4837 4838
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4839 4840
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4879 4880
int __init intel_iommu_init(void)
{
4881
	int ret = -ENODEV;
4882
	struct dmar_drhd_unit *drhd;
4883
	struct intel_iommu *iommu;
4884

4885 4886 4887 4888 4889
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4890

4891 4892 4893 4894 4895 4896 4897
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4898 4899 4900
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4901
		goto out_free_dmar;
4902
	}
4903

4904
	if (dmar_dev_scope_init() < 0) {
4905 4906
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4907
		goto out_free_dmar;
4908
	}
4909

4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4920 4921 4922
	if (!no_iommu)
		intel_iommu_debugfs_init();

4923
	if (no_iommu || dmar_disabled) {
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4937 4938 4939 4940 4941 4942
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4943
		goto out_free_dmar;
4944
	}
4945

4946
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4947
		pr_info("No RMRR found\n");
4948 4949

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4950
		pr_info("No ATSR found\n");
4951

4952 4953 4954
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4955
		goto out_free_reserved_range;
4956
	}
4957

4958 4959 4960
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4961 4962
	init_no_remapping_devices();

4963
	ret = init_dmars();
4964
	if (ret) {
4965 4966
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4967
		pr_err("Initialization failed\n");
4968
		goto out_free_reserved_range;
4969
	}
4970
	up_write(&dmar_global_lock);
4971

4972
	init_iommu_pm_ops();
4973

4974
	down_read(&dmar_global_lock);
4975 4976 4977 4978 4979 4980 4981
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4982
	up_read(&dmar_global_lock);
4983

4984
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4985 4986
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4987 4988
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4989

4990
	down_read(&dmar_global_lock);
4991 4992 4993
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4994 4995
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4996
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4997 4998 4999 5000
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
5001 5002
	up_read(&dmar_global_lock);

5003 5004
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

5005 5006
	intel_iommu_enabled = 1;

5007
	return 0;
5008 5009 5010 5011 5012

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
5013 5014
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
5015
	return ret;
5016
}
5017

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

5040
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
5041
{
5042
	struct dmar_domain *domain;
5043 5044 5045
	struct intel_iommu *iommu;
	unsigned long flags;

5046 5047
	assert_spin_locked(&device_domain_lock);

5048
	if (WARN_ON(!info))
5049 5050
		return;

5051
	iommu = info->iommu;
5052
	domain = info->domain;
5053

5054
	if (info->dev) {
5055 5056
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
5057
					PASID_RID2PASID, false);
5058

5059
		iommu_disable_dev_iotlb(info);
5060 5061
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
5062
		intel_pasid_free_table(info->dev);
5063
	}
5064

5065
	unlink_domain_info(info);
5066

5067
	spin_lock_irqsave(&iommu->lock, flags);
5068
	domain_detach_iommu(domain, iommu);
5069
	spin_unlock_irqrestore(&iommu->lock, flags);
5070

5071
	free_devinfo_mem(info);
5072 5073
}

5074
static void dmar_remove_one_dev_info(struct device *dev)
5075
{
5076
	struct device_domain_info *info;
5077
	unsigned long flags;
5078

5079
	spin_lock_irqsave(&device_domain_lock, flags);
5080 5081
	info = get_domain_info(dev);
	if (info)
5082
		__dmar_remove_one_dev_info(info);
5083
	spin_unlock_irqrestore(&device_domain_lock, flags);
5084 5085
}

5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
static void intel_init_iova_domain(struct dmar_domain *dmar_domain)
{
	init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad);

	if (!intel_iommu_strict &&
	    init_iova_flush_queue(&dmar_domain->iovad,
				  iommu_flush_iova, iova_entry_free))
		pr_info("iova flush queue initialization failed\n");
}

5119
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5120
{
5121
	struct dmar_domain *dmar_domain;
5122 5123
	struct iommu_domain *domain;

5124
	switch (type) {
5125
	case IOMMU_DOMAIN_DMA:
5126
	case IOMMU_DOMAIN_UNMANAGED:
5127
		dmar_domain = alloc_domain(0);
5128 5129 5130 5131
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5132
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5133 5134 5135 5136
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5137

5138 5139
		if (type == IOMMU_DOMAIN_DMA)
			intel_init_iova_domain(dmar_domain);
5140

5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5151
		return NULL;
K
Kay, Allen M 已提交
5152
	}
5153

5154
	return NULL;
K
Kay, Allen M 已提交
5155 5156
}

5157
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5158
{
5159 5160
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5161 5162
}

5163 5164 5165 5166 5167 5168 5169
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
5170
	struct device_domain_info *info = get_domain_info(dev);
5171 5172 5173 5174 5175 5176 5177 5178

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
5179
	struct device_domain_info *info = get_domain_info(dev);
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
5192
	struct device_domain_info *info = get_domain_info(dev);
5193 5194 5195 5196 5197 5198 5199 5200 5201

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5202
		ioasid_free(domain->default_pasid);
5203 5204 5205 5206 5207 5208 5209 5210 5211
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	unsigned long flags;
	struct intel_iommu *iommu;

5212
	iommu = device_to_iommu(dev, NULL, NULL);
5213 5214 5215 5216
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
5217
		u32 pasid;
5218

5219 5220 5221 5222 5223
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
5241 5242 5243 5244 5245 5246
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5263
		ioasid_free(domain->default_pasid);
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
5279
	info = get_domain_info(dev);
5280 5281 5282 5283 5284
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
5285
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
5286 5287 5288 5289 5290 5291
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5292 5293
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5294
{
5295
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5296 5297
	struct intel_iommu *iommu;
	int addr_width;
5298

5299
	iommu = device_to_iommu(dev, NULL, NULL);
5300 5301 5302 5303 5304
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5305 5306 5307 5308
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5309 5310 5311
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5312 5313
		return -EFAULT;
	}
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5324 5325
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5326
			free_pgtable_page(pte);
5327 5328 5329
		}
		dmar_domain->agaw--;
	}
5330

5331 5332 5333 5334 5335 5336 5337 5338
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5339 5340
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5341 5342 5343 5344
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5345 5346 5347
	if (is_aux_domain(dev, domain))
		return -EPERM;

5348 5349 5350 5351 5352
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5353
		if (old_domain)
5354 5355 5356 5357 5358 5359 5360 5361
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5362 5363
}

5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5379 5380
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5381
{
5382
	dmar_remove_one_dev_info(dev);
5383
}
5384

5385 5386 5387 5388 5389 5390
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5391
#ifdef CONFIG_INTEL_IOMMU_SVM
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
5409
static const int
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

5452
	if (!inv_info || !dmar_domain)
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
5467
	info = get_domain_info(dev);
5468 5469 5470 5471 5472 5473 5474 5475
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
L
Liu Yi L 已提交
5476
	if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
5477 5478
		size = to_vtd_size(inv_info->granu.addr_info.granule_size,
				   inv_info->granu.addr_info.nb_granules);
5479 5480 5481 5482 5483 5484

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;
L
Liu Yi L 已提交
5485
		u64 addr = 0;
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
5499 5500
		    (inv_info->granu.pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->granu.pasid_info.pasid;
5501
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
5502 5503
			 (inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->granu.addr_info.pasid;
5504 5505 5506

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
5507
			/* HW will ignore LSB bits based on address mask */
5508 5509
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
5510
			    (inv_info->granu.addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
5511
				pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n",
5512
						   inv_info->granu.addr_info.addr, size);
5513 5514 5515 5516 5517 5518 5519
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
5520
					mm_to_dma_pfn(inv_info->granu.addr_info.addr),
5521
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
5522
					inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);
5523

L
Liu Yi L 已提交
5524 5525
			if (!info->ats_enabled)
				break;
5526 5527 5528 5529 5530
			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
L
Liu Yi L 已提交
5531
			fallthrough;
5532
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
L
Liu Yi L 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
			/*
			 * PASID based device TLB invalidation does not support
			 * IOMMU_INV_GRANU_PASID granularity but only supports
			 * IOMMU_INV_GRANU_ADDR.
			 * The equivalent of that is we set the size to be the
			 * entire range of 64 bit. User only provides PASID info
			 * without address info. So we set addr to 0.
			 */
			if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
				size = 64 - VTD_PAGE_SHIFT;
				addr = 0;
			} else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
5545
				addr = inv_info->granu.addr_info.addr;
L
Liu Yi L 已提交
5546 5547
			}

5548 5549 5550
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
L
Liu Yi L 已提交
5551
						info->ats_qdep, addr,
5552
						size);
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

5570 5571
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5572
			   size_t size, int iommu_prot, gfp_t gfp)
5573
{
5574
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5575
	u64 max_addr;
5576
	int prot = 0;
5577
	int ret;
5578

5579 5580 5581 5582
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5583 5584
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5585

5586
	max_addr = iova + size;
5587
	if (dmar_domain->max_addr < max_addr) {
5588 5589 5590
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5591
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5592
		if (end < max_addr) {
J
Joerg Roedel 已提交
5593
			pr_err("%s: iommu width (%d) is not "
5594
			       "sufficient for the mapped address (%llx)\n",
5595
			       __func__, dmar_domain->gaw, max_addr);
5596 5597
			return -EFAULT;
		}
5598
		dmar_domain->max_addr = max_addr;
5599
	}
5600 5601
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5602
	size = aligned_nrpages(hpa, size);
5603 5604
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5605
	return ret;
K
Kay, Allen M 已提交
5606 5607
}

5608
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5609 5610
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5611
{
5612
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5613
	unsigned long start_pfn, last_pfn;
5614
	int level = 0;
5615 5616 5617

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5618
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5619 5620 5621

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5622

5623 5624 5625
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

5626 5627
	gather->freelist = domain_unmap(dmar_domain, start_pfn,
					last_pfn, gather->freelist);
5628

5629 5630
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5631

5632 5633
	iommu_iotlb_gather_add_page(domain, gather, iova, size);

5634
	return size;
K
Kay, Allen M 已提交
5635 5636
}

5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
static void intel_iommu_tlb_sync(struct iommu_domain *domain,
				 struct iommu_iotlb_gather *gather)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long iova_pfn = IOVA_PFN(gather->start);
	size_t size = gather->end - gather->start;
	unsigned long start_pfn, last_pfn;
	unsigned long nrpages;
	int iommu_id;

	nrpages = aligned_nrpages(gather->start, size);
	start_pfn = mm_to_dma_pfn(iova_pfn);
	last_pfn = start_pfn + nrpages - 1;

	for_each_domain_iommu(iommu_id, dmar_domain)
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, nrpages, !gather->freelist, 0);

	dma_free_pagelist(gather->freelist);
}

5658
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5659
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5660
{
5661
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5662
	struct dma_pte *pte;
5663
	int level = 0;
5664
	u64 phys = 0;
K
Kay, Allen M 已提交
5665

5666
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5667 5668 5669 5670
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
5671

5672
	return phys;
K
Kay, Allen M 已提交
5673
}
5674

5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5729
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5730 5731
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5732
		return domain_update_iommu_snooping(NULL) == 1;
5733
	if (cap == IOMMU_CAP_INTR_REMAP)
5734
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5735

5736
	return false;
S
Sheng Yang 已提交
5737 5738
}

5739
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5740
{
5741
	struct intel_iommu *iommu;
5742

5743
	iommu = device_to_iommu(dev, NULL, NULL);
5744
	if (!iommu)
5745
		return ERR_PTR(-ENODEV);
5746

5747
	if (translation_pre_enabled(iommu))
5748
		dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO);
5749

5750
	return &iommu->iommu;
5751
}
5752

5753
static void intel_iommu_release_device(struct device *dev)
5754
{
5755 5756
	struct intel_iommu *iommu;

5757
	iommu = device_to_iommu(dev, NULL, NULL);
5758 5759 5760
	if (!iommu)
		return;

5761 5762
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5763 5764
	set_dma_ops(dev, NULL);
}
5765

L
Lu Baolu 已提交
5766 5767 5768
static void intel_iommu_probe_finalize(struct device *dev)
{
	struct iommu_domain *domain;
5769

L
Lu Baolu 已提交
5770
	domain = iommu_get_domain_for_dev(dev);
5771
	if (device_needs_bounce(dev))
L
Lu Baolu 已提交
5772 5773 5774 5775
		set_dma_ops(dev, &bounce_dma_ops);
	else if (domain && domain->type == IOMMU_DOMAIN_DMA)
		set_dma_ops(dev, &intel_dma_ops);
	else
5776
		set_dma_ops(dev, NULL);
5777 5778
}

5779 5780 5781
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5782
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5783 5784 5785 5786 5787
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5788
	down_read(&dmar_global_lock);
5789 5790 5791
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5792
			struct iommu_resv_region *resv;
5793
			enum iommu_resv_type type;
5794 5795
			size_t length;

5796 5797
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5798 5799
				continue;

5800
			length = rmrr->end_address - rmrr->base_address + 1;
5801 5802 5803 5804

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5805
			resv = iommu_alloc_resv_region(rmrr->base_address,
5806
						       length, prot, type);
5807 5808 5809 5810
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5811 5812
		}
	}
5813
	up_read(&dmar_global_lock);
5814

5815 5816 5817 5818 5819
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5820
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5821
						   IOMMU_RESV_DIRECT_RELAXABLE);
5822 5823 5824 5825 5826 5827
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5828 5829
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5830
				      0, IOMMU_RESV_MSI);
5831 5832 5833 5834 5835
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5836
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5837 5838 5839 5840 5841 5842 5843 5844
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5845
	domain = find_domain(dev);
5846 5847 5848 5849 5850 5851 5852
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5853
	info = get_domain_info(dev);
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5867 5868 5869
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5900 5901 5902 5903 5904 5905 5906
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5907 5908 5909 5910 5911 5912 5913
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int ret;

5914
	iommu = device_to_iommu(dev, NULL, NULL);
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5926
	info = get_domain_info(dev);
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5939
	info = get_domain_info(dev);
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5992 5993 5994 5995 5996 5997 5998 5999
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

6000 6001 6002 6003 6004 6005 6006 6007 6008
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
6034
	struct device_domain_info *info = get_domain_info(dev);
6035 6036 6037 6038 6039 6040 6041

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

6042 6043 6044 6045 6046 6047 6048 6049 6050
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

6051 6052 6053
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
6054
	return attach_deferred(dev);
6055 6056
}

6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
/*
 * Check that the device does not live on an external facing PCI port that is
 * marked as untrusted. Such devices should not be able to apply quirks and
 * thus not be able to bypass the IOMMU restrictions.
 */
static bool risky_device(struct pci_dev *pdev)
{
	if (pdev->untrusted) {
		pci_info(pdev,
			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
			 pdev->vendor, pdev->device);
		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
		return true;
	}
	return false;
}

6105
const struct iommu_ops intel_iommu_ops = {
6106 6107 6108
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
6109
	.domain_set_attr	= intel_iommu_domain_set_attr,
6110 6111
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
6112 6113
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
6114
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
6115 6116
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
6117
	.iotlb_sync		= intel_iommu_tlb_sync,
6118
	.iova_to_phys		= intel_iommu_iova_to_phys,
6119
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
6120
	.probe_finalize		= intel_iommu_probe_finalize,
6121
	.release_device		= intel_iommu_release_device,
6122
	.get_resv_regions	= intel_iommu_get_resv_regions,
6123
	.put_resv_regions	= generic_iommu_put_resv_regions,
6124
	.apply_resv_region	= intel_iommu_apply_resv_region,
6125
	.device_group		= intel_iommu_device_group,
6126 6127 6128 6129
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
6130
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
6131
	.def_domain_type	= device_def_domain_type,
6132
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
6133
#ifdef CONFIG_INTEL_IOMMU_SVM
6134
	.cache_invalidate	= intel_iommu_sva_invalidate,
6135 6136
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
6137 6138 6139
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
6140
	.page_response		= intel_svm_page_response,
6141
#endif
6142
};
6143

6144
static void quirk_iommu_igfx(struct pci_dev *dev)
6145
{
6146 6147 6148
	if (risky_device(dev))
		return;

6149
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6150 6151 6152
	dmar_map_gfx = 0;
}

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6187

6188
static void quirk_iommu_rwbf(struct pci_dev *dev)
6189
{
6190 6191 6192
	if (risky_device(dev))
		return;

6193 6194
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6195
	 * but needs it. Same seems to hold for the desktop versions.
6196
	 */
6197
	pci_info(dev, "Forcing write-buffer flush capability\n");
6198 6199 6200 6201
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6202 6203 6204 6205 6206 6207
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6208

6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6219
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6220 6221 6222
{
	unsigned short ggc;

6223 6224 6225
	if (risky_device(dev))
		return;

6226
	if (pci_read_config_word(dev, GGC, &ggc))
6227 6228
		return;

6229
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6230
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6231
		dmar_map_gfx = 0;
6232 6233
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6234
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6235 6236
		intel_iommu_strict = 1;
       }
6237 6238 6239 6240 6241 6242
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
{
	unsigned short ver;

	if (!IS_GFX_DEVICE(dev))
		return;

	ver = (dev->device >> 8) & 0xff;
	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
	    ver != 0x9a)
		return;

	if (risky_device(dev))
		return;

	pci_info(dev, "Skip IOMMU disabling for graphics\n");
	iommu_skip_te_disable = 1;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);

6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
6280 6281 6282 6283 6284 6285

	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6286 6287 6288 6289 6290 6291 6292 6293 6294
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

6295 6296 6297 6298 6299
	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6328 6329

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6330 6331
	       vtisochctrl);
}