iommu.c 157.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "../irq_remapping.h"
L
Lu Baolu 已提交
51
#include "intel-pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298

299 300 301 302
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

303 304 305 306 307
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
308
	struct dmar_dev_scope *devices;	/* target devices */
309 310 311 312 313 314
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
315
	struct dmar_dev_scope *devices;	/* target devices */
316 317 318 319 320 321 322 323 324 325
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
326 327 328
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

329
static void domain_exit(struct dmar_domain *domain);
330
static void domain_remove_dev_info(struct dmar_domain *domain);
331
static void dmar_remove_one_dev_info(struct device *dev);
332
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
333 334
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
335 336
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
337

338
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
339 340 341
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
342
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
343

344
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
345 346
int intel_iommu_sm = 1;
#else
347
int intel_iommu_sm;
348
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
349

350 351 352
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

353
static int dmar_map_gfx = 1;
354
static int dmar_forcedac;
M
mark gross 已提交
355
static int intel_iommu_strict;
356
static int intel_iommu_superpage = 1;
357
static int iommu_identity_mapping;
358
static int intel_no_bounce;
359

360 361
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
362

363 364 365
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

366
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
367
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

	info = dev->archdata.iommu;
	if (unlikely(info == DUMMY_DEVICE_DOMAIN_INFO ||
		     info == DEFER_DEVICE_DOMAIN_INFO))
		return NULL;

	return info;
}

383
DEFINE_SPINLOCK(device_domain_lock);
384 385
static LIST_HEAD(device_domain_list);

386 387 388
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

389 390
/*
 * Iterate over elements in device_domain_list and call the specified
391
 * callback @fn against each element.
392 393 394 395 396
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
397
	unsigned long flags;
398 399
	struct device_domain_info *info;

400
	spin_lock_irqsave(&device_domain_lock, flags);
401 402
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
403 404
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
405
			return ret;
406
		}
407
	}
408
	spin_unlock_irqrestore(&device_domain_lock, flags);
409 410 411 412

	return 0;
}

413
const struct iommu_ops intel_iommu_ops;
414

415 416 417 418 419
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

420 421 422 423 424
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

425 426 427 428 429 430 431 432 433
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

434 435 436 437 438
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
439 440
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
441
			pr_info("IOMMU enabled\n");
442
		} else if (!strncmp(str, "off", 3)) {
443
			dmar_disabled = 1;
444
			no_platform_optin = 1;
J
Joerg Roedel 已提交
445
			pr_info("IOMMU disabled\n");
446 447
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
448
			pr_info("Disable GFX device mapping\n");
449
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
450
			pr_info("Forcing DAC for PCI devices\n");
451
			dmar_forcedac = 1;
M
mark gross 已提交
452
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
453
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
454
			intel_iommu_strict = 1;
455
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
456
			pr_info("Disable supported super page\n");
457
			intel_iommu_superpage = 0;
458 459 460
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
461
		} else if (!strncmp(str, "tboot_noforce", 13)) {
462
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
463
			intel_iommu_tboot_noforce = 1;
464 465 466
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
467 468 469 470 471 472 473 474 475 476 477 478 479
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

480 481
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
482 483 484 485 486 487 488 489
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
490 491 492 493 494
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
495 496 497 498 499 500 501 502 503 504 505 506 507
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
508 509
}

510
void *alloc_pgtable_page(int node)
511
{
512 513
	struct page *page;
	void *vaddr = NULL;
514

515 516 517
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
518
	return vaddr;
519 520
}

521
void free_pgtable_page(void *vaddr)
522 523 524 525 526 527
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
528
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
529 530
}

K
Kay, Allen M 已提交
531
static void free_domain_mem(void *vaddr)
532 533 534 535 536 537
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
538
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
539 540 541 542 543 544 545
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

546 547 548 549 550
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

551 552 553 554 555
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

556 557 558 559 560 561 562 563
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
564
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
565 566 567 568 569
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
570
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
571 572 573 574 575 576 577 578
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

597
/* This functionin only returns single iommu in a domain */
598
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
599 600 601
{
	int iommu_id;

602
	/* si_domain and vm domain should not get here. */
603 604 605
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

606 607 608
	for_each_domain_iommu(iommu_id, domain)
		break;

609 610 611 612 613 614
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

615 616 617 618 619 620
static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
{
	return sm_supported(iommu) ?
			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
}

W
Weidong Han 已提交
621 622
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
623 624
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
625 626
	bool found = false;
	int i;
627

628
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
629

630
	for_each_domain_iommu(i, domain) {
631
		found = true;
632
		if (!iommu_paging_structure_coherency(g_iommus[i])) {
W
Weidong Han 已提交
633 634 635 636
			domain->iommu_coherency = 0;
			break;
		}
	}
637 638 639 640 641 642
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
643
		if (!iommu_paging_structure_coherency(iommu)) {
644 645 646 647 648
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
649 650
}

651
static int domain_update_iommu_snooping(struct intel_iommu *skip)
652
{
653 654 655
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
656

657 658 659 660 661 662 663
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
664 665
		}
	}
666 667 668
	rcu_read_unlock();

	return ret;
669 670
}

671 672
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
673
{
674
	struct dmar_drhd_unit *drhd;
675
	struct intel_iommu *iommu;
676
	int mask = 0x3;
677 678

	if (!intel_iommu_superpage) {
679
		return 0;
680 681
	}

682
	/* set iommu_superpage to the smallest common denominator */
683
	rcu_read_lock();
684
	for_each_active_iommu(iommu, drhd) {
685
		if (iommu != skip) {
686 687 688 689 690 691 692
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

693 694
			if (!mask)
				break;
695 696
		}
	}
697 698
	rcu_read_unlock();

699
	return fls(mask);
700 701
}

702 703 704 705
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
706
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
707
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
708 709
}

710 711
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
712 713 714 715 716
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

717
	entry = &root->lo;
718
	if (sm_supported(iommu)) {
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

744 745 746 747 748
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

749 750 751 752 753
static bool attach_deferred(struct device *dev)
{
	return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

781
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
782 783
{
	struct dmar_drhd_unit *drhd = NULL;
784
	struct intel_iommu *iommu;
785
	struct device *tmp;
786
	struct pci_dev *pdev = NULL;
787
	u16 segment = 0;
788 789
	int i;

790 791 792
	if (iommu_dummy(dev))
		return NULL;

793
	if (dev_is_pci(dev)) {
794 795
		struct pci_dev *pf_pdev;

796
		pdev = pci_real_dma_dev(to_pci_dev(dev));
797

798 799 800 801
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
802
		segment = pci_domain_nr(pdev->bus);
803
	} else if (has_acpi_companion(dev))
804 805
		dev = &ACPI_COMPANION(dev)->dev;

806
	rcu_read_lock();
807
	for_each_active_iommu(iommu, drhd) {
808
		if (pdev && segment != drhd->segment)
809
			continue;
810

811
		for_each_active_dev_scope(drhd->devices,
812 813
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
814 815 816 817
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
818
				if (pdev && pdev->is_virtfn)
819 820
					goto got_pdev;

821 822
				*bus = drhd->devices[i].bus;
				*devfn = drhd->devices[i].devfn;
823
				goto out;
824 825
			}

826
			if (is_downstream_to_pci_bridge(dev, tmp))
827
				goto got_pdev;
828
		}
829

830 831 832 833
		if (pdev && drhd->include_all) {
		got_pdev:
			*bus = pdev->bus->number;
			*devfn = pdev->devfn;
834
			goto out;
835
		}
836
	}
837
	iommu = NULL;
838
 out:
839
	rcu_read_unlock();
840

841
	return iommu;
842 843
}

W
Weidong Han 已提交
844 845 846 847 848 849 850
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

851 852 853
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
854
	int ret = 0;
855 856 857
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
858 859 860
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
876
		context = iommu_context_addr(iommu, i, 0, 0);
877 878
		if (context)
			free_pgtable_page(context);
879

880
		if (!sm_supported(iommu))
881 882 883 884 885 886
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

887 888 889 890 891 892 893
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

894
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
895
				      unsigned long pfn, int *target_level)
896
{
897
	struct dma_pte *parent, *pte;
898
	int level = agaw_to_level(domain->agaw);
899
	int offset;
900 901

	BUG_ON(!domain->pgd);
902

903
	if (!domain_pfn_supported(domain, pfn))
904 905 906
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

907 908
	parent = domain->pgd;

909
	while (1) {
910 911
		void *tmp_page;

912
		offset = pfn_level_offset(pfn, level);
913
		pte = &parent[offset];
914
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
915
			break;
916
		if (level == *target_level)
917 918
			break;

919
		if (!dma_pte_present(pte)) {
920 921
			uint64_t pteval;

922
			tmp_page = alloc_pgtable_page(domain->nid);
923

924
			if (!tmp_page)
925
				return NULL;
926

927
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
928
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
929
			if (domain_use_first_level(domain))
930
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
931
			if (cmpxchg64(&pte->val, 0ULL, pteval))
932 933
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
934
			else
935
				domain_flush_cache(domain, pte, sizeof(*pte));
936
		}
937 938 939
		if (level == 1)
			break;

940
		parent = phys_to_virt(dma_pte_addr(pte));
941 942 943
		level--;
	}

944 945 946
	if (!*target_level)
		*target_level = level;

947 948 949 950
	return pte;
}

/* return address's pte at specific level */
951 952
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
953
					 int level, int *large_page)
954
{
955
	struct dma_pte *parent, *pte;
956 957 958 959 960
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
961
		offset = pfn_level_offset(pfn, total);
962 963 964 965
		pte = &parent[offset];
		if (level == total)
			return pte;

966 967
		if (!dma_pte_present(pte)) {
			*large_page = total;
968
			break;
969 970
		}

971
		if (dma_pte_superpage(pte)) {
972 973 974 975
			*large_page = total;
			return pte;
		}

976
		parent = phys_to_virt(dma_pte_addr(pte));
977 978 979 980 981 982
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
983
static void dma_pte_clear_range(struct dmar_domain *domain,
984 985
				unsigned long start_pfn,
				unsigned long last_pfn)
986
{
987
	unsigned int large_page;
988
	struct dma_pte *first_pte, *pte;
989

990 991
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
992
	BUG_ON(start_pfn > last_pfn);
993

994
	/* we don't need lock here; nobody else touches the iova range */
995
	do {
996 997
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
998
		if (!pte) {
999
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1000 1001
			continue;
		}
1002
		do {
1003
			dma_clear_pte(pte);
1004
			start_pfn += lvl_to_nr_pages(large_page);
1005
			pte++;
1006 1007
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1008 1009
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1010 1011

	} while (start_pfn && start_pfn <= last_pfn);
1012 1013
}

1014
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1015 1016 1017
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1029
		level_pfn = pfn & level_mask(level);
1030 1031
		level_pte = phys_to_virt(dma_pte_addr(pte));

1032 1033 1034 1035 1036
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1037

1038 1039 1040 1041 1042
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1043
		      last_pfn < level_pfn + level_size(level) - 1)) {
1044 1045 1046 1047 1048 1049 1050 1051 1052
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1053 1054 1055 1056
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1057
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1058
				   unsigned long start_pfn,
1059 1060
				   unsigned long last_pfn,
				   int retain_level)
1061
{
1062 1063
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1064
	BUG_ON(start_pfn > last_pfn);
1065

1066 1067
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1068
	/* We don't need lock here; nobody else touches the iova range */
1069
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1070
			   domain->pgd, 0, start_pfn, last_pfn);
1071

1072
	/* free pgd */
1073
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1074 1075 1076 1077 1078
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1098 1099
	pte = page_address(pg);
	do {
1100 1101 1102
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1103 1104
		pte++;
	} while (!first_pte_in_page(pte));
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1161 1162 1163
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1164
{
1165
	struct page *freelist;
1166

1167 1168
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1187
static void dma_free_pagelist(struct page *freelist)
1188 1189 1190 1191 1192 1193 1194 1195 1196
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1197 1198 1199 1200 1201 1202 1203
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1204 1205 1206 1207 1208 1209
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1210
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1211
	if (!root) {
J
Joerg Roedel 已提交
1212
		pr_err("Allocating root entry for %s failed\n",
1213
			iommu->name);
1214
		return -ENOMEM;
1215
	}
1216

F
Fenghua Yu 已提交
1217
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1228
	u64 addr;
1229
	u32 sts;
1230 1231
	unsigned long flag;

1232
	addr = virt_to_phys(iommu->root_entry);
1233 1234
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1235

1236
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1237
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1238

1239
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1240 1241 1242

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1243
		      readl, (sts & DMA_GSTS_RTPS), sts);
1244

1245
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1246 1247
}

1248
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1249 1250 1251 1252
{
	u32 val;
	unsigned long flag;

1253
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1254 1255
		return;

1256
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1257
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1258 1259 1260

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1261
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1262

1263
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1264 1265 1266
}

/* return value determine if we need a write buffer flush */
1267 1268 1269
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1290
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1291 1292 1293 1294 1295 1296
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1297
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1298 1299 1300
}

/* return value determine if we need a write buffer flush */
1301 1302
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1318
		/* IH bit is passed in as part of address */
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1336
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1337 1338 1339 1340 1341 1342 1343 1344 1345
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1346
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1347 1348 1349

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1350
		pr_err("Flush IOTLB failed\n");
1351
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1352
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1353 1354
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1355 1356
}

1357 1358 1359
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1360 1361 1362
{
	struct device_domain_info *info;

1363 1364
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1365 1366 1367 1368
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1369 1370
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1371 1372
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1373 1374 1375
			break;
		}

1376
	return NULL;
Y
Yu Zhao 已提交
1377 1378
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1402
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1403
{
1404 1405
	struct pci_dev *pdev;

1406 1407
	assert_spin_locked(&device_domain_lock);

1408
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1409 1410
		return;

1411
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1424
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1425
	}
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1436 1437 1438
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1439 1440
		info->pri_enabled = 1;
#endif
1441
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1442
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1443
		info->ats_enabled = 1;
1444
		domain_update_iotlb(info->domain);
1445 1446
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1447 1448 1449 1450
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1451 1452
	struct pci_dev *pdev;

1453 1454
	assert_spin_locked(&device_domain_lock);

1455
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1456 1457
		return;

1458 1459 1460 1461 1462
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1463
		domain_update_iotlb(info->domain);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1484 1485 1486
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1487 1488
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1489
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1490 1491 1492
			continue;

		sid = info->bus << 8 | info->devfn;
1493
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1494 1495
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1496 1497 1498 1499
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1514 1515 1516 1517
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1518
{
1519
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1520
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1521
	u16 did = domain->iommu_did[iommu->seq_id];
1522 1523 1524

	BUG_ON(pages == 0);

1525 1526
	if (ih)
		ih = 1 << 6;
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1544 1545

	/*
1546 1547
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1548
	 */
1549
	if (!cap_caching_mode(iommu->cap) || !map)
1550
		iommu_flush_dev_iotlb(domain, addr, mask);
1551 1552
}

1553 1554 1555 1556 1557
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1558 1559 1560 1561 1562
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1563 1564 1565 1566 1567
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

1579 1580 1581 1582 1583
		if (domain_use_first_level(domain))
			domain_flush_piotlb(iommu, domain, 0, -1, 0);
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1584 1585 1586 1587 1588 1589 1590

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1591 1592 1593 1594 1595
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1596 1597 1598
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1599
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1600 1601 1602 1603 1604 1605 1606 1607
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1608
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1609 1610
}

1611
static void iommu_enable_translation(struct intel_iommu *iommu)
1612 1613 1614 1615
{
	u32 sts;
	unsigned long flags;

1616
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1617 1618
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1619 1620 1621

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1622
		      readl, (sts & DMA_GSTS_TES), sts);
1623

1624
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1625 1626
}

1627
static void iommu_disable_translation(struct intel_iommu *iommu)
1628 1629 1630 1631
{
	u32 sts;
	unsigned long flag;

1632
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1633 1634 1635 1636 1637
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1638
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1639

1640
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1641 1642 1643 1644
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1645 1646
	u32 ndomains, nlongs;
	size_t size;
1647 1648

	ndomains = cap_ndoms(iommu->cap);
1649
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1650
		 iommu->name, ndomains);
1651 1652
	nlongs = BITS_TO_LONGS(ndomains);

1653 1654
	spin_lock_init(&iommu->lock);

1655 1656
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1657 1658
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1659 1660
		return -ENOMEM;
	}
1661

1662
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1663 1664 1665 1666 1667 1668 1669 1670
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1671 1672
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1673
		kfree(iommu->domain_ids);
1674
		kfree(iommu->domains);
1675
		iommu->domain_ids = NULL;
1676
		iommu->domains    = NULL;
1677 1678 1679 1680
		return -ENOMEM;
	}

	/*
1681 1682 1683 1684
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1685
	 */
1686 1687
	set_bit(0, iommu->domain_ids);

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1698 1699 1700
	return 0;
}

1701
static void disable_dmar_iommu(struct intel_iommu *iommu)
1702
{
1703
	struct device_domain_info *info, *tmp;
1704
	unsigned long flags;
1705

1706 1707
	if (!iommu->domains || !iommu->domain_ids)
		return;
1708

1709
	spin_lock_irqsave(&device_domain_lock, flags);
1710 1711 1712 1713 1714 1715 1716
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1717
		__dmar_remove_one_dev_info(info);
1718
	}
1719
	spin_unlock_irqrestore(&device_domain_lock, flags);
1720 1721 1722

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1723
}
1724

1725 1726 1727
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1728
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1729 1730 1731 1732
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1733 1734 1735 1736 1737
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1738

W
Weidong Han 已提交
1739 1740
	g_iommus[iommu->seq_id] = NULL;

1741 1742
	/* free context mapping */
	free_context_table(iommu);
1743 1744

#ifdef CONFIG_INTEL_IOMMU_SVM
1745
	if (pasid_supported(iommu)) {
1746 1747 1748
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1749 1750 1751
	if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap))
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1752
#endif
1753 1754
}

1755 1756
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1757
 * DMA translation.
1758 1759 1760 1761 1762
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1763
	static int first_level_support = -1;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1782
static struct dmar_domain *alloc_domain(int flags)
1783 1784 1785 1786 1787 1788 1789
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1790
	memset(domain, 0, sizeof(*domain));
1791
	domain->nid = NUMA_NO_NODE;
1792
	domain->flags = flags;
1793 1794
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1795
	domain->has_iotlb_device = false;
1796
	INIT_LIST_HEAD(&domain->devices);
1797 1798 1799 1800

	return domain;
}

1801 1802
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1803 1804
			       struct intel_iommu *iommu)
{
1805
	unsigned long ndomains;
1806
	int num;
1807

1808
	assert_spin_locked(&device_domain_lock);
1809
	assert_spin_locked(&iommu->lock);
1810

1811 1812 1813
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1814
		ndomains = cap_ndoms(iommu->cap);
1815 1816 1817 1818 1819 1820
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1821
			return -ENOSPC;
1822
		}
1823

1824 1825 1826 1827 1828
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1829 1830 1831

		domain_update_iommu_cap(domain);
	}
1832

1833
	return 0;
1834 1835 1836 1837 1838
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1839
	int num, count;
1840

1841
	assert_spin_locked(&device_domain_lock);
1842
	assert_spin_locked(&iommu->lock);
1843

1844 1845 1846
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1847 1848 1849
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1850 1851

		domain_update_iommu_cap(domain);
1852
		domain->iommu_did[iommu->seq_id] = 0;
1853 1854 1855 1856 1857
	}

	return count;
}

1858
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1859
static struct lock_class_key reserved_rbtree_key;
1860

1861
static int dmar_init_reserved_ranges(void)
1862 1863 1864 1865 1866
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1867
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1868

M
Mark Gross 已提交
1869 1870 1871
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1872 1873 1874
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1875
	if (!iova) {
J
Joerg Roedel 已提交
1876
		pr_err("Reserve IOAPIC range failed\n");
1877 1878
		return -ENODEV;
	}
1879 1880 1881 1882 1883 1884 1885 1886 1887

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1888 1889 1890
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1891
			if (!iova) {
1892
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1893 1894
				return -ENODEV;
			}
1895 1896
		}
	}
1897
	return 0;
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

1917
	/* Remove associated devices and clear attached or cached domains */
1918
	domain_remove_dev_info(domain);
1919

1920
	/* destroy iovas */
1921 1922
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
		put_iova_domain(&domain->iovad);
1923

1924 1925
	if (domain->pgd) {
		struct page *freelist;
1926

1927 1928 1929
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
1930

1931 1932 1933
	free_domain_mem(domain);
}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

1983 1984
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
1985
				      struct pasid_table *table,
1986
				      u8 bus, u8 devfn)
1987
{
1988
	u16 did = domain->iommu_did[iommu->seq_id];
1989 1990
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
1991 1992
	struct context_entry *context;
	unsigned long flags;
1993
	int ret;
1994

1995 1996
	WARN_ON(did == 0);

1997 1998
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
1999 2000 2001

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2002

2003
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2004

2005 2006 2007 2008
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2009
	context = iommu_context_addr(iommu, bus, devfn, 1);
2010
	if (!context)
2011
		goto out_unlock;
2012

2013 2014 2015
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2029
		if (did_old < cap_ndoms(iommu->cap)) {
2030 2031 2032 2033
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2034 2035 2036
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2037 2038
	}

2039
	context_clear_entry(context);
2040

2041 2042
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2053 2054

		/*
2055 2056
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2057
		 */
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2097 2098

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2099
	}
F
Fenghua Yu 已提交
2100

2101 2102
	context_set_fault_enable(context);
	context_set_present(context);
2103 2104
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(context, sizeof(*context));
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2117
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2118
	} else {
2119
		iommu_flush_write_buffer(iommu);
2120
	}
Y
Yu Zhao 已提交
2121
	iommu_enable_dev_iotlb(info);
2122

2123 2124 2125 2126 2127
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2128

2129
	return ret;
2130 2131
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2148
static int
2149
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2150
{
2151
	struct domain_context_mapping_data data;
2152
	struct pasid_table *table;
2153
	struct intel_iommu *iommu;
2154
	u8 bus, devfn;
2155

2156
	iommu = device_to_iommu(dev, &bus, &devfn);
2157 2158
	if (!iommu)
		return -ENODEV;
2159

2160
	table = intel_pasid_get_table(dev);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2172 2173 2174 2175 2176 2177 2178 2179
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2180 2181
}

2182
static int domain_context_mapped(struct device *dev)
2183
{
W
Weidong Han 已提交
2184
	struct intel_iommu *iommu;
2185
	u8 bus, devfn;
W
Weidong Han 已提交
2186

2187
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2188 2189
	if (!iommu)
		return -ENODEV;
2190

2191 2192
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2193

2194 2195
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2234 2235 2236
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2237 2238
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2239
	phys_addr_t uninitialized_var(pteval);
2240
	unsigned long sg_res = 0;
2241 2242
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2243
	u64 attr;
2244

2245
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2246 2247 2248 2249

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2250 2251
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
2252
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2253

2254 2255
	if (!sg) {
		sg_res = nr_pages;
2256
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2257 2258
	}

2259
	while (nr_pages > 0) {
2260 2261
		uint64_t tmp;

2262
		if (!sg_res) {
2263 2264
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2265
			sg_res = aligned_nrpages(sg->offset, sg->length);
2266
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2267
			sg->dma_length = sg->length;
2268
			pteval = (sg_phys(sg) - pgoff) | attr;
2269
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2270
		}
2271

2272
		if (!pte) {
2273 2274
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2275
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2276 2277
			if (!pte)
				return -ENOMEM;
2278
			/* It is large page*/
2279
			if (largepage_lvl > 1) {
2280 2281
				unsigned long nr_superpages, end_pfn;

2282
				pteval |= DMA_PTE_LARGE_PAGE;
2283
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2284 2285 2286 2287

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2288 2289
				/*
				 * Ensure that old small page tables are
2290
				 * removed to make room for superpage(s).
2291 2292
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2293
				 */
2294 2295
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2296
			} else {
2297
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2298
			}
2299

2300 2301 2302 2303
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2304
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2305
		if (tmp) {
2306
			static int dumps = 5;
J
Joerg Roedel 已提交
2307 2308
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2309 2310 2311 2312 2313 2314
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2338
		pte++;
2339 2340
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2341 2342 2343 2344
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2345 2346

		if (!sg_res && nr_pages)
2347 2348 2349 2350 2351
			sg = sg_next(sg);
	}
	return 0;
}

2352
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2353 2354 2355
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2356
	int iommu_id, ret;
2357 2358 2359 2360 2361 2362 2363
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2364 2365
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2366 2367 2368 2369
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2370 2371
}

2372 2373 2374
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2375
{
2376
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2377
}
2378

2379 2380 2381 2382
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2383
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2384 2385
}

2386
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2387
{
2388 2389 2390 2391
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2392 2393
	if (!iommu)
		return;
2394

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2415 2416
}

2417 2418 2419 2420 2421 2422
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2423
		info->dev->archdata.iommu = NULL;
2424 2425
}

2426 2427
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2428
	struct device_domain_info *info, *tmp;
2429
	unsigned long flags;
2430 2431

	spin_lock_irqsave(&device_domain_lock, flags);
2432
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2433
		__dmar_remove_one_dev_info(info);
2434 2435 2436
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2437
struct dmar_domain *find_domain(struct device *dev)
2438 2439 2440
{
	struct device_domain_info *info;

2441
	if (unlikely(attach_deferred(dev) || iommu_dummy(dev)))
2442 2443 2444
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2445
	info = get_domain_info(dev);
2446 2447 2448 2449 2450 2451
	if (likely(info))
		return info->domain;

	return NULL;
}

2452
static void do_deferred_attach(struct device *dev)
2453
{
2454
	struct iommu_domain *domain;
2455

2456 2457 2458 2459 2460 2461
	dev->archdata.iommu = NULL;
	domain = iommu_get_domain_for_dev(dev);
	if (domain)
		intel_iommu_attach_device(domain, dev);
}

2462
static inline struct device_domain_info *
2463 2464 2465 2466 2467
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2468
		if (info->segment == segment && info->bus == bus &&
2469
		    info->devfn == devfn)
2470
			return info;
2471 2472 2473 2474

	return NULL;
}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
				    int pasid)
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2505 2506 2507 2508 2509 2510
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2511 2512 2513 2514
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2515
{
2516
	struct dmar_domain *found = NULL;
2517 2518
	struct device_domain_info *info;
	unsigned long flags;
2519
	int ret;
2520 2521 2522

	info = alloc_devinfo_mem();
	if (!info)
2523
		return NULL;
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2537 2538 2539
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2540 2541
	info->dev = dev;
	info->domain = domain;
2542
	info->iommu = iommu;
2543
	info->pasid_table = NULL;
2544
	info->auxd_enabled = 0;
2545
	INIT_LIST_HEAD(&info->auxiliary_domains);
2546

2547 2548 2549
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2550 2551
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2552 2553 2554
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2555 2556
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2568 2569
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2570
		found = find_domain(dev);
2571 2572

	if (!found) {
2573
		struct device_domain_info *info2;
2574 2575
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2576 2577 2578 2579
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2580
	}
2581

2582 2583 2584
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2585 2586
		/* Caller must free the original domain */
		return found;
2587 2588
	}

2589 2590 2591 2592 2593
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2594
		spin_unlock_irqrestore(&device_domain_lock, flags);
2595
		free_devinfo_mem(info);
2596 2597 2598
		return NULL;
	}

2599 2600 2601 2602
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2603
	spin_unlock_irqrestore(&device_domain_lock, flags);
2604

2605 2606
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2607 2608
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2609
			dev_err(dev, "PASID table allocation failed\n");
2610
			dmar_remove_one_dev_info(dev);
2611
			return NULL;
2612
		}
2613 2614 2615 2616 2617 2618

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2619 2620 2621
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2622 2623 2624 2625 2626
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2627
			dev_err(dev, "Setup RID2PASID failed\n");
2628
			dmar_remove_one_dev_info(dev);
2629
			return NULL;
2630 2631
		}
	}
2632

2633
	if (dev && domain_context_mapping(domain, dev)) {
2634
		dev_err(dev, "Domain context map failed\n");
2635
		dmar_remove_one_dev_info(dev);
2636 2637 2638
		return NULL;
	}

2639
	return domain;
2640 2641
}

2642
static int iommu_domain_identity_map(struct dmar_domain *domain,
2643 2644
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2645 2646 2647 2648 2649
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2650
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2651

2652 2653 2654
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2655 2656
}

2657 2658
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2659
static int __init si_domain_init(int hw)
2660
{
2661 2662 2663
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2664

2665
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2666 2667 2668
	if (!si_domain)
		return -EFAULT;

2669
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2670 2671 2672 2673
		domain_exit(si_domain);
		return -EFAULT;
	}

2674 2675 2676
	if (hw)
		return 0;

2677
	for_each_online_node(nid) {
2678 2679 2680 2681 2682
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2683 2684
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2685 2686 2687
			if (ret)
				return ret;
		}
2688 2689
	}

2690
	/*
2691 2692
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

			ret = iommu_domain_identity_map(si_domain, start, end);
			if (ret)
				return ret;
		}
	}

2710 2711 2712
	return 0;
}

2713
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2714
{
2715
	struct dmar_domain *ndomain;
2716
	struct intel_iommu *iommu;
2717
	u8 bus, devfn;
2718

2719
	iommu = device_to_iommu(dev, &bus, &devfn);
2720 2721 2722
	if (!iommu)
		return -ENODEV;

2723
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2724 2725
	if (ndomain != domain)
		return -EBUSY;
2726 2727 2728 2729

	return 0;
}

2730
static bool device_has_rmrr(struct device *dev)
2731 2732
{
	struct dmar_rmrr_unit *rmrr;
2733
	struct device *tmp;
2734 2735
	int i;

2736
	rcu_read_lock();
2737
	for_each_rmrr_units(rmrr) {
2738 2739 2740 2741 2742 2743
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2744 2745
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2746
				rcu_read_unlock();
2747
				return true;
2748
			}
2749
	}
2750
	rcu_read_unlock();
2751 2752 2753
	return false;
}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2797 2798
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2799 2800 2801 2802 2803 2804
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2805 2806
	if (device_rmrr_is_relaxable(dev))
		return false;
2807 2808 2809 2810

	return true;
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2822
static int device_def_domain_type(struct device *dev)
2823
{
2824 2825
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2826

2827 2828 2829 2830 2831
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2832
			return IOMMU_DOMAIN_DMA;
2833

2834
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2835
			return IOMMU_DOMAIN_IDENTITY;
2836

2837
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2838
			return IOMMU_DOMAIN_IDENTITY;
2839
	}
2840

2841
	return 0;
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2870
		pr_info("%s: Using Register based invalidation\n",
2871 2872 2873 2874
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2875
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2876 2877 2878
	}
}

2879
static int copy_context_table(struct intel_iommu *iommu,
2880
			      struct root_entry *old_re,
2881 2882 2883
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2884
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2885
	struct context_entry *new_ce = NULL, ce;
2886
	struct context_entry *old_ce = NULL;
2887
	struct root_entry re;
2888 2889 2890
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2891
	memcpy(&re, old_re, sizeof(re));
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2907
				memunmap(old_ce);
2908 2909 2910

			ret = 0;
			if (devfn < 0x80)
2911
				old_ce_phys = root_entry_lctp(&re);
2912
			else
2913
				old_ce_phys = root_entry_uctp(&re);
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
2926 2927
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
2939
		memcpy(&ce, old_ce + idx, sizeof(ce));
2940

2941
		if (!__context_present(&ce))
2942 2943
			continue;

2944 2945 2946 2947
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

2967 2968 2969 2970 2971 2972 2973 2974
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
2975
	memunmap(old_ce);
2976 2977 2978 2979 2980 2981 2982 2983

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
2984
	struct root_entry *old_rt;
2985 2986 2987 2988 2989
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
2990
	bool new_ext, ext;
2991 2992 2993

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3004 3005 3006 3007 3008

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3009
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3010 3011 3012 3013 3014 3015
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3016
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3058
	memunmap(old_rt);
3059 3060 3061 3062

	return ret;
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
	if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap))
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3142
static int __init init_dmars(void)
3143 3144 3145
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3146
	int ret;
3147

3148 3149 3150 3151 3152 3153 3154
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3155 3156 3157 3158 3159
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3160
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3161 3162 3163
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3164
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3165 3166
	}

3167 3168 3169 3170
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3171 3172 3173
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3174
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3175 3176 3177 3178
		ret = -ENOMEM;
		goto error;
	}

3179 3180 3181 3182 3183 3184
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3185 3186 3187 3188 3189
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3190
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3191 3192 3193 3194 3195 3196
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3197
		g_iommus[iommu->seq_id] = iommu;
3198

3199 3200
		intel_iommu_init_qi(iommu);

3201 3202
		ret = iommu_init_domains(iommu);
		if (ret)
3203
			goto free_iommu;
3204

3205 3206
		init_translation_status(iommu);

3207 3208 3209 3210 3211 3212
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3213

3214 3215 3216
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3217
		 * among all IOMMU's. Need to Split it later.
3218 3219
		 */
		ret = iommu_alloc_root_entry(iommu);
3220
		if (ret)
3221
			goto free_iommu;
3222

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3247
		if (!ecap_pass_through(iommu->ecap))
3248
			hw_pass_through = 0;
3249
		intel_svm_check(iommu);
3250 3251
	}

3252 3253 3254 3255 3256 3257 3258
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3259 3260 3261
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3262 3263 3264 3265 3266
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3267
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3268
	dmar_map_gfx = 0;
3269
#endif
3270

3271 3272 3273
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3274 3275
	check_tylersburg_isoch();

3276 3277 3278
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3279

3280 3281 3282 3283 3284 3285 3286
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3287
	for_each_iommu(iommu, drhd) {
3288 3289 3290 3291 3292 3293
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3294
				iommu_disable_protect_mem_regions(iommu);
3295
			continue;
3296
		}
3297 3298 3299

		iommu_flush_write_buffer(iommu);

3300
#ifdef CONFIG_INTEL_IOMMU_SVM
3301
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3302 3303 3304 3305 3306
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3307
			ret = intel_svm_enable_prq(iommu);
3308
			down_write(&dmar_global_lock);
3309 3310 3311 3312
			if (ret)
				goto free_iommu;
		}
#endif
3313 3314
		ret = dmar_set_interrupt(iommu);
		if (ret)
3315
			goto free_iommu;
3316 3317 3318
	}

	return 0;
3319 3320

free_iommu:
3321 3322
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3323
		free_dmar_iommu(iommu);
3324
	}
3325

W
Weidong Han 已提交
3326
	kfree(g_iommus);
3327

3328
error:
3329 3330 3331
	return ret;
}

3332
/* This takes a number of _MM_ pages, not VTD pages */
3333
static unsigned long intel_alloc_iova(struct device *dev,
3334 3335
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3336
{
3337
	unsigned long iova_pfn;
3338

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
	/*
	 * Restrict dma_mask to the width that the iommu can handle.
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
				 dma_mask);
	else
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
				 dma_mask);

3354 3355
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3356 3357

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3358 3359
		/*
		 * First try to allocate an io virtual address in
3360
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3361
		 * from higher range
3362
		 */
3363
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3364
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3365 3366
		if (iova_pfn)
			return iova_pfn;
3367
	}
3368 3369
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3370
	if (unlikely(!iova_pfn)) {
3371 3372
		dev_err_once(dev, "Allocating %ld-page iova failed\n",
			     nrpages);
3373
		return 0;
3374 3375
	}

3376
	return iova_pfn;
3377 3378
}

3379 3380
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3381 3382
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3383
	phys_addr_t start_paddr;
3384
	unsigned long iova_pfn;
3385
	int prot = 0;
I
Ingo Molnar 已提交
3386
	int ret;
3387
	struct intel_iommu *iommu;
3388
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3389 3390

	BUG_ON(dir == DMA_NONE);
3391

L
Lu Baolu 已提交
3392 3393 3394
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3395
	domain = find_domain(dev);
3396
	if (!domain)
3397
		return DMA_MAPPING_ERROR;
3398

3399
	iommu = domain_get_iommu(domain);
3400
	size = aligned_nrpages(paddr, size);
3401

3402 3403
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3404 3405
		goto error;

3406 3407 3408 3409 3410
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3411
			!cap_zlr(iommu->cap))
3412 3413 3414 3415
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3416
	 * paddr - (paddr + size) might be partial page, we should map the whole
3417
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3418
	 * might have two guest_addr mapping to the same host paddr, but this
3419 3420
	 * is not a big problem
	 */
3421
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3422
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3423 3424 3425
	if (ret)
		goto error;

3426
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3427
	start_paddr += paddr & ~PAGE_MASK;
3428 3429 3430

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3431
	return start_paddr;
3432 3433

error:
3434
	if (iova_pfn)
3435
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3436 3437
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3438
	return DMA_MAPPING_ERROR;
3439 3440
}

3441 3442 3443
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3444
				 unsigned long attrs)
3445
{
L
Lu Baolu 已提交
3446 3447
	return __intel_map_single(dev, page_to_phys(page) + offset,
				  size, dir, *dev->dma_mask);
3448 3449 3450 3451 3452 3453
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
L
Lu Baolu 已提交
3454
	return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask);
3455 3456
}

3457
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3458
{
3459
	struct dmar_domain *domain;
3460
	unsigned long start_pfn, last_pfn;
3461
	unsigned long nrpages;
3462
	unsigned long iova_pfn;
3463
	struct intel_iommu *iommu;
3464
	struct page *freelist;
3465
	struct pci_dev *pdev = NULL;
3466

3467
	domain = find_domain(dev);
3468 3469
	BUG_ON(!domain);

3470 3471
	iommu = domain_get_iommu(domain);

3472
	iova_pfn = IOVA_PFN(dev_addr);
3473

3474
	nrpages = aligned_nrpages(dev_addr, size);
3475
	start_pfn = mm_to_dma_pfn(iova_pfn);
3476
	last_pfn = start_pfn + nrpages - 1;
3477

3478 3479 3480
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3481
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3482 3483
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3484
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3485
				      nrpages, !freelist, 0);
M
mark gross 已提交
3486
		/* free iova */
3487
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3488
		dma_free_pagelist(freelist);
M
mark gross 已提交
3489
	} else {
3490 3491
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3492 3493 3494 3495 3496
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3497 3498

	trace_unmap_single(dev, dev_addr, size);
3499 3500
}

3501 3502
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3503
			     unsigned long attrs)
3504
{
L
Lu Baolu 已提交
3505
	intel_unmap(dev, dev_addr, size);
3506 3507 3508 3509 3510
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
L
Lu Baolu 已提交
3511
	intel_unmap(dev, dev_addr, size);
3512 3513
}

3514
static void *intel_alloc_coherent(struct device *dev, size_t size,
3515
				  dma_addr_t *dma_handle, gfp_t flags,
3516
				  unsigned long attrs)
3517
{
3518 3519
	struct page *page = NULL;
	int order;
3520

L
Lu Baolu 已提交
3521 3522
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3523

3524 3525 3526 3527 3528 3529
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3530 3531
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3532 3533 3534 3535 3536 3537 3538 3539
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3540 3541 3542
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3543
	if (*dma_handle != DMA_MAPPING_ERROR)
3544 3545 3546
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3547

3548 3549 3550
	return NULL;
}

3551
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3552
				dma_addr_t dma_handle, unsigned long attrs)
3553
{
3554 3555 3556 3557 3558 3559 3560 3561 3562
	int order;
	struct page *page = virt_to_page(vaddr);

	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3563 3564
}

3565
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3566
			   int nelems, enum dma_data_direction dir,
3567
			   unsigned long attrs)
3568
{
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3579 3580

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3581 3582
}

3583
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3584
			enum dma_data_direction dir, unsigned long attrs)
3585 3586 3587
{
	int i;
	struct dmar_domain *domain;
3588 3589
	size_t size = 0;
	int prot = 0;
3590
	unsigned long iova_pfn;
3591
	int ret;
F
FUJITA Tomonori 已提交
3592
	struct scatterlist *sg;
3593
	unsigned long start_vpfn;
3594
	struct intel_iommu *iommu;
3595 3596

	BUG_ON(dir == DMA_NONE);
L
Lu Baolu 已提交
3597 3598 3599

	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3600

3601
	domain = find_domain(dev);
3602 3603 3604
	if (!domain)
		return 0;

3605 3606
	iommu = domain_get_iommu(domain);

3607
	for_each_sg(sglist, sg, nelems, i)
3608
		size += aligned_nrpages(sg->offset, sg->length);
3609

3610
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3611
				*dev->dma_mask);
3612
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3613
		sglist->dma_length = 0;
3614 3615 3616 3617 3618 3619 3620 3621
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3622
			!cap_zlr(iommu->cap))
3623 3624 3625 3626
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3627
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3628

3629
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3630 3631
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3632 3633
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3634
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3635
		return 0;
3636 3637
	}

3638 3639
	for_each_sg(sglist, sg, nelems, i)
		trace_map_sg(dev, i + 1, nelems, sg);
3640

3641 3642 3643
	return nelems;
}

3644 3645 3646 3647 3648
static u64 intel_get_required_mask(struct device *dev)
{
	return DMA_BIT_MASK(32);
}

3649
static const struct dma_map_ops intel_dma_ops = {
3650 3651
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3652 3653
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3654 3655
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3656
	.map_resource = intel_map_resource,
3657
	.unmap_resource = intel_unmap_resource,
3658
	.dma_supported = dma_direct_supported,
3659 3660
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3661
	.get_required_mask = intel_get_required_mask,
3662 3663
};

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3694 3695 3696
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3697
	domain = find_domain(dev);
3698

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
		tlb_addr = swiotlb_tbl_map_single(dev,
				__phys_to_dma(dev, io_tlb_start),
				paddr, size, aligned_size, dir, attrs);
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

3853 3854 3855
	for_each_sg(sglist, sg, nelems, i)
		trace_bounce_map_sg(dev, i + 1, nelems, sg);

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
	.dma_supported		= dma_direct_supported,
};

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3928
		pr_err("Couldn't create iommu_domain cache\n");
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3945
		pr_err("Couldn't create devinfo cache\n");
3946 3947 3948 3949 3950 3951 3952 3953 3954
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3955
	ret = iova_cache_get();
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3969
	iova_cache_put();
3970 3971 3972 3973 3974 3975 3976 3977

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3978
	iova_cache_put();
3979 3980
}

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
4002 4003 4004
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
4005
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4006
	}
4007 4008 4009
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

4010 4011 4012
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4013
	struct device *dev;
4014
	int i;
4015 4016 4017

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4018 4019 4020
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4021
			/* ignore DMAR unit if no devices exist */
4022 4023 4024 4025 4026
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4027 4028
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4029 4030
			continue;

4031 4032
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4033
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4034 4035 4036 4037
				break;
		if (i < drhd->devices_cnt)
			continue;

4038 4039
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4040
		if (!dmar_map_gfx) {
4041
			drhd->ignored = 1;
4042 4043
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
4044
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4045 4046 4047 4048
		}
	}
}

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4069

4070 4071 4072 4073 4074
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4075
					   DMA_CCMD_GLOBAL_INVL);
4076 4077
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4078
		iommu_disable_protect_mem_regions(iommu);
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4091
					   DMA_CCMD_GLOBAL_INVL);
4092
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4093
					 DMA_TLB_GLOBAL_FLUSH);
4094 4095 4096
	}
}

4097
static int iommu_suspend(void)
4098 4099 4100 4101 4102 4103
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4104
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4115
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4126
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4137
static void iommu_resume(void)
4138 4139 4140 4141 4142 4143
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4144 4145 4146 4147
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4148
		return;
4149 4150 4151 4152
	}

	for_each_active_iommu(iommu, drhd) {

4153
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4164
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4165 4166 4167 4168 4169 4170
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4171
static struct syscore_ops iommu_syscore_ops = {
4172 4173 4174 4175
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4176
static void __init init_iommu_pm_ops(void)
4177
{
4178
	register_syscore_ops(&iommu_syscore_ops);
4179 4180 4181
}

#else
4182
static inline void init_iommu_pm_ops(void) {}
4183 4184
#endif	/* CONFIG_PM */

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

4196
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4197 4198 4199
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4200 4201

	rmrr = (struct acpi_dmar_reserved_memory *)header;
4202 4203
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
4204 4205 4206 4207 4208 4209
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
4210 4211
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
4212 4213 4214

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4215
		goto out;
4216 4217

	rmrru->hdr = header;
4218

4219 4220
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4221

4222 4223 4224
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4225
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4226
		goto free_rmrru;
4227

4228
	list_add(&rmrru->list, &dmar_rmrr_units);
4229

4230
	return 0;
4231 4232 4233 4234
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4235 4236
}

4237 4238 4239 4240 4241
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

4242 4243
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4257 4258 4259 4260
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4261
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4262 4263
		return 0;

4264
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4265 4266 4267 4268 4269
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4270 4271 4272
	if (!atsru)
		return -ENOMEM;

4273 4274 4275 4276 4277 4278 4279
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4280
	atsru->include_all = atsr->flags & 0x1;
4281 4282 4283 4284 4285 4286 4287 4288 4289
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4290

4291
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4292 4293 4294 4295

	return 0;
}

4296 4297 4298 4299 4300 4301
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4330
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4331 4332 4333
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4334
	}
4335 4336 4337 4338

	return 0;
}

4339 4340
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4341
	int sp, ret;
4342 4343 4344 4345 4346 4347
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4348
		pr_warn("%s: Doesn't support hardware pass through.\n",
4349 4350 4351 4352 4353
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4354
		pr_warn("%s: Doesn't support snooping.\n",
4355 4356 4357
			iommu->name);
		return -ENXIO;
	}
4358
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
4359
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4360
		pr_warn("%s: Doesn't support large page.\n",
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4378
	intel_svm_check(iommu);
4379

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4391 4392

#ifdef CONFIG_INTEL_IOMMU_SVM
4393
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4394 4395 4396 4397 4398
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4418 4419
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4436 4437
}

4438 4439 4440 4441 4442 4443 4444 4445 4446
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4447 4448
	}

4449 4450 4451 4452
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4453 4454 4455 4456
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4457
	int i, ret = 1;
4458
	struct pci_bus *bus;
4459 4460
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4461 4462 4463 4464 4465
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4466
		bridge = bus->self;
4467 4468 4469 4470 4471
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4472
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4473
			return 0;
4474
		/* If we found the root port, look it up in the ATSR */
4475
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4476 4477 4478
			break;
	}

4479
	rcu_read_lock();
4480 4481 4482 4483 4484
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4485
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4486
			if (tmp == &bridge->dev)
4487
				goto out;
4488 4489

		if (atsru->include_all)
4490
			goto out;
4491
	}
4492 4493
	ret = 0;
out:
4494
	rcu_read_unlock();
4495

4496
	return ret;
4497 4498
}

4499 4500
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4501
	int ret;
4502 4503 4504 4505 4506
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4507
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4518
			if (ret < 0)
4519
				return ret;
4520
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4521 4522
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4538
			else if (ret < 0)
4539
				return ret;
4540
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4541 4542 4543 4544 4545 4546 4547 4548 4549
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4550 4551 4552 4553
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
4554 4555 4556
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
4557 4558 4559

	switch (val) {
	case MEM_GOING_ONLINE:
4560 4561 4562 4563
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
4564 4565 4566 4567 4568 4569
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
4570
		{
4571 4572
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4573
			struct page *freelist;
4574

4575 4576
			freelist = domain_unmap(si_domain,
						start_vpfn, last_vpfn);
4577

4578 4579
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4580
				iommu_flush_iotlb_psi(iommu, si_domain,
4581
					start_vpfn, mhp->nr_pages,
4582
					!freelist, 0);
4583
			rcu_read_unlock();
4584
			dma_free_pagelist(freelist);
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4597 4598 4599 4600 4601 4602 4603
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4604
		int did;
4605 4606 4607 4608

		if (!iommu)
			continue;

4609
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4610
			domain = get_iommu_domain(iommu, (u16)did);
4611

4612
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4613
				continue;
4614

4615 4616 4617 4618 4619
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4620
static int intel_iommu_cpu_dead(unsigned int cpu)
4621
{
4622 4623
	free_all_cpu_cached_iovas(cpu);
	return 0;
4624 4625
}

4626 4627 4628 4629 4630 4631 4632 4633 4634
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4655 4656
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4657 4658 4659
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4660 4661
}

4662 4663 4664 4665
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4666
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4677
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4678 4679 4680 4681 4682 4683 4684 4685
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4686
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4687 4688 4689 4690 4691 4692 4693 4694
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4695
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4696 4697 4698 4699
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4700 4701 4702 4703
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4704
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4705 4706 4707 4708 4709 4710 4711 4712
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4713
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4714 4715 4716 4717 4718
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4719 4720 4721 4722 4723
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4724 4725
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4739
static inline bool has_untrusted_dev(void)
4740 4741 4742
{
	struct pci_dev *pdev = NULL;

4743 4744 4745
	for_each_pci_dev(pdev)
		if (pdev->untrusted)
			return true;
4746

4747 4748
	return false;
}
4749

4750 4751 4752
static int __init platform_optin_force_iommu(void)
{
	if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4763
		iommu_set_default_passthrough(false);
4764 4765 4766 4767 4768 4769 4770

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4771 4772 4773
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4774 4775
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4814 4815
int __init intel_iommu_init(void)
{
4816
	int ret = -ENODEV;
4817
	struct dmar_drhd_unit *drhd;
4818
	struct intel_iommu *iommu;
4819

4820 4821 4822 4823 4824
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4825

4826 4827 4828 4829 4830 4831 4832
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4833 4834 4835
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4836
		goto out_free_dmar;
4837
	}
4838

4839
	if (dmar_dev_scope_init() < 0) {
4840 4841
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4842
		goto out_free_dmar;
4843
	}
4844

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4855 4856 4857
	if (!no_iommu)
		intel_iommu_debugfs_init();

4858
	if (no_iommu || dmar_disabled) {
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4872 4873 4874 4875 4876 4877
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4878
		goto out_free_dmar;
4879
	}
4880

4881
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4882
		pr_info("No RMRR found\n");
4883 4884

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4885
		pr_info("No ATSR found\n");
4886

4887 4888 4889
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4890
		goto out_free_reserved_range;
4891
	}
4892

4893 4894 4895
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4896 4897
	init_no_remapping_devices();

4898
	ret = init_dmars();
4899
	if (ret) {
4900 4901
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4902
		pr_err("Initialization failed\n");
4903
		goto out_free_reserved_range;
4904
	}
4905
	up_write(&dmar_global_lock);
4906

4907
	init_iommu_pm_ops();
4908

4909
	down_read(&dmar_global_lock);
4910 4911 4912 4913 4914 4915 4916
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4917
	up_read(&dmar_global_lock);
4918

4919
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4920 4921
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4922 4923
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4924

4925
	down_read(&dmar_global_lock);
4926 4927 4928
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4929 4930
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4931
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4932 4933 4934 4935
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
4936 4937
	up_read(&dmar_global_lock);

4938 4939
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4940 4941
	intel_iommu_enabled = 1;

4942
	return 0;
4943 4944 4945 4946 4947

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
4948 4949
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4950
	return ret;
4951
}
4952

4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

4975
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4976
{
4977
	struct dmar_domain *domain;
4978 4979 4980
	struct intel_iommu *iommu;
	unsigned long flags;

4981 4982
	assert_spin_locked(&device_domain_lock);

4983
	if (WARN_ON(!info))
4984 4985
		return;

4986
	iommu = info->iommu;
4987
	domain = info->domain;
4988

4989
	if (info->dev) {
4990 4991
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
4992
					PASID_RID2PASID, false);
4993

4994
		iommu_disable_dev_iotlb(info);
4995 4996
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
4997
		intel_pasid_free_table(info->dev);
4998
	}
4999

5000
	unlink_domain_info(info);
5001

5002
	spin_lock_irqsave(&iommu->lock, flags);
5003
	domain_detach_iommu(domain, iommu);
5004
	spin_unlock_irqrestore(&iommu->lock, flags);
5005

5006
	free_devinfo_mem(info);
5007 5008
}

5009
static void dmar_remove_one_dev_info(struct device *dev)
5010
{
5011
	struct device_domain_info *info;
5012
	unsigned long flags;
5013

5014
	spin_lock_irqsave(&device_domain_lock, flags);
5015 5016
	info = get_domain_info(dev);
	if (info)
5017
		__dmar_remove_one_dev_info(info);
5018
	spin_unlock_irqrestore(&device_domain_lock, flags);
5019 5020
}

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
static void intel_init_iova_domain(struct dmar_domain *dmar_domain)
{
	init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad);

	if (!intel_iommu_strict &&
	    init_iova_flush_queue(&dmar_domain->iovad,
				  iommu_flush_iova, iova_entry_free))
		pr_info("iova flush queue initialization failed\n");
}

5054
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5055
{
5056
	struct dmar_domain *dmar_domain;
5057 5058
	struct iommu_domain *domain;

5059
	switch (type) {
5060 5061
	case IOMMU_DOMAIN_DMA:
	/* fallthrough */
5062
	case IOMMU_DOMAIN_UNMANAGED:
5063
		dmar_domain = alloc_domain(0);
5064 5065 5066 5067
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5068
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5069 5070 5071 5072
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5073

5074 5075
		if (type == IOMMU_DOMAIN_DMA)
			intel_init_iova_domain(dmar_domain);
5076

5077
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
5078

5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5089
		return NULL;
K
Kay, Allen M 已提交
5090
	}
5091

5092
	return NULL;
K
Kay, Allen M 已提交
5093 5094
}

5095
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5096
{
5097 5098
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5099 5100
}

5101 5102 5103 5104 5105 5106 5107
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
5108
	struct device_domain_info *info = get_domain_info(dev);
5109 5110 5111 5112 5113 5114 5115 5116

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
5117
	struct device_domain_info *info = get_domain_info(dev);
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
5130
	struct device_domain_info *info = get_domain_info(dev);
5131 5132 5133 5134 5135 5136 5137 5138 5139

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5140
		ioasid_free(domain->default_pasid);
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	u8 bus, devfn;
	unsigned long flags;
	struct intel_iommu *iommu;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

5158 5159 5160 5161 5162
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
5180 5181 5182 5183 5184 5185
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5202
		ioasid_free(domain->default_pasid);
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
5218
	info = get_domain_info(dev);
5219 5220 5221 5222 5223
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
5224
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
5225 5226 5227 5228 5229 5230
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5231 5232
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5233
{
5234
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5235 5236
	struct intel_iommu *iommu;
	int addr_width;
5237
	u8 bus, devfn;
5238

5239
	iommu = device_to_iommu(dev, &bus, &devfn);
5240 5241 5242 5243 5244
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5245 5246 5247 5248
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5249 5250 5251
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5252 5253
		return -EFAULT;
	}
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5264 5265
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5266
			free_pgtable_page(pte);
5267 5268 5269
		}
		dmar_domain->agaw--;
	}
5270

5271 5272 5273 5274 5275 5276 5277 5278
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5279 5280
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5281 5282 5283 5284
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5285 5286 5287
	if (is_aux_domain(dev, domain))
		return -EPERM;

5288 5289 5290 5291 5292
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5293
		if (old_domain)
5294 5295 5296 5297 5298 5299 5300 5301
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5302 5303
}

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5319 5320
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5321
{
5322
	dmar_remove_one_dev_info(dev);
5323
}
5324

5325 5326 5327 5328 5329 5330
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
5348
static const int
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

#ifdef CONFIG_INTEL_IOMMU_SVM
static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

	if (!inv_info || !dmar_domain ||
	    inv_info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
5408
	info = get_domain_info(dev);
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
	if (inv_info->granularity != IOMMU_INV_GRANU_PASID)
		size = to_vtd_size(inv_info->addr_info.granule_size,
				   inv_info->addr_info.nb_granules);

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
		    (inv_info->pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->pasid_info.pasid;
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			 (inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->addr_info.pasid;

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
			    (inv_info->addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
				pr_err_ratelimited("Address out of range, 0x%llx, size order %llu\n",
						   inv_info->addr_info.addr, size);
				ret = -ERANGE;
				goto out_unlock;
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
					mm_to_dma_pfn(inv_info->addr_info.addr),
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
					inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);

			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
						info->ats_qdep,
						inv_info->addr_info.addr,
						size, granu);
			break;
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
						info->ats_qdep,
						inv_info->addr_info.addr,
						size, granu);
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

5501 5502
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5503
			   size_t size, int iommu_prot, gfp_t gfp)
5504
{
5505
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5506
	u64 max_addr;
5507
	int prot = 0;
5508
	int ret;
5509

5510 5511 5512 5513
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5514 5515
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5516

5517
	max_addr = iova + size;
5518
	if (dmar_domain->max_addr < max_addr) {
5519 5520 5521
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5522
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5523
		if (end < max_addr) {
J
Joerg Roedel 已提交
5524
			pr_err("%s: iommu width (%d) is not "
5525
			       "sufficient for the mapped address (%llx)\n",
5526
			       __func__, dmar_domain->gaw, max_addr);
5527 5528
			return -EFAULT;
		}
5529
		dmar_domain->max_addr = max_addr;
5530
	}
5531 5532
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5533
	size = aligned_nrpages(hpa, size);
5534 5535
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5536
	return ret;
K
Kay, Allen M 已提交
5537 5538
}

5539
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5540 5541
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5542
{
5543
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5544 5545 5546
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5547
	int iommu_id, level = 0;
5548 5549 5550

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5551
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5552 5553 5554

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5555

5556 5557 5558 5559 5560 5561 5562
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5563
	for_each_domain_iommu(iommu_id, dmar_domain)
5564 5565
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5566 5567

	dma_free_pagelist(freelist);
5568

5569 5570
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5571

5572
	return size;
K
Kay, Allen M 已提交
5573 5574
}

5575
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5576
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5577
{
5578
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5579
	struct dma_pte *pte;
5580
	int level = 0;
5581
	u64 phys = 0;
K
Kay, Allen M 已提交
5582

5583
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5584 5585 5586 5587
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
5588

5589
	return phys;
K
Kay, Allen M 已提交
5590
}
5591

5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5646
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5647 5648
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5649
		return domain_update_iommu_snooping(NULL) == 1;
5650
	if (cap == IOMMU_CAP_INTR_REMAP)
5651
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5652

5653
	return false;
S
Sheng Yang 已提交
5654 5655
}

5656
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5657
{
5658
	struct intel_iommu *iommu;
5659
	u8 bus, devfn;
5660

5661 5662
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
5663
		return ERR_PTR(-ENODEV);
5664

5665 5666 5667
	if (translation_pre_enabled(iommu))
		dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;

5668
	return &iommu->iommu;
5669
}
5670

5671
static void intel_iommu_release_device(struct device *dev)
5672
{
5673 5674 5675 5676 5677 5678 5679
	struct intel_iommu *iommu;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return;

5680 5681
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5682 5683
	set_dma_ops(dev, NULL);
}
5684

L
Lu Baolu 已提交
5685 5686 5687
static void intel_iommu_probe_finalize(struct device *dev)
{
	struct iommu_domain *domain;
5688

L
Lu Baolu 已提交
5689
	domain = iommu_get_domain_for_dev(dev);
5690
	if (device_needs_bounce(dev))
L
Lu Baolu 已提交
5691 5692 5693 5694
		set_dma_ops(dev, &bounce_dma_ops);
	else if (domain && domain->type == IOMMU_DOMAIN_DMA)
		set_dma_ops(dev, &intel_dma_ops);
	else
5695
		set_dma_ops(dev, NULL);
5696 5697
}

5698 5699 5700
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5701
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5702 5703 5704 5705 5706
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5707
	down_read(&dmar_global_lock);
5708 5709 5710
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5711
			struct iommu_resv_region *resv;
5712
			enum iommu_resv_type type;
5713 5714
			size_t length;

5715 5716
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5717 5718
				continue;

5719
			length = rmrr->end_address - rmrr->base_address + 1;
5720 5721 5722 5723

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5724
			resv = iommu_alloc_resv_region(rmrr->base_address,
5725
						       length, prot, type);
5726 5727 5728 5729
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5730 5731
		}
	}
5732
	up_read(&dmar_global_lock);
5733

5734 5735 5736 5737 5738
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5739
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5740
						   IOMMU_RESV_DIRECT_RELAXABLE);
5741 5742 5743 5744 5745 5746
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5747 5748
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5749
				      0, IOMMU_RESV_MSI);
5750 5751 5752 5753 5754
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5755
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5756 5757 5758 5759 5760 5761 5762 5763
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5764
	domain = find_domain(dev);
5765 5766 5767 5768 5769 5770 5771
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5772
	info = get_domain_info(dev);
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5786 5787 5788
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5819 5820 5821 5822 5823 5824 5825
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5826
#ifdef CONFIG_INTEL_IOMMU_SVM
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
{
	struct intel_iommu *iommu;
	u8 bus, devfn;

	if (iommu_dummy(dev)) {
		dev_warn(dev,
			 "No IOMMU translation for device; cannot enable SVM\n");
		return NULL;
	}

	iommu = device_to_iommu(dev, &bus, &devfn);
	if ((!iommu)) {
5840
		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5841 5842 5843 5844 5845 5846 5847
		return NULL;
	}

	return iommu;
}
#endif /* CONFIG_INTEL_IOMMU_SVM */

5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	u8 bus, devfn;
	int ret;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5868
	info = get_domain_info(dev);
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5881
	info = get_domain_info(dev);
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5934 5935 5936 5937 5938 5939 5940 5941
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

5942 5943 5944 5945 5946 5947 5948 5949 5950
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
5976
	struct device_domain_info *info = get_domain_info(dev);
5977 5978 5979 5980 5981 5982 5983

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5984 5985 5986 5987 5988 5989 5990 5991 5992
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5993 5994 5995
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
5996
	return attach_deferred(dev);
5997 5998
}

5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
/*
 * Check that the device does not live on an external facing PCI port that is
 * marked as untrusted. Such devices should not be able to apply quirks and
 * thus not be able to bypass the IOMMU restrictions.
 */
static bool risky_device(struct pci_dev *pdev)
{
	if (pdev->untrusted) {
		pci_info(pdev,
			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
			 pdev->vendor, pdev->device);
		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
		return true;
	}
	return false;
}

6047
const struct iommu_ops intel_iommu_ops = {
6048 6049 6050
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
6051
	.domain_set_attr	= intel_iommu_domain_set_attr,
6052 6053
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
6054 6055
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
6056
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
6057 6058 6059
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
6060
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
6061
	.probe_finalize		= intel_iommu_probe_finalize,
6062
	.release_device		= intel_iommu_release_device,
6063
	.get_resv_regions	= intel_iommu_get_resv_regions,
6064
	.put_resv_regions	= generic_iommu_put_resv_regions,
6065
	.apply_resv_region	= intel_iommu_apply_resv_region,
6066
	.device_group		= intel_iommu_device_group,
6067 6068 6069 6070
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
6071
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
6072
	.def_domain_type	= device_def_domain_type,
6073
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
6074
#ifdef CONFIG_INTEL_IOMMU_SVM
6075
	.cache_invalidate	= intel_iommu_sva_invalidate,
6076 6077
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
6078 6079 6080
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
6081
#endif
6082
};
6083

6084
static void quirk_iommu_igfx(struct pci_dev *dev)
6085
{
6086 6087 6088
	if (risky_device(dev))
		return;

6089
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6090 6091 6092
	dmar_map_gfx = 0;
}

6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6127

6128
static void quirk_iommu_rwbf(struct pci_dev *dev)
6129
{
6130 6131 6132
	if (risky_device(dev))
		return;

6133 6134
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6135
	 * but needs it. Same seems to hold for the desktop versions.
6136
	 */
6137
	pci_info(dev, "Forcing write-buffer flush capability\n");
6138 6139 6140 6141
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6142 6143 6144 6145 6146 6147
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6148

6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6159
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6160 6161 6162
{
	unsigned short ggc;

6163 6164 6165
	if (risky_device(dev))
		return;

6166
	if (pci_read_config_word(dev, GGC, &ggc))
6167 6168
		return;

6169
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6170
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6171
		dmar_map_gfx = 0;
6172 6173
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6174
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6175 6176
		intel_iommu_strict = 1;
       }
6177 6178 6179 6180 6181 6182
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
6199 6200 6201 6202 6203 6204

	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6205 6206 6207 6208 6209 6210 6211 6212 6213
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

6214 6215 6216 6217 6218
	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6247 6248

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6249 6250
	       vtisochctrl);
}