i915_request.c 45.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33 34
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"

35
#include "i915_active.h"
36
#include "i915_drv.h"
37
#include "i915_globals.h"
38
#include "i915_trace.h"
39
#include "intel_pm.h"
40

41 42 43 44
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
45 46
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
47 48
};

49
static struct i915_global_request {
50
	struct i915_global base;
51 52
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
53
	struct kmem_cache *slab_execute_cbs;
54 55
} global;

56
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57 58 59 60
{
	return "i915";
}

61
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62
{
63 64
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
65 66 67 68 69 70 71 72 73 74
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

75
	return to_request(fence)->gem_context->name ?: "[i915]";
76 77
}

78
static bool i915_fence_signaled(struct dma_fence *fence)
79
{
80
	return i915_request_completed(to_request(fence));
81 82
}

83
static bool i915_fence_enable_signaling(struct dma_fence *fence)
84
{
85
	return i915_request_enable_breadcrumb(to_request(fence));
86 87
}

88
static signed long i915_fence_wait(struct dma_fence *fence,
89
				   bool interruptible,
90
				   signed long timeout)
91
{
92 93 94
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
95 96
}

97
static void i915_fence_release(struct dma_fence *fence)
98
{
99
	struct i915_request *rq = to_request(fence);
100

101 102
	/*
	 * The request is put onto a RCU freelist (i.e. the address
103 104 105 106 107
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
108
	i915_sw_fence_fini(&rq->submit);
109
	i915_sw_fence_fini(&rq->semaphore);
110

111
	kmem_cache_free(global.slab_requests, rq);
112 113
}

114
const struct dma_fence_ops i915_fence_ops = {
115 116 117 118 119 120 121 122
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

167
static inline void
168
remove_from_client(struct i915_request *request)
169
{
170
	struct drm_i915_file_private *file_priv;
171

172
	if (!READ_ONCE(request->file_priv))
173 174
		return;

175 176 177 178
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
179
		list_del(&request->client_link);
180
		spin_unlock(&file_priv->mm.lock);
181
	}
182
	rcu_read_unlock();
183 184
}

185
static void free_capture_list(struct i915_request *request)
186
{
187
	struct i915_capture_list *capture;
188 189 190

	capture = request->capture_list;
	while (capture) {
191
		struct i915_capture_list *next = capture->next;
192 193 194 195 196 197

		kfree(capture);
		capture = next;
	}
}

198
static bool i915_request_retire(struct i915_request *rq)
199
{
200
	struct i915_active_request *active, *next;
201

202
	lockdep_assert_held(&rq->timeline->mutex);
203 204
	if (!i915_request_completed(rq))
		return false;
205

206 207 208 209
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
		  hwsp_seqno(rq));
210

211 212
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
213

214 215 216 217 218 219 220 221 222 223 224
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
	rq->ring->head = rq->postfix;
225

226 227
	/*
	 * Walk through the active list, calling retire on each. This allows
228 229 230 231 232 233 234 235
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
236
	list_for_each_entry_safe(active, next, &rq->active_list, link) {
237 238
		/*
		 * In microbenchmarks or focusing upon time inside the kernel,
239 240 241
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
242 243 244 245
		 * cache misses when jumping around the list of
		 * i915_active_request.  So we try to keep this loop as
		 * streamlined as possible and also prefetch the next
		 * i915_active_request to try and hide the likely cache miss.
246 247 248 249
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
250
		RCU_INIT_POINTER(active->request, NULL);
251

252
		active->retire(active, rq);
253 254
	}

255
	local_irq_disable();
256

257 258 259 260 261 262
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
263 264 265
	spin_lock(&rq->engine->active.lock);
	list_del(&rq->sched.link);
	spin_unlock(&rq->engine->active.lock);
266

267 268 269 270 271 272
	spin_lock(&rq->lock);
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
273
	if (i915_request_has_waitboost(rq)) {
274 275 276
		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
	}
277 278 279 280 281
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
282 283 284
	spin_unlock(&rq->lock);

	local_irq_enable();
285

286
	remove_from_client(rq);
287
	list_del(&rq->link);
288

289 290 291
	intel_context_exit(rq->hw_context);
	intel_context_unpin(rq->hw_context);

292 293 294 295 296
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
297 298
}

299
void i915_request_retire_upto(struct i915_request *rq)
300
{
301
	struct intel_timeline * const tl = rq->timeline;
302
	struct i915_request *tmp;
303

304
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
305 306
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
307
		  hwsp_seqno(rq));
308

309
	lockdep_assert_held(&tl->mutex);
310
	GEM_BUG_ON(!i915_request_completed(rq));
311

312
	do {
313
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
314
	} while (i915_request_retire(tmp) && tmp != rq);
315 316
}

317
static int
318 319 320 321 322
__i915_request_await_execution(struct i915_request *rq,
			       struct i915_request *signal,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal),
			       gfp_t gfp)
323 324 325
{
	struct execute_cb *cb;

326 327 328
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
329
		return 0;
330
	}
331 332 333 334 335 336 337 338 339

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

340 341 342 343 344 345
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

346 347
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
348 349 350 351
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
352 353 354 355 356 357 358 359 360 361
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

362
void __i915_request_submit(struct i915_request *request)
363
{
364
	struct intel_engine_cs *engine = request->engine;
365

366
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
367
		  engine->name,
368
		  request->fence.context, request->fence.seqno,
369
		  hwsp_seqno(request));
370

371
	GEM_BUG_ON(!irqs_disabled());
372
	lockdep_assert_held(&engine->active.lock);
373

374 375 376
	if (i915_gem_context_is_banned(request->gem_context))
		i915_request_skip(request, -EIO);

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
395
		engine->saturated |= request->sched.semaphores;
396

397 398
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
399

400 401
	list_move_tail(&request->sched.link, &engine->active.requests);

402 403
	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
404

405
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
406
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
407 408
	    !i915_request_enable_breadcrumb(request))
		intel_engine_queue_breadcrumbs(engine);
409

410 411
	__notify_execute_cb(request);

412 413
	spin_unlock(&request->lock);

414 415
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
416

417 418
	engine->serial++;

419
	trace_i915_request_execute(request);
420 421
}

422
void i915_request_submit(struct i915_request *request)
423 424 425
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
426

427
	/* Will be called from irq-context when using foreign fences. */
428
	spin_lock_irqsave(&engine->active.lock, flags);
429

430
	__i915_request_submit(request);
431

432
	spin_unlock_irqrestore(&engine->active.lock, flags);
433 434
}

435
void __i915_request_unsubmit(struct i915_request *request)
436
{
437
	struct intel_engine_cs *engine = request->engine;
438

439
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
440
		  engine->name,
441
		  request->fence.context, request->fence.seqno,
442
		  hwsp_seqno(request));
443

444
	GEM_BUG_ON(!irqs_disabled());
445
	lockdep_assert_held(&engine->active.lock);
446

447 448
	/*
	 * Only unwind in reverse order, required so that the per-context list
449 450
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
451

452 453
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
454

455
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
456
		i915_request_cancel_breadcrumb(request);
457

458 459
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
460

461 462
	spin_unlock(&request->lock);

463 464 465 466 467 468
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

469 470
	/*
	 * We don't need to wake_up any waiters on request->execute, they
471
	 * will get woken by any other event or us re-adding this request
472
	 * to the engine timeline (__i915_request_submit()). The waiters
473 474 475 476 477
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

478
void i915_request_unsubmit(struct i915_request *request)
479 480 481 482 483
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
484
	spin_lock_irqsave(&engine->active.lock, flags);
485

486
	__i915_request_unsubmit(request);
487

488
	spin_unlock_irqrestore(&engine->active.lock, flags);
489 490
}

491
static int __i915_sw_fence_call
492
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
493
{
494
	struct i915_request *request =
495 496 497 498
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
499
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
500 501 502 503

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

504
		/*
505 506 507 508 509 510
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
511 512
		 */
		rcu_read_lock();
513
		request->engine->submit_request(request);
514
		rcu_read_unlock();
515 516 517
		break;

	case FENCE_FREE:
518
		i915_request_put(request);
519 520 521
		break;
	}

522 523 524
	return NOTIFY_DONE;
}

525 526 527 528 529 530 531 532
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
533
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
534 535 536 537 538 539 540 541 542 543
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

544
static void retire_requests(struct intel_timeline *tl)
545 546 547
{
	struct i915_request *rq, *rn;

548
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
549
		if (!i915_request_retire(rq))
550 551 552 553
			break;
}

static noinline struct i915_request *
554
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
555 556 557
{
	struct i915_request *rq;

558
	if (list_empty(&tl->requests))
559 560
		goto out;

561 562 563
	if (!gfpflags_allow_blocking(gfp))
		goto out;

564
	/* Move our oldest request to the slab-cache (if not in use!) */
565
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
566 567 568 569 570 571 572
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

573
	/* Ratelimit ourselves to prevent oom from malicious clients */
574
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
575 576 577
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
578
	retire_requests(tl);
579 580

out:
581
	return kmem_cache_alloc(global.slab_requests, gfp);
582 583
}

584
struct i915_request *
585
__i915_request_create(struct intel_context *ce, gfp_t gfp)
586
{
587
	struct intel_timeline *tl = ce->timeline;
588 589
	struct i915_request *rq;
	u32 seqno;
590 591
	int ret;

592
	might_sleep_if(gfpflags_allow_blocking(gfp));
593

594 595
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
596

597 598
	/*
	 * Beware: Dragons be flying overhead.
599 600 601 602
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
603
	 * of being read by __i915_active_request_get_rcu(). As such,
604 605
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
606
	 * read the request->global_seqno and increment the reference count.
607 608 609 610
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
611 612
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
613 614 615 616 617 618 619 620 621 622 623 624 625
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
626
	rq = kmem_cache_alloc(global.slab_requests,
627
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
628
	if (unlikely(!rq)) {
629
		rq = request_alloc_slow(tl, gfp);
630
		if (!rq) {
631 632 633
			ret = -ENOMEM;
			goto err_unreserve;
		}
634
	}
635

636
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
637 638 639
	if (ret)
		goto err_free;

640
	rq->i915 = ce->engine->i915;
641
	rq->hw_context = ce;
642 643
	rq->gem_context = ce->gem_context;
	rq->engine = ce->engine;
644
	rq->ring = ce->ring;
645 646 647 648
	rq->timeline = tl;
	rq->hwsp_seqno = tl->hwsp_seqno;
	rq->hwsp_cacheline = tl->hwsp_cacheline;
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
649

650
	spin_lock_init(&rq->lock);
651 652
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
653

654
	/* We bump the ref for the fence chain */
655
	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
656
	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
657

658
	i915_sched_node_init(&rq->sched);
659

660
	/* No zalloc, must clear what we need by hand */
661 662 663
	rq->file_priv = NULL;
	rq->batch = NULL;
	rq->capture_list = NULL;
664
	rq->flags = 0;
665
	rq->execution_mask = ALL_ENGINES;
666

667 668 669
	INIT_LIST_HEAD(&rq->active_list);
	INIT_LIST_HEAD(&rq->execute_cb);

670 671 672
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
673
	 * i915_request_add() call can't fail. Note that the reserve may need
674 675
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
676 677 678 679 680
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
681
	 */
682 683
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
684

685 686
	/*
	 * Record the position of the start of the request so that
687 688 689 690
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
691
	rq->head = rq->ring->emit;
692

693
	ret = rq->engine->request_alloc(rq);
694 695
	if (ret)
		goto err_unwind;
696

697 698
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

699
	intel_context_mark_active(ce);
700
	return rq;
701

702
err_unwind:
703
	ce->ring->emit = rq->head;
704

705
	/* Make sure we didn't add ourselves to external state before freeing */
706
	GEM_BUG_ON(!list_empty(&rq->active_list));
707 708
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
709

710
err_free:
711
	kmem_cache_free(global.slab_requests, rq);
712
err_unreserve:
713
	intel_context_unpin(ce);
714
	return ERR_PTR(ret);
715 716
}

717 718 719 720
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
721
	struct intel_timeline *tl;
722

723 724 725
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
726 727

	/* Move our oldest request to the slab-cache (if not in use!) */
728 729
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
730 731 732 733 734 735 736 737 738
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
739
	rq->cookie = lockdep_pin_lock(&tl->mutex);
740 741 742 743

	return rq;

err_unlock:
744
	intel_context_timeline_unlock(tl);
745 746 747
	return rq;
}

748 749 750
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
751
	if (list_is_first(&signal->link, &signal->timeline->requests))
752 753
		return 0;

754
	signal = list_prev_entry(signal, link);
755
	if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
756 757 758 759 760 761 762
		return 0;

	return i915_sw_fence_await_dma_fence(&rq->submit,
					     &signal->fence, 0,
					     I915_FENCE_GFP);
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
778
	return rq->sched.semaphores | rq->engine->saturated;
779 780
}

781 782 783 784 785 786 787 788 789 790 791 792
static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
	u32 hwsp_offset;
	u32 *cs;
	int err;

	GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

793
	/* Just emit the first semaphore we see as request space is limited. */
794
	if (already_busywaiting(to) & from->engine->mask)
795 796 797 798
		return i915_sw_fence_await_dma_fence(&to->submit,
						     &from->fence, 0,
						     I915_FENCE_GFP);

799 800 801 802
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

803
	/* Only submit our spinner after the signaler is running! */
804
	err = __i915_request_await_execution(to, from, NULL, gfp);
805 806 807
	if (err)
		return err;

808
	/* We need to pin the signaler's HWSP until we are finished reading. */
809
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	if (err)
		return err;

	cs = intel_ring_begin(to, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_GTE_SDD;
	*cs++ = from->fence.seqno;
	*cs++ = hwsp_offset;
	*cs++ = 0;

	intel_ring_advance(to, cs);
834 835
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
836 837 838
	return 0;
}

839
static int
840
i915_request_await_request(struct i915_request *to, struct i915_request *from)
841
{
842
	int ret;
843 844

	GEM_BUG_ON(to == from);
845
	GEM_BUG_ON(to->timeline == from->timeline);
846

847
	if (i915_request_completed(from))
848 849
		return 0;

850
	if (to->engine->schedule) {
851
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
852 853 854 855
		if (ret < 0)
			return ret;
	}

856 857 858
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
859
						       I915_FENCE_GFP);
860 861 862
	} else if (intel_engine_has_semaphores(to->engine) &&
		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
863 864 865 866
	} else {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
867
	}
868 869 870 871 872 873 874 875 876 877
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
878

879
	return 0;
880 881
}

882
int
883
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
884
{
885 886
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
887 888
	int ret;

889 890
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
891 892 893 894 895 896
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
897 898 899 900 901 902 903
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
904

905 906 907 908
	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;
909

910 911
		/*
		 * Requests on the same timeline are explicitly ordered, along
912
		 * with their dependencies, by i915_request_add() which ensures
913 914
		 * that requests are submitted in-order through each ring.
		 */
915
		if (fence->context == rq->fence.context)
916 917
			continue;

918
		/* Squash repeated waits to the same timelines */
919
		if (fence->context &&
920
		    intel_timeline_sync_is_later(rq->timeline, fence))
921 922
			continue;

923
		if (dma_fence_is_i915(fence))
924
			ret = i915_request_await_request(rq, to_request(fence));
925
		else
926
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
927
							    I915_FENCE_TIMEOUT,
928
							    I915_FENCE_GFP);
929 930
		if (ret < 0)
			return ret;
931 932

		/* Record the latest fence used against each timeline */
933
		if (fence->context)
934
			intel_timeline_sync_set(rq->timeline, fence);
935
	} while (--nchild);
936 937 938 939

	return 0;
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook,
							     I915_FENCE_GFP);
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

986
/**
987
 * i915_request_await_object - set this request to (async) wait upon a bo
988 989
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
990
 * @write: whether the wait is on behalf of a writer
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1007 1008 1009
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1010
{
1011 1012
	struct dma_fence *excl;
	int ret = 0;
1013 1014

	if (write) {
1015 1016 1017
		struct dma_fence **shared;
		unsigned int count, i;

1018
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1019 1020 1021 1022 1023
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1024
			ret = i915_request_await_dma_fence(to, shared[i]);
1025 1026 1027 1028 1029 1030 1031 1032 1033
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1034
	} else {
1035
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1036 1037
	}

1038 1039
	if (excl) {
		if (ret == 0)
1040
			ret = i915_request_await_dma_fence(to, excl);
1041

1042
		dma_fence_put(excl);
1043 1044
	}

1045
	return ret;
1046 1047
}

1048 1049 1050 1051 1052 1053 1054 1055
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1056 1057 1058
	if (rq->infix == rq->postfix)
		return;

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1070
	rq->infix = rq->postfix;
1071 1072
}

1073 1074 1075
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1076
	struct intel_timeline *timeline = rq->timeline;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1099 1100
	prev = rcu_dereference_protected(timeline->last_request.request,
					 lockdep_is_held(&timeline->mutex));
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1119 1120 1121 1122 1123
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1124 1125 1126 1127 1128 1129
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
	__i915_active_request_set(&timeline->last_request, rq);

	return prev;
}

1130 1131 1132 1133 1134
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1135
struct i915_request *__i915_request_commit(struct i915_request *rq)
1136
{
1137 1138
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1139
	u32 *cs;
1140

1141
	GEM_TRACE("%s fence %llx:%lld\n",
1142
		  engine->name, rq->fence.context, rq->fence.seqno);
1143

1144 1145 1146 1147 1148
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1149 1150
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1151
	rq->emitted_jiffies = jiffies;
1152

1153 1154
	/*
	 * Record the position of the start of the breadcrumb so that
1155 1156
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1157
	 * position of the ring's HEAD.
1158
	 */
1159
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1160
	GEM_BUG_ON(IS_ERR(cs));
1161
	rq->postfix = intel_ring_offset(rq, cs);
1162

1163
	return __i915_request_add_to_timeline(rq);
1164 1165 1166 1167 1168
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1169 1170
	/*
	 * Let the backend know a new request has arrived that may need
1171 1172 1173 1174 1175 1176 1177 1178 1179
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1180
	i915_sw_fence_commit(&rq->semaphore);
1181 1182
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1183 1184 1185 1186 1187
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1188
	struct i915_sched_attr attr = rq->gem_context->sched;
1189
	struct intel_timeline * const tl = rq->timeline;
1190 1191
	struct i915_request *prev;

1192 1193
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1194 1195 1196 1197 1198

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1223
	local_bh_disable();
1224
	__i915_request_queue(rq, &attr);
1225
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1244
	if (prev && i915_request_completed(prev) && prev->timeline == tl)
1245
		i915_request_retire_upto(prev);
1246

1247
	mutex_unlock(&tl->mutex);
1248 1249 1250 1251 1252 1253
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1254 1255
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1283 1284
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1285
{
1286
	unsigned int cpu;
1287 1288 1289 1290 1291 1292 1293

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1294 1295 1296 1297
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1298
	 */
1299
	if (!i915_request_is_running(rq))
1300 1301
		return false;

1302 1303
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1315 1316
		if (i915_request_completed(rq))
			return true;
1317

1318 1319 1320 1321 1322 1323
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1324
		cpu_relax();
1325 1326 1327 1328 1329
	} while (!need_resched());

	return false;
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1342
/**
1343
 * i915_request_wait - wait until execution of request has finished
1344
 * @rq: the request to wait upon
1345
 * @flags: how to wait
1346 1347
 * @timeout: how long to wait in jiffies
 *
1348
 * i915_request_wait() waits for the request to be completed, for a
1349 1350
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1351
 *
1352 1353 1354 1355
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1356
 */
1357
long i915_request_wait(struct i915_request *rq,
1358 1359
		       unsigned int flags,
		       long timeout)
1360
{
1361 1362
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1363
	struct request_wait wait;
1364 1365

	might_sleep();
1366
	GEM_BUG_ON(timeout < 0);
1367

1368
	if (dma_fence_is_signaled(&rq->fence))
1369
		return timeout;
1370

1371 1372
	if (!timeout)
		return -ETIME;
1373

1374
	trace_i915_request_wait_begin(rq, flags);
1375 1376 1377 1378 1379 1380 1381

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1382
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
	if (CONFIG_DRM_I915_SPIN_REQUEST &&
1408 1409
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1410
		goto out;
1411
	}
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq);
1428
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1429
	}
1430

1431 1432 1433
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1434

1435 1436
	for (;;) {
		set_current_state(state);
1437

1438 1439
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1440
			break;
1441
		}
1442 1443

		if (signal_pending_state(state, current)) {
1444
			timeout = -ERESTARTSYS;
1445 1446 1447
			break;
		}

1448 1449
		if (!timeout) {
			timeout = -ETIME;
1450 1451 1452
			break;
		}

1453
		timeout = io_schedule_timeout(timeout);
1454
	}
1455
	__set_current_state(TASK_RUNNING);
1456

1457 1458 1459
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1460
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1461
	trace_i915_request_wait_end(rq);
1462
	return timeout;
1463
}
1464

1465
bool i915_retire_requests(struct drm_i915_private *i915)
1466
{
1467 1468
	struct intel_gt_timelines *timelines = &i915->gt.timelines;
	struct intel_timeline *tl, *tn;
1469
	unsigned long flags;
1470 1471
	LIST_HEAD(free);

1472
	spin_lock_irqsave(&timelines->lock, flags);
1473 1474 1475
	list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
		if (!mutex_trylock(&tl->mutex))
			continue;
1476

1477 1478 1479
		intel_timeline_get(tl);
		GEM_BUG_ON(!tl->active_count);
		tl->active_count++; /* pin the list element */
1480
		spin_unlock_irqrestore(&timelines->lock, flags);
1481

1482 1483
		retire_requests(tl);

1484
		spin_lock_irqsave(&timelines->lock, flags);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

		/* Resume iteration after dropping lock */
		list_safe_reset_next(tl, tn, link);
		if (!--tl->active_count)
			list_del(&tl->link);

		mutex_unlock(&tl->mutex);

		/* Defer the final release to after the spinlock */
		if (refcount_dec_and_test(&tl->kref.refcount)) {
			GEM_BUG_ON(tl->active_count);
			list_add(&tl->link, &free);
		}
1498
	}
1499
	spin_unlock_irqrestore(&timelines->lock, flags);
1500 1501 1502

	list_for_each_entry_safe(tl, tn, &free, link)
		__intel_timeline_free(&tl->kref);
1503

1504
	return !list_empty(&timelines->active_list);
1505
}
1506 1507 1508

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1509
#include "selftests/i915_request.c"
1510
#endif
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1531 1532 1533 1534 1535 1536 1537 1538 1539
int __init i915_global_request_init(void)
{
	global.slab_requests = KMEM_CACHE(i915_request,
					  SLAB_HWCACHE_ALIGN |
					  SLAB_RECLAIM_ACCOUNT |
					  SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_requests)
		return -ENOMEM;

1540 1541 1542 1543 1544 1545 1546
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1547 1548 1549 1550
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1551
		goto err_execute_cbs;
1552

1553
	i915_global_register(&global.base);
1554 1555
	return 0;

1556 1557
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1558 1559 1560 1561
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}