mmu.c 157.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/vmx.h>
52
#include <asm/kvm_page_track.h>
53
#include "trace.h"
A
Avi Kivity 已提交
54

P
Paolo Bonzini 已提交
55 56 57
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
58 59 60 61
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
62
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63
#endif
P
Paolo Bonzini 已提交
64 65

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
67

68
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
69 70 71 72
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

73
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 75 76 77
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
78 79
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 81 82
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
83

84 85 86
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

87 88 89 90 91 92 93
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
94
bool tdp_enabled = false;
95

96
static int max_huge_page_level __read_mostly;
97
static int max_tdp_level __read_mostly;
98

99 100 101 102
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
103 104 105
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
106
};
107 108

#ifdef MMU_DEBUG
109
bool dbg = 0;
110
module_param(dbg, bool, 0644);
111
#endif
A
Avi Kivity 已提交
112

113 114
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
115 116 117
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
118
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
119

120 121 122
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
123 124 125 126 127 128 129 130

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#include <trace/events/kvm.h>

137 138 139
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

140 141 142
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
143 144
};

145 146 147 148
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
149
	int level;
150 151 152
	unsigned index;
};

153 154 155 156 157 158 159
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 161 162 163
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

164 165 166 167 168 169
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

170
static struct kmem_cache *pte_list_desc_cache;
171
struct kmem_cache *mmu_page_header_cache;
172
static struct percpu_counter kvm_total_used_mmu_pages;
173

174
static void mmu_spte_set(u64 *sptep, u64 spte);
175 176
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177

178 179 180
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

181 182 183

static inline bool kvm_available_flush_tlb_with_range(void)
{
184
	return kvm_x86_ops.tlb_remote_flush_with_range;
185 186 187 188 189 190 191
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

192
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
194 195 196 197 198

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

199
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 201 202 203 204 205 206 207 208 209
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

210
bool is_nx_huge_page_enabled(void)
P
Paolo Bonzini 已提交
211 212 213 214
{
	return READ_ONCE(nx_huge_pages);
}

215 216 217 218 219
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);

B
Ben Gardon 已提交
220
	trace_mark_mmio_spte(sptep, gfn, mask);
221
	mmu_spte_set(sptep, mask);
222 223 224 225
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
226
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227

228
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 230 231
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
232 233 234 235
}

static unsigned get_mmio_spte_access(u64 spte)
{
236
	return spte & shadow_mmio_access_mask;
237 238
}

239
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240
			  kvm_pfn_t pfn, unsigned int access)
241 242
{
	if (unlikely(is_noslot_pfn(pfn))) {
243
		mark_mmio_spte(vcpu, sptep, gfn, access);
244 245 246 247 248
		return true;
	}

	return false;
}
249

250
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251
{
252
	u64 kvm_gen, spte_gen, gen;
253

254 255 256
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
257

258
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 260 261 262
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
263 264
}

265 266 267
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
268
	/* Check if guest physical address doesn't exceed guest maximum */
269
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 271 272 273
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

274 275 276
        return gpa;
}

A
Avi Kivity 已提交
277 278 279 280 281
static int is_cpuid_PSE36(void)
{
	return 1;
}

282 283
static int is_nx(struct kvm_vcpu *vcpu)
{
284
	return vcpu->arch.efer & EFER_NX;
285 286
}

287 288 289 290 291 292 293
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

294
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
295
static void __set_spte(u64 *sptep, u64 spte)
296
{
297
	WRITE_ONCE(*sptep, spte);
298 299
}

300
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301
{
302
	WRITE_ONCE(*sptep, spte);
303 304 305 306 307 308
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
309 310 311

static u64 __get_spte_lockless(u64 *sptep)
{
312
	return READ_ONCE(*sptep);
313
}
314
#else
315 316 317 318 319 320 321
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
322

323 324
static void count_spte_clear(u64 *sptep, u64 spte)
{
325
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326 327 328 329 330 331 332 333 334

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

335 336 337
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
338

339 340 341 342 343 344 345 346 347 348 349 350
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

351
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 353
}

354 355 356 357 358 359 360
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

361
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362 363 364 365 366 367 368 369

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
370
	count_spte_clear(sptep, spte);
371 372 373 374 375 376 377 378 379 380 381
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 383
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
384
	count_spte_clear(sptep, spte);
385 386 387

	return orig.spte;
}
388 389 390

/*
 * The idea using the light way get the spte on x86_32 guest is from
391
 * gup_get_pte (mm/gup.c).
392 393 394 395 396 397 398 399 400 401 402 403 404 405
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
406 407 408
 */
static u64 __get_spte_lockless(u64 *sptep)
{
409
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
429 430
#endif

431 432
static bool spte_has_volatile_bits(u64 spte)
{
433 434 435
	if (!is_shadow_present_pte(spte))
		return false;

436
	/*
437
	 * Always atomically update spte if it can be updated
438 439 440 441
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
442 443
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
444 445
		return true;

446
	if (spte_ad_enabled(spte)) {
447 448 449 450
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
451

452
	return false;
453 454
}

455 456 457 458 459 460 461 462 463 464 465 466
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

467 468 469
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
470
 */
471
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472
{
473
	u64 old_spte = *sptep;
474

475
	WARN_ON(!is_shadow_present_pte(new_spte));
476

477 478
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
479
		return old_spte;
480
	}
481

482
	if (!spte_has_volatile_bits(old_spte))
483
		__update_clear_spte_fast(sptep, new_spte);
484
	else
485
		old_spte = __update_clear_spte_slow(sptep, new_spte);
486

487 488
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

511 512
	/*
	 * For the spte updated out of mmu-lock is safe, since
513
	 * we always atomically update it, see the comments in
514 515
	 * spte_has_volatile_bits().
	 */
516
	if (spte_can_locklessly_be_made_writable(old_spte) &&
517
	      !is_writable_pte(new_spte))
518
		flush = true;
519

520
	/*
521
	 * Flush TLB when accessed/dirty states are changed in the page tables,
522 523 524
	 * to guarantee consistency between TLB and page tables.
	 */

525 526
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
527
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 529 530 531
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
532
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533
	}
534

535
	return flush;
536 537
}

538 539 540 541
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
542
 * Returns non-zero if the PTE was previously valid.
543 544 545
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
546
	kvm_pfn_t pfn;
547 548 549
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
550
		__update_clear_spte_fast(sptep, 0ull);
551
	else
552
		old_spte = __update_clear_spte_slow(sptep, 0ull);
553

554
	if (!is_shadow_present_pte(old_spte))
555 556 557
		return 0;

	pfn = spte_to_pfn(old_spte);
558 559 560 561 562 563

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
564
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565

566
	if (is_accessed_spte(old_spte))
567
		kvm_set_pfn_accessed(pfn);
568 569

	if (is_dirty_spte(old_spte))
570
		kvm_set_pfn_dirty(pfn);
571

572 573 574 575 576 577 578 579 580 581
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
582
	__update_clear_spte_fast(sptep, 0ull);
583 584
}

585 586 587 588 589
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

590 591 592 593
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
594 595
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596

597
	WARN_ON_ONCE(spte_ad_enabled(spte));
598 599 600
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
601 602
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 604 605 606 607
	new_spte |= saved_bits;

	return new_spte;
}

608 609 610 611 612 613 614 615
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

616
	if (spte_ad_enabled(spte)) {
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

634 635
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
636 637 638 639 640
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
641

642 643 644 645
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
646
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 648 649 650
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
651 652
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
653
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654 655
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
656
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657
	local_irq_enable();
658 659
}

660
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661
{
662 663
	int r;

664
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 666
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667
	if (r)
668
		return r;
669 670
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
671
	if (r)
672
		return r;
673
	if (maybe_indirect) {
674 675
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
676 677 678
		if (r)
			return r;
	}
679 680
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
681 682 683 684
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
685 686 687 688
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 690
}

691
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692
{
693
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 695
}

696
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697
{
698
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 700
}

701 702 703 704 705 706 707 708 709 710
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
711
	if (!sp->role.direct) {
712
		sp->gfns[index] = gfn;
713 714 715 716 717 718 719 720
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
721 722
}

M
Marcelo Tosatti 已提交
723
/*
724 725
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
726
 */
727 728 729
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
730 731 732
{
	unsigned long idx;

733
	idx = gfn_to_index(gfn, slot->base_gfn, level);
734
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
735 736
}

737 738 739 740 741 742
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

743
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

760
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
761
{
762
	struct kvm_memslots *slots;
763
	struct kvm_memory_slot *slot;
764
	gfn_t gfn;
M
Marcelo Tosatti 已提交
765

766
	kvm->arch.indirect_shadow_pages++;
767
	gfn = sp->gfn;
768 769
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
770 771

	/* the non-leaf shadow pages are keeping readonly. */
772
	if (sp->role.level > PG_LEVEL_4K)
773 774 775
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

776
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
777 778
}

779
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
780 781 782 783 784
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
785 786
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
787 788 789
	sp->lpage_disallowed = true;
}

790
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
791
{
792
	struct kvm_memslots *slots;
793
	struct kvm_memory_slot *slot;
794
	gfn_t gfn;
M
Marcelo Tosatti 已提交
795

796
	kvm->arch.indirect_shadow_pages--;
797
	gfn = sp->gfn;
798 799
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
800
	if (sp->role.level > PG_LEVEL_4K)
801 802 803
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

804
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
805 806
}

807
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
808 809 810
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
811
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
812 813
}

814 815 816
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
817 818
{
	struct kvm_memory_slot *slot;
819

820
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 822
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
823
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824
		return NULL;
825 826 827 828

	return slot;
}

829
/*
830
 * About rmap_head encoding:
831
 *
832 833
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834
 * pte_list_desc containing more mappings.
835 836 837 838
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
839
 */
840
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841
			struct kvm_rmap_head *rmap_head)
842
{
843
	struct pte_list_desc *desc;
844
	int i, count = 0;
845

846
	if (!rmap_head->val) {
847
		rmap_printk("%p %llx 0->1\n", spte, *spte);
848 849
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
850
		rmap_printk("%p %llx 1->many\n", spte, *spte);
851
		desc = mmu_alloc_pte_list_desc(vcpu);
852
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
853
		desc->sptes[1] = spte;
854
		rmap_head->val = (unsigned long)desc | 1;
855
		++count;
856
	} else {
857
		rmap_printk("%p %llx many->many\n", spte, *spte);
858
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859
		while (desc->sptes[PTE_LIST_EXT-1]) {
860
			count += PTE_LIST_EXT;
861 862 863 864 865 866

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
867 868
			desc = desc->more;
		}
A
Avi Kivity 已提交
869
		for (i = 0; desc->sptes[i]; ++i)
870
			++count;
A
Avi Kivity 已提交
871
		desc->sptes[i] = spte;
872
	}
873
	return count;
874 875
}

876
static void
877 878 879
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
880 881 882
{
	int j;

883
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884
		;
A
Avi Kivity 已提交
885 886
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
887 888 889
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
890
		rmap_head->val = 0;
891 892 893 894
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
895
			rmap_head->val = (unsigned long)desc->more | 1;
896
	mmu_free_pte_list_desc(desc);
897 898
}

899
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900
{
901 902
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
903 904
	int i;

905
	if (!rmap_head->val) {
906
		pr_err("%s: %p 0->BUG\n", __func__, spte);
907
		BUG();
908
	} else if (!(rmap_head->val & 1)) {
909
		rmap_printk("%p 1->0\n", spte);
910
		if ((u64 *)rmap_head->val != spte) {
911
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
912 913
			BUG();
		}
914
		rmap_head->val = 0;
915
	} else {
916
		rmap_printk("%p many->many\n", spte);
917
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 919
		prev_desc = NULL;
		while (desc) {
920
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
921
				if (desc->sptes[i] == spte) {
922 923
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
924 925
					return;
				}
926
			}
927 928 929
			prev_desc = desc;
			desc = desc->more;
		}
930
		pr_err("%s: %p many->many\n", __func__, spte);
931 932 933 934
		BUG();
	}
}

935 936 937 938 939 940
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

941 942
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
943
{
944
	unsigned long idx;
945

946
	idx = gfn_to_index(gfn, slot->base_gfn, level);
947
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 949
}

950 951
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
952
{
953
	struct kvm_memslots *slots;
954 955
	struct kvm_memory_slot *slot;

956 957
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
958
	return __gfn_to_rmap(gfn, sp->role.level, slot);
959 960
}

961 962
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
963
	struct kvm_mmu_memory_cache *mc;
964

965
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
966
	return kvm_mmu_memory_cache_nr_free_objects(mc);
967 968
}

969 970 971
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
972
	struct kvm_rmap_head *rmap_head;
973

974
	sp = sptep_to_sp(spte);
975
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 977
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
978 979 980 981 982 983
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
984
	struct kvm_rmap_head *rmap_head;
985

986
	sp = sptep_to_sp(spte);
987
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
989
	__pte_list_remove(spte, rmap_head);
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1005
 * information in the iterator may not be valid.
1006 1007 1008
 *
 * Returns sptep if found, NULL otherwise.
 */
1009 1010
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1011
{
1012 1013
	u64 *sptep;

1014
	if (!rmap_head->val)
1015 1016
		return NULL;

1017
	if (!(rmap_head->val & 1)) {
1018
		iter->desc = NULL;
1019 1020
		sptep = (u64 *)rmap_head->val;
		goto out;
1021 1022
	}

1023
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024
	iter->pos = 0;
1025 1026 1027 1028
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1029 1030 1031 1032 1033 1034 1035 1036 1037
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1038 1039
	u64 *sptep;

1040 1041 1042 1043 1044
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1045
				goto out;
1046 1047 1048 1049 1050 1051 1052
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1053 1054
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1055 1056 1057 1058
		}
	}

	return NULL;
1059 1060 1061
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1062 1063
}

1064 1065
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1066
	     _spte_; _spte_ = rmap_get_next(_iter_))
1067

1068
static void drop_spte(struct kvm *kvm, u64 *sptep)
1069
{
1070
	if (mmu_spte_clear_track_bits(sptep))
1071
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1072 1073
}

1074 1075 1076 1077

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1078
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1089
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1090
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091 1092 1093 1094

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1095 1096 1097
}

/*
1098
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1099
 * spte write-protection is caused by protecting shadow page table.
1100
 *
T
Tiejun Chen 已提交
1101
 * Note: write protection is difference between dirty logging and spte
1102 1103 1104 1105 1106
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1107
 *
1108
 * Return true if tlb need be flushed.
1109
 */
1110
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 1112 1113
{
	u64 spte = *sptep;

1114
	if (!is_writable_pte(spte) &&
1115
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 1117
		return false;

1118
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1119

1120 1121
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1122
	spte = spte & ~PT_WRITABLE_MASK;
1123

1124
	return mmu_spte_update(sptep, spte);
1125 1126
}

1127 1128
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1129
				 bool pt_protect)
1130
{
1131 1132
	u64 *sptep;
	struct rmap_iterator iter;
1133
	bool flush = false;
1134

1135
	for_each_rmap_spte(rmap_head, &iter, sptep)
1136
		flush |= spte_write_protect(sptep, pt_protect);
1137

1138
	return flush;
1139 1140
}

1141
static bool spte_clear_dirty(u64 *sptep)
1142 1143 1144
{
	u64 spte = *sptep;

1145
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1146

1147
	MMU_WARN_ON(!spte_ad_enabled(spte));
1148 1149 1150 1151
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1152
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 1154 1155
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1156
	if (was_writable && !spte_ad_enabled(*sptep))
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1168
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 1170 1171 1172 1173
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1174
	for_each_rmap_spte(rmap_head, &iter, sptep)
1175 1176
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1177
		else
1178
			flush |= spte_clear_dirty(sptep);
1179 1180 1181 1182

	return flush;
}

1183
static bool spte_set_dirty(u64 *sptep)
1184 1185 1186
{
	u64 spte = *sptep;

1187
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1188

1189
	/*
1190
	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191 1192 1193
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1194 1195 1196 1197 1198
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1199
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 1201 1202 1203 1204
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1205
	for_each_rmap_spte(rmap_head, &iter, sptep)
1206 1207
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1208 1209 1210 1211

	return flush;
}

1212
/**
1213
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214 1215 1216 1217 1218 1219 1220 1221
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1222
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223 1224
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1225
{
1226
	struct kvm_rmap_head *rmap_head;
1227

1228
	if (is_tdp_mmu_enabled(kvm))
1229 1230
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1231
	while (mask) {
1232
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233
					  PG_LEVEL_4K, slot);
1234
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1235

1236 1237 1238
		/* clear the first set bit */
		mask &= mask - 1;
	}
1239 1240
}

1241
/**
1242 1243
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1255
	struct kvm_rmap_head *rmap_head;
1256

1257
	if (is_tdp_mmu_enabled(kvm))
1258 1259
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1260
	while (mask) {
1261
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262
					  PG_LEVEL_4K, slot);
1263
		__rmap_clear_dirty(kvm, rmap_head);
1264 1265 1266 1267 1268 1269 1270

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1285
	if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286 1287 1288
		static_call(kvm_x86_enable_log_dirty_pt_masked)(kvm, slot,
								gfn_offset,
								mask);
1289 1290
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1291 1292
}

1293 1294 1295
int kvm_cpu_dirty_log_size(void)
{
	if (kvm_x86_ops.cpu_dirty_log_size)
1296
		return static_call(kvm_x86_cpu_dirty_log_size)();
1297 1298 1299 1300

	return 0;
}

1301 1302
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1303
{
1304
	struct kvm_rmap_head *rmap_head;
1305
	int i;
1306
	bool write_protected = false;
1307

1308
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1309
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1310
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1311 1312
	}

1313
	if (is_tdp_mmu_enabled(kvm))
1314 1315 1316
		write_protected |=
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);

1317
	return write_protected;
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1328
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1329
{
1330 1331
	u64 *sptep;
	struct rmap_iterator iter;
1332
	bool flush = false;
1333

1334
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1335
		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1336

1337
		pte_list_remove(rmap_head, sptep);
1338
		flush = true;
1339
	}
1340

1341 1342 1343
	return flush;
}

1344
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1345 1346 1347
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1348
	return kvm_zap_rmapp(kvm, rmap_head);
1349 1350
}

1351
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1352 1353
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1354
{
1355 1356
	u64 *sptep;
	struct rmap_iterator iter;
1357
	int need_flush = 0;
1358
	u64 new_spte;
1359
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1360
	kvm_pfn_t new_pfn;
1361 1362 1363

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1364

1365
restart:
1366
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1367
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1368
			    sptep, *sptep, gfn, level);
1369

1370
		need_flush = 1;
1371

1372
		if (pte_write(*ptep)) {
1373
			pte_list_remove(rmap_head, sptep);
1374
			goto restart;
1375
		} else {
1376 1377
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1378 1379 1380

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1381 1382
		}
	}
1383

1384 1385 1386 1387 1388
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1389
	return need_flush;
1390 1391
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1402
	struct kvm_rmap_head *rmap;
1403 1404 1405
	int level;

	/* private field. */
1406
	struct kvm_rmap_head *end_rmap;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static __always_inline int
kvm_handle_hva_range(struct kvm *kvm,
		     unsigned long start,
		     unsigned long end,
		     unsigned long data,
		     int (*handler)(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot,
				    gfn_t gfn,
				    int level,
				    unsigned long data))
1471
{
1472
	struct kvm_memslots *slots;
1473
	struct kvm_memory_slot *memslot;
1474 1475
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1476
	int i;
1477

1478 1479 1480 1481 1482
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1496
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1497
						 KVM_MAX_HUGEPAGE_LEVEL,
1498 1499 1500 1501 1502
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1503 1504
	}

1505
	return ret;
1506 1507
}

1508 1509
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1510 1511
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1512
					 struct kvm_memory_slot *slot,
1513
					 gfn_t gfn, int level,
1514 1515 1516
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1517 1518
}

1519 1520
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
			unsigned flags)
1521
{
1522 1523 1524 1525
	int r;

	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);

1526
	if (is_tdp_mmu_enabled(kvm))
1527 1528 1529
		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);

	return r;
1530 1531
}

1532
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1533
{
1534 1535 1536 1537
	int r;

	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);

1538
	if (is_tdp_mmu_enabled(kvm))
1539 1540 1541
		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);

	return r;
1542 1543
}

1544
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1545 1546
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1547
{
1548
	u64 *sptep;
1549
	struct rmap_iterator iter;
1550 1551
	int young = 0;

1552 1553
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1554

1555
	trace_kvm_age_page(gfn, level, slot, young);
1556 1557 1558
	return young;
}

1559
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1560 1561
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1562
{
1563 1564
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1565

1566 1567 1568 1569
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1570 1571
}

1572 1573
#define RMAP_RECYCLE_THRESHOLD 1000

1574
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1575
{
1576
	struct kvm_rmap_head *rmap_head;
1577 1578
	struct kvm_mmu_page *sp;

1579
	sp = sptep_to_sp(spte);
1580

1581
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1582

1583
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1584 1585
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1586 1587
}

A
Andres Lagar-Cavilla 已提交
1588
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1589
{
1590 1591 1592
	int young = false;

	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1593
	if (is_tdp_mmu_enabled(kvm))
1594 1595 1596
		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);

	return young;
1597 1598
}

A
Andrea Arcangeli 已提交
1599 1600
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1601 1602 1603
	int young = false;

	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1604
	if (is_tdp_mmu_enabled(kvm))
1605 1606 1607
		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);

	return young;
A
Andrea Arcangeli 已提交
1608 1609
}

1610
#ifdef MMU_DEBUG
1611
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1612
{
1613 1614 1615
	u64 *pos;
	u64 *end;

1616
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1617
		if (is_shadow_present_pte(*pos)) {
1618
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1619
			       pos, *pos);
A
Avi Kivity 已提交
1620
			return 0;
1621
		}
A
Avi Kivity 已提交
1622 1623
	return 1;
}
1624
#endif
A
Avi Kivity 已提交
1625

1626 1627 1628 1629 1630 1631
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1632
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1633 1634 1635 1636 1637
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1638
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1639
{
1640
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1641
	hlist_del(&sp->hash_link);
1642 1643
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1644 1645
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1646
	kmem_cache_free(mmu_page_header_cache, sp);
1647 1648
}

1649 1650
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1651
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1652 1653
}

1654
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1655
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1656 1657 1658 1659
{
	if (!parent_pte)
		return;

1660
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1661 1662
}

1663
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1664 1665
				       u64 *parent_pte)
{
1666
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1667 1668
}

1669 1670 1671 1672
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1673
	mmu_spte_clear_no_track(parent_pte);
1674 1675
}

1676
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1677
{
1678
	struct kvm_mmu_page *sp;
1679

1680 1681
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1682
	if (!direct)
1683
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1684
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1685 1686 1687 1688 1689 1690

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1691
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1692 1693 1694
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1695 1696
}

1697
static void mark_unsync(u64 *spte);
1698
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1699
{
1700 1701 1702 1703 1704 1705
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1706 1707
}

1708
static void mark_unsync(u64 *spte)
1709
{
1710
	struct kvm_mmu_page *sp;
1711
	unsigned int index;
1712

1713
	sp = sptep_to_sp(spte);
1714 1715
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1716
		return;
1717
	if (sp->unsync_children++)
1718
		return;
1719
	kvm_mmu_mark_parents_unsync(sp);
1720 1721
}

1722
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1723
			       struct kvm_mmu_page *sp)
1724
{
1725
	return 0;
1726 1727
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1738 1739
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1740
{
1741
	int i;
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1754 1755 1756 1757 1758 1759 1760
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1761 1762 1763 1764
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1765

1766
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1767
		struct kvm_mmu_page *child;
1768 1769
		u64 ent = sp->spt[i];

1770 1771 1772 1773
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1774

1775
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1776 1777 1778 1779 1780 1781

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1782 1783 1784 1785
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1786
				nr_unsync_leaf += ret;
1787
			} else
1788 1789 1790 1791 1792 1793
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1794
			clear_unsync_child_bit(sp, i);
1795 1796
	}

1797 1798 1799
	return nr_unsync_leaf;
}

1800 1801
#define INVALID_INDEX (-1)

1802 1803 1804
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1805
	pvec->nr = 0;
1806 1807 1808
	if (!sp->unsync_children)
		return 0;

1809
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1810
	return __mmu_unsync_walk(sp, pvec);
1811 1812 1813 1814 1815
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1816
	trace_kvm_mmu_sync_page(sp);
1817 1818 1819 1820
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1821 1822
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1823 1824
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1825

1826 1827
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1828
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1829
		} else
1830 1831

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1832 1833
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1834
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1835

1836 1837 1838 1839 1840
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

1841
/* @sp->gfn should be write-protected at the call site */
1842 1843
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1844
{
1845 1846
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1847
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1848
		return false;
1849 1850
	}

1851
	return true;
1852 1853
}

1854 1855 1856 1857
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1858
	if (!remote_flush && list_empty(invalid_list))
1859 1860 1861 1862 1863 1864 1865 1866 1867
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1868 1869 1870
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1871
{
1872
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1873
		return;
1874

1875
	if (local_flush)
1876
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1877 1878
}

1879 1880 1881 1882 1883 1884 1885
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1886 1887
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1888 1889
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1890 1891
}

1892
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1893
			 struct list_head *invalid_list)
1894
{
1895 1896
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1897 1898
}

1899
/* @gfn should be write-protected at the call site */
1900 1901
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1902 1903
{
	struct kvm_mmu_page *s;
1904
	bool ret = false;
1905

1906
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1907
		if (!s->unsync)
1908 1909
			continue;

1910
		WARN_ON(s->role.level != PG_LEVEL_4K);
1911
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1912 1913
	}

1914
	return ret;
1915 1916
}

1917
struct mmu_page_path {
1918 1919
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1920 1921
};

1922
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1923
		for (i = mmu_pages_first(&pvec, &parents);	\
1924 1925 1926
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1927 1928 1929
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1930 1931 1932 1933 1934
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1935 1936
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1937

P
Paolo Bonzini 已提交
1938
		parents->idx[level-1] = idx;
1939
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1940
			break;
1941

P
Paolo Bonzini 已提交
1942
		parents->parent[level-2] = sp;
1943 1944 1945 1946 1947
	}

	return n;
}

P
Paolo Bonzini 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1957 1958
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1959 1960
	sp = pvec->page[0].sp;
	level = sp->role.level;
1961
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1972
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1973
{
1974 1975 1976 1977 1978 1979 1980 1981 1982
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1983
		WARN_ON(idx == INVALID_INDEX);
1984
		clear_unsync_child_bit(sp, idx);
1985
		level++;
P
Paolo Bonzini 已提交
1986
	} while (!sp->unsync_children);
1987
}
1988

1989 1990 1991 1992 1993 1994 1995
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1996
	LIST_HEAD(invalid_list);
1997
	bool flush = false;
1998 1999

	while (mmu_unsync_walk(parent, &pages)) {
2000
		bool protected = false;
2001 2002

		for_each_sp(pages, sp, parents, i)
2003
			protected |= rmap_write_protect(vcpu, sp->gfn);
2004

2005
		if (protected) {
2006
			kvm_flush_remote_tlbs(vcpu->kvm);
2007 2008
			flush = false;
		}
2009

2010
		for_each_sp(pages, sp, parents, i) {
2011
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2012 2013
			mmu_pages_clear_parents(&parents);
		}
2014
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2015
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2016
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2017 2018
			flush = false;
		}
2019
	}
2020 2021

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2022 2023
}

2024 2025
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2026
	atomic_set(&sp->write_flooding_count,  0);
2027 2028 2029 2030
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2031
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2032 2033
}

2034 2035 2036 2037
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2038
					     int direct,
2039
					     unsigned int access)
2040
{
2041
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2042
	union kvm_mmu_page_role role;
2043
	struct hlist_head *sp_list;
2044
	unsigned quadrant;
2045 2046
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2047
	bool flush = false;
2048
	int collisions = 0;
2049
	LIST_HEAD(invalid_list);
2050

2051
	role = vcpu->arch.mmu->mmu_role.base;
2052
	role.level = level;
2053
	role.direct = direct;
2054
	if (role.direct)
2055
		role.gpte_is_8_bytes = true;
2056
	role.access = access;
2057
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2058 2059 2060 2061
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2062 2063 2064

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2065 2066 2067 2068 2069
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2070 2071
		if (!need_sync && sp->unsync)
			need_sync = true;
2072

2073 2074
		if (sp->role.word != role.word)
			continue;
2075

2076 2077 2078
		if (direct_mmu)
			goto trace_get_page;

2079 2080 2081 2082 2083 2084 2085 2086
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2087
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2088
		}
2089

2090
		if (sp->unsync_children)
2091
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2092

2093
		__clear_sp_write_flooding_count(sp);
2094 2095

trace_get_page:
2096
		trace_kvm_mmu_get_page(sp, false);
2097
		goto out;
2098
	}
2099

A
Avi Kivity 已提交
2100
	++vcpu->kvm->stat.mmu_cache_miss;
2101 2102 2103

	sp = kvm_mmu_alloc_page(vcpu, direct);

2104 2105
	sp->gfn = gfn;
	sp->role = role;
2106
	hlist_add_head(&sp->hash_link, sp_list);
2107
	if (!direct) {
2108 2109 2110 2111 2112 2113
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2114
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2115
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2116

2117
		if (level > PG_LEVEL_4K && need_sync)
2118
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2119
	}
A
Avi Kivity 已提交
2120
	trace_kvm_mmu_get_page(sp, true);
2121 2122

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2123 2124 2125
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2126
	return sp;
2127 2128
}

2129 2130 2131
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2132 2133
{
	iterator->addr = addr;
2134
	iterator->shadow_addr = root;
2135
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2136

2137
	if (iterator->level == PT64_ROOT_4LEVEL &&
2138 2139
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2140 2141
		--iterator->level;

2142
	if (iterator->level == PT32E_ROOT_LEVEL) {
2143 2144 2145 2146
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2147
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2148

2149
		iterator->shadow_addr
2150
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2151 2152 2153 2154 2155 2156 2157
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2158 2159 2160
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2161
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2162 2163 2164
				    addr);
}

2165 2166
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2167
	if (iterator->level < PG_LEVEL_4K)
2168
		return false;
2169

2170 2171 2172 2173 2174
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2175 2176
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2177
{
2178
	if (is_last_spte(spte, iterator->level)) {
2179 2180 2181 2182
		iterator->level = 0;
		return;
	}

2183
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2184 2185 2186
	--iterator->level;
}

2187 2188
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2189
	__shadow_walk_next(iterator, *iterator->sptep);
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2201
	mmu_spte_set(sptep, spte);
2202 2203 2204 2205 2206

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2207 2208
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2222
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2223 2224 2225
		if (child->role.access == direct_access)
			return;

2226
		drop_parent_pte(child, sptep);
2227
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2228 2229 2230
	}
}

2231 2232 2233
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2234 2235 2236 2237 2238 2239
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2240
		if (is_last_spte(pte, sp->role.level)) {
2241
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2242 2243 2244
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2245
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2246
			drop_parent_pte(child, spte);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2257
		}
2258
	} else if (is_mmio_spte(pte)) {
2259
		mmu_spte_clear_no_track(spte);
2260
	}
2261
	return 0;
2262 2263
}

2264 2265 2266
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2267
{
2268
	int zapped = 0;
2269 2270
	unsigned i;

2271
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2272 2273 2274
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2275 2276
}

2277
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2278
{
2279 2280
	u64 *sptep;
	struct rmap_iterator iter;
2281

2282
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2283
		drop_parent_pte(sp, sptep);
2284 2285
}

2286
static int mmu_zap_unsync_children(struct kvm *kvm,
2287 2288
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2289
{
2290 2291 2292
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2293

2294
	if (parent->role.level == PG_LEVEL_4K)
2295
		return 0;
2296 2297 2298 2299 2300

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2301
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2302
			mmu_pages_clear_parents(&parents);
2303
			zapped++;
2304 2305 2306 2307
		}
	}

	return zapped;
2308 2309
}

2310 2311 2312 2313
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2314
{
2315
	bool list_unstable;
A
Avi Kivity 已提交
2316

2317
	trace_kvm_mmu_prepare_zap_page(sp);
2318
	++kvm->stat.mmu_shadow_zapped;
2319
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2320
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2321
	kvm_mmu_unlink_parents(kvm, sp);
2322

2323 2324 2325
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2326
	if (!sp->role.invalid && !sp->role.direct)
2327
		unaccount_shadowed(kvm, sp);
2328

2329 2330
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2331
	if (!sp->root_count) {
2332
		/* Count self */
2333
		(*nr_zapped)++;
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2344
		kvm_mod_used_mmu_pages(kvm, -1);
2345
	} else {
2346 2347 2348 2349 2350
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2351

2352 2353 2354 2355 2356 2357
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2358
			kvm_reload_remote_mmus(kvm);
2359
	}
2360

P
Paolo Bonzini 已提交
2361 2362 2363
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2364
	sp->role.invalid = 1;
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2375 2376
}

2377 2378 2379
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2380
	struct kvm_mmu_page *sp, *nsp;
2381 2382 2383 2384

	if (list_empty(invalid_list))
		return;

2385
	/*
2386 2387 2388 2389 2390 2391 2392
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2393 2394
	 */
	kvm_flush_remote_tlbs(kvm);
2395

2396
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2397
		WARN_ON(!sp->role.invalid || sp->root_count);
2398
		kvm_mmu_free_page(sp);
2399
	}
2400 2401
}

2402 2403
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2404
{
2405 2406
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2407
	LIST_HEAD(invalid_list);
2408 2409
	bool unstable;
	int nr_zapped;
2410 2411

	if (list_empty(&kvm->arch.active_mmu_pages))
2412 2413
		return 0;

2414
restart:
2415
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2427 2428
			break;

2429 2430
		if (unstable)
			goto restart;
2431
	}
2432

2433 2434 2435 2436 2437 2438
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2439 2440 2441 2442 2443 2444 2445
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2446 2447
}

2448 2449
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2450
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2451

2452
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2453 2454
		return 0;

2455
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2456 2457 2458 2459 2460 2461

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2462 2463
/*
 * Changing the number of mmu pages allocated to the vm
2464
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2465
 */
2466
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2467
{
2468
	write_lock(&kvm->mmu_lock);
2469

2470
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2471 2472
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2473

2474
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2475 2476
	}

2477
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2478

2479
	write_unlock(&kvm->mmu_lock);
2480 2481
}

2482
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2483
{
2484
	struct kvm_mmu_page *sp;
2485
	LIST_HEAD(invalid_list);
2486 2487
	int r;

2488
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2489
	r = 0;
2490
	write_lock(&kvm->mmu_lock);
2491
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2492
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2493 2494
			 sp->role.word);
		r = 1;
2495
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2496
	}
2497
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2498
	write_unlock(&kvm->mmu_lock);
2499

2500
	return r;
2501
}
2502
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2503

2504
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2505 2506 2507 2508 2509 2510 2511 2512
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2513 2514
bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool can_unsync)
2515
{
2516
	struct kvm_mmu_page *sp;
2517

2518 2519
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2520

2521
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2522
		if (!can_unsync)
2523
			return true;
2524

2525 2526
		if (sp->unsync)
			continue;
2527

2528
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2529
		kvm_unsync_page(vcpu, sp);
2530
	}
2531

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2571
	return false;
2572 2573
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
		return 0;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2594 2595 2596
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2597
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2598 2599 2600
	return ret;
}

2601
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2602
			unsigned int pte_access, bool write_fault, int level,
2603 2604
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2605 2606
{
	int was_rmapped = 0;
2607
	int rmap_count;
2608
	int set_spte_ret;
2609
	int ret = RET_PF_FIXED;
2610
	bool flush = false;
M
Marcelo Tosatti 已提交
2611

2612 2613
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2614

2615
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2616 2617 2618 2619
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2620
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2621
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2622
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2623

2624
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2625
			drop_parent_pte(child, sptep);
2626
			flush = true;
A
Avi Kivity 已提交
2627
		} else if (pfn != spte_to_pfn(*sptep)) {
2628
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2629
				 spte_to_pfn(*sptep), pfn);
2630
			drop_spte(vcpu->kvm, sptep);
2631
			flush = true;
2632 2633
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2634
	}
2635

2636 2637 2638
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2639
		if (write_fault)
2640
			ret = RET_PF_EMULATE;
2641
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2642
	}
2643

2644
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2645 2646
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2647

2648
	if (unlikely(is_mmio_spte(*sptep)))
2649
		ret = RET_PF_EMULATE;
2650

2651 2652 2653 2654 2655 2656 2657 2658 2659
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2660
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2661
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2662
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2663 2664
		++vcpu->kvm->stat.lpages;

2665 2666 2667 2668 2669 2670
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2671
	}
2672

2673
	return ret;
2674 2675
}

D
Dan Williams 已提交
2676
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2677 2678 2679 2680
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2681
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2682
	if (!slot)
2683
		return KVM_PFN_ERR_FAULT;
2684

2685
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2686 2687 2688 2689 2690 2691 2692
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2693
	struct kvm_memory_slot *slot;
2694
	unsigned int access = sp->role.access;
2695 2696 2697 2698
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2699 2700
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2701 2702
		return -1;

2703
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2704 2705 2706
	if (ret <= 0)
		return -1;

2707
	for (i = 0; i < ret; i++, gfn++, start++) {
2708
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2709
			     page_to_pfn(pages[i]), true, true);
2710 2711
		put_page(pages[i]);
	}
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2728
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2743
	sp = sptep_to_sp(sptep);
2744

2745
	/*
2746 2747 2748
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2749
	 */
2750
	if (sp_ad_disabled(sp))
2751 2752
		return;

2753
	if (sp->role.level > PG_LEVEL_4K)
2754 2755 2756 2757 2758
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2759
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2760
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2761 2762 2763 2764 2765
{
	unsigned long hva;
	pte_t *pte;
	int level;

2766
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2767
		return PG_LEVEL_4K;
2768

2769 2770 2771 2772 2773 2774 2775 2776
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2777 2778 2779 2780
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
2781
		return PG_LEVEL_4K;
2782 2783 2784 2785

	return level;
}

B
Ben Gardon 已提交
2786 2787 2788
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2789
{
2790
	struct kvm_memory_slot *slot;
2791
	struct kvm_lpage_info *linfo;
2792
	kvm_pfn_t pfn = *pfnp;
2793
	kvm_pfn_t mask;
2794
	int level;
2795

2796 2797
	*req_level = PG_LEVEL_4K;

2798 2799
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2800

2801
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2802
		return PG_LEVEL_4K;
2803

2804 2805
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2806
		return PG_LEVEL_4K;
2807

2808
	max_level = min(max_level, max_huge_page_level);
2809
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2810 2811
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
2812 2813 2814
			break;
	}

2815 2816
	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;
2817 2818

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2819
	if (level == PG_LEVEL_4K)
2820
		return level;
2821

2822 2823 2824 2825 2826 2827 2828 2829
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2830 2831

	/*
2832 2833
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2834
	 */
2835 2836 2837
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2838 2839

	return level;
2840 2841
}

B
Ben Gardon 已提交
2842 2843
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2844
{
B
Ben Gardon 已提交
2845
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2846

2847
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2857 2858
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2859
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2860
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2861 2862 2863
	}
}

2864
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2865
			int map_writable, int max_level, kvm_pfn_t pfn,
2866
			bool prefault, bool is_tdp)
2867
{
2868 2869 2870 2871
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2872
	struct kvm_shadow_walk_iterator it;
2873
	struct kvm_mmu_page *sp;
2874
	int level, req_level, ret;
2875 2876
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2877

2878
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2879
		return RET_PF_RETRY;
2880

2881 2882
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2883

2884
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2885
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2886 2887 2888 2889
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2890
		if (nx_huge_page_workaround_enabled)
2891 2892
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2893

2894 2895
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2896
			break;
A
Avi Kivity 已提交
2897

2898 2899 2900 2901
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2902

2903
			link_shadow_page(vcpu, it.sptep, sp);
2904 2905
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2906
				account_huge_nx_page(vcpu->kvm, sp);
2907 2908
		}
	}
2909 2910 2911 2912

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2913 2914 2915
	if (ret == RET_PF_SPURIOUS)
		return ret;

2916 2917 2918
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2919 2920
}

H
Huang Ying 已提交
2921
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2922
{
2923
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2924 2925
}

D
Dan Williams 已提交
2926
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2927
{
X
Xiao Guangrong 已提交
2928 2929 2930 2931 2932 2933
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2934
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2935

2936
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2937
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2938
		return RET_PF_RETRY;
2939
	}
2940

2941
	return -EFAULT;
2942 2943
}

2944
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2945 2946
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2947 2948
{
	/* The pfn is invalid, report the error! */
2949
	if (unlikely(is_error_pfn(pfn))) {
2950
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2951
		return true;
2952 2953
	}

2954
	if (unlikely(is_noslot_pfn(pfn)))
2955 2956
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2957

2958
	return false;
2959 2960
}

2961
static bool page_fault_can_be_fast(u32 error_code)
2962
{
2963 2964 2965 2966 2967 2968 2969
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2970 2971 2972 2973 2974
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

2975
	/*
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
2987 2988
	 */

2989 2990 2991
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2992 2993
}

2994 2995 2996 2997
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
2998
static bool
2999
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3000
			u64 *sptep, u64 old_spte, u64 new_spte)
3001 3002 3003 3004 3005
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3018
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3019 3020
		return false;

3021
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3022 3023 3024 3025 3026 3027 3028
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3029 3030 3031 3032

	return true;
}

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3045
/*
3046
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3047
 */
3048 3049
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3050 3051
{
	struct kvm_shadow_walk_iterator iterator;
3052
	struct kvm_mmu_page *sp;
3053
	int ret = RET_PF_INVALID;
3054
	u64 spte = 0ull;
3055
	uint retry_count = 0;
3056

3057
	if (!page_fault_can_be_fast(error_code))
3058
		return ret;
3059 3060 3061

	walk_shadow_page_lockless_begin(vcpu);

3062
	do {
3063
		u64 new_spte;
3064

3065
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3066
			if (!is_shadow_present_pte(spte))
3067 3068
				break;

3069
		sp = sptep_to_sp(iterator.sptep);
3070 3071
		if (!is_last_spte(spte, sp->role.level))
			break;
3072

3073
		/*
3074 3075 3076 3077 3078
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3079 3080 3081 3082
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3083
		if (is_access_allowed(error_code, spte)) {
3084
			ret = RET_PF_SPURIOUS;
3085 3086
			break;
		}
3087

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3099
		    spte_can_locklessly_be_made_writable(spte)) {
3100
			new_spte |= PT_WRITABLE_MASK;
3101 3102

			/*
3103 3104 3105 3106 3107 3108 3109 3110 3111
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3112
			 */
3113
			if (sp->role.level > PG_LEVEL_4K)
3114
				break;
3115
		}
3116

3117
		/* Verify that the fault can be handled in the fast path */
3118 3119
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3120 3121 3122 3123 3124
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3125
		 * Documentation/virt/kvm/locking.rst to get more detail.
3126
		 */
3127 3128 3129
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3130
			break;
3131
		}
3132 3133 3134 3135 3136 3137 3138 3139

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3140

3141
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3142
			      spte, ret);
3143 3144
	walk_shadow_page_lockless_end(vcpu);

3145
	return ret;
3146 3147
}

3148 3149
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3150
{
3151
	struct kvm_mmu_page *sp;
3152

3153
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3154
		return;
3155

3156
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3157 3158

	if (kvm_mmu_put_root(kvm, sp)) {
3159
		if (is_tdp_mmu_page(sp))
3160 3161 3162 3163
			kvm_tdp_mmu_free_root(kvm, sp);
		else if (sp->role.invalid)
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
	}
3164

3165 3166 3167
	*root_hpa = INVALID_PAGE;
}

3168
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3169 3170
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3171
{
3172
	struct kvm *kvm = vcpu->kvm;
3173 3174
	int i;
	LIST_HEAD(invalid_list);
3175
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3176

3177
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3178

3179
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3180 3181 3182 3183 3184 3185 3186 3187 3188
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3189

3190
	write_lock(&kvm->mmu_lock);
3191

3192 3193
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3194
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3195
					   &invalid_list);
3196

3197 3198 3199
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3200
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3201 3202 3203
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
3204
					mmu_free_root_page(kvm,
3205 3206 3207 3208
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3209
		mmu->root_pgd = 0;
3210
	}
3211

3212
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3213
	write_unlock(&kvm->mmu_lock);
3214
}
3215
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3216

3217 3218 3219 3220
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3221
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3222
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3223 3224 3225 3226 3227 3228
		ret = 1;
	}

	return ret;
}

3229 3230
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3231 3232
{
	struct kvm_mmu_page *sp;
3233

3234
	write_lock(&vcpu->kvm->mmu_lock);
3235 3236

	if (make_mmu_pages_available(vcpu)) {
3237
		write_unlock(&vcpu->kvm->mmu_lock);
3238 3239 3240 3241 3242
		return INVALID_PAGE;
	}
	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

3243
	write_unlock(&vcpu->kvm->mmu_lock);
3244 3245 3246 3247 3248 3249 3250
	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
	hpa_t root;
3251
	unsigned i;
3252

3253
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3254 3255 3256 3257 3258 3259 3260 3261 3262
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);

		if (!VALID_PAGE(root))
			return -ENOSPC;
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
				      true);

3263
		if (!VALID_PAGE(root))
3264
			return -ENOSPC;
3265 3266
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3267
		for (i = 0; i < 4; ++i) {
3268
			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3269

3270 3271 3272
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
			if (!VALID_PAGE(root))
3273
				return -ENOSPC;
3274
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3275
		}
3276
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3277 3278
	} else
		BUG();
3279

3280 3281
	/* root_pgd is ignored for direct MMUs. */
	vcpu->arch.mmu->root_pgd = 0;
3282 3283 3284 3285 3286

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3287
{
3288
	u64 pdptr, pm_mask;
3289
	gfn_t root_gfn, root_pgd;
3290
	hpa_t root;
3291
	int i;
3292

3293 3294
	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
	root_gfn = root_pgd >> PAGE_SHIFT;
3295

3296 3297 3298 3299 3300 3301 3302
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3303
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3304
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3305

3306 3307 3308
		root = mmu_alloc_root(vcpu, root_gfn, 0,
				      vcpu->arch.mmu->shadow_root_level, false);
		if (!VALID_PAGE(root))
3309
			return -ENOSPC;
3310
		vcpu->arch.mmu->root_hpa = root;
3311
		goto set_root_pgd;
3312
	}
3313

3314 3315
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3316 3317
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3318
	 */
3319
	pm_mask = PT_PRESENT_MASK;
3320
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3321 3322
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3323
	for (i = 0; i < 4; ++i) {
3324
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3325 3326
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3327
			if (!(pdptr & PT_PRESENT_MASK)) {
3328
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3329 3330
				continue;
			}
A
Avi Kivity 已提交
3331
			root_gfn = pdptr >> PAGE_SHIFT;
3332 3333
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3334
		}
3335

3336 3337 3338 3339
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
		if (!VALID_PAGE(root))
			return -ENOSPC;
3340
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3341
	}
3342
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3343 3344 3345 3346 3347

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3348 3349
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3350 3351 3352 3353 3354 3355 3356
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3357
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3358 3359 3360
			if (lm_root == NULL)
				return 1;

3361
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3362

3363
			vcpu->arch.mmu->lm_root = lm_root;
3364 3365
		}

3366
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3367 3368
	}

3369 3370
set_root_pgd:
	vcpu->arch.mmu->root_pgd = root_pgd;
3371

3372
	return 0;
3373 3374
}

3375 3376
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3377
	if (vcpu->arch.mmu->direct_map)
3378 3379 3380 3381 3382
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3383
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3384 3385 3386 3387
{
	int i;
	struct kvm_mmu_page *sp;

3388
	if (vcpu->arch.mmu->direct_map)
3389 3390
		return;

3391
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3392
		return;
3393

3394
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3395

3396 3397
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3398
		sp = to_shadow_page(root);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3414
		write_lock(&vcpu->kvm->mmu_lock);
3415 3416
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3417
		mmu_sync_children(vcpu, sp);
3418

3419
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3420
		write_unlock(&vcpu->kvm->mmu_lock);
3421 3422
		return;
	}
3423

3424
	write_lock(&vcpu->kvm->mmu_lock);
3425 3426
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3427
	for (i = 0; i < 4; ++i) {
3428
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3429

3430
		if (root && VALID_PAGE(root)) {
3431
			root &= PT64_BASE_ADDR_MASK;
3432
			sp = to_shadow_page(root);
3433 3434 3435 3436
			mmu_sync_children(vcpu, sp);
		}
	}

3437
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3438
	write_unlock(&vcpu->kvm->mmu_lock);
3439
}
N
Nadav Har'El 已提交
3440
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3441

3442
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3443
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3444
{
3445 3446
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3447 3448 3449
	return vaddr;
}

3450
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3451 3452
					 u32 access,
					 struct x86_exception *exception)
3453
{
3454 3455
	if (exception)
		exception->error_code = 0;
3456
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3457 3458
}

3459 3460 3461
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3462
	int bit7 = (pte >> 7) & 1;
3463

3464
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3465 3466
}

3467
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3468
{
3469
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3470 3471
}

3472
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3473
{
3474 3475 3476 3477 3478 3479 3480
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3481 3482 3483 3484 3485 3486
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3487 3488 3489 3490
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
3491
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3492 3493
{
	struct kvm_shadow_walk_iterator iterator;
3494
	int leaf = -1;
3495
	u64 spte;
3496 3497

	walk_shadow_page_lockless_begin(vcpu);
3498

3499 3500
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3501 3502
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3503
		leaf = iterator.level;
3504 3505
		spte = mmu_spte_get_lockless(iterator.sptep);

3506
		sptes[leaf] = spte;
3507

3508 3509
		if (!is_shadow_present_pte(spte))
			break;
3510 3511 3512 3513 3514 3515 3516
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

3517
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3518 3519
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3520
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3521
	struct rsvd_bits_validate *rsvd_check;
3522
	int root, leaf, level;
3523 3524 3525 3526 3527 3528 3529 3530
	bool reserved = false;

	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
		*sptep = 0ull;
		return reserved;
	}

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3531
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3532
	else
3533
		leaf = get_walk(vcpu, addr, sptes, &root);
3534

3535 3536 3537 3538 3539
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3550 3551 3552

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3553
	for (level = root; level >= leaf; level--)
3554 3555 3556 3557 3558
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
3559 3560
		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3561 3562 3563 3564

	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3565
		for (level = root; level >= leaf; level--)
3566
			pr_err("------ spte 0x%llx level %d.\n",
3567
			       sptes[level], level);
3568
	}
3569

3570
	return reserved;
3571 3572
}

P
Paolo Bonzini 已提交
3573
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3574 3575
{
	u64 spte;
3576
	bool reserved;
3577

3578
	if (mmio_info_in_cache(vcpu, addr, direct))
3579
		return RET_PF_EMULATE;
3580

3581
	reserved = get_mmio_spte(vcpu, addr, &spte);
3582
	if (WARN_ON(reserved))
3583
		return -EINVAL;
3584 3585 3586

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3587
		unsigned int access = get_mmio_spte_access(spte);
3588

3589
		if (!check_mmio_spte(vcpu, spte))
3590
			return RET_PF_INVALID;
3591

3592 3593
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3594 3595

		trace_handle_mmio_page_fault(addr, gfn, access);
3596
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3597
		return RET_PF_EMULATE;
3598 3599 3600 3601 3602 3603
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3604
	return RET_PF_RETRY;
3605 3606
}

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3641 3642
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3643 3644
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3645

3646
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3647
	arch.gfn = gfn;
3648
	arch.direct_map = vcpu->arch.mmu->direct_map;
3649
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3650

3651 3652
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3653 3654
}

3655
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3656 3657
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
3658
{
3659
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3660 3661
	bool async;

3662 3663
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3664
		*pfn = KVM_PFN_NOSLOT;
3665
		*writable = false;
3666 3667 3668
		return false;
	}

3669 3670
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3671 3672 3673
	if (!async)
		return false; /* *pfn has correct page already */

3674
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3675
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3676
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3677
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3678 3679
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3680
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3681 3682 3683
			return true;
	}

3684
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3685 3686 3687
	return false;
}

3688 3689
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3690
{
3691
	bool write = error_code & PFERR_WRITE_MASK;
3692
	bool map_writable;
A
Avi Kivity 已提交
3693

3694 3695 3696
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3697
	int r;
3698

3699
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3700
		return RET_PF_EMULATE;
3701

B
Ben Gardon 已提交
3702 3703 3704 3705 3706
	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3707

3708
	r = mmu_topup_memory_caches(vcpu, false);
3709 3710
	if (r)
		return r;
3711

3712 3713 3714 3715 3716 3717
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

3718
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3719
		return r;
A
Avi Kivity 已提交
3720

3721
	r = RET_PF_RETRY;
3722 3723 3724 3725 3726 3727

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3728 3729
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
3730 3731
	r = make_mmu_pages_available(vcpu);
	if (r)
3732
		goto out_unlock;
B
Ben Gardon 已提交
3733 3734 3735 3736 3737 3738 3739

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3740

3741
out_unlock:
3742 3743 3744 3745
	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3746 3747
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3748 3749
}

3750 3751 3752 3753 3754 3755 3756
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3757
				 PG_LEVEL_2M, false);
3758 3759
}

3760
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3761
				u64 fault_address, char *insn, int insn_len)
3762 3763
{
	int r = 1;
3764
	u32 flags = vcpu->arch.apf.host_apf_flags;
3765

3766 3767 3768 3769 3770 3771
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3772
	vcpu->arch.l1tf_flush_l1d = true;
3773
	if (!flags) {
3774 3775
		trace_kvm_page_fault(fault_address, error_code);

3776
		if (kvm_event_needs_reinjection(vcpu))
3777 3778 3779
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3780
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3781
		vcpu->arch.apf.host_apf_flags = 0;
3782
		local_irq_disable();
3783
		kvm_async_pf_task_wait_schedule(fault_address);
3784
		local_irq_enable();
3785 3786
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3787
	}
3788

3789 3790 3791 3792
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3793 3794
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3795
{
3796
	int max_level;
3797

3798
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3799
	     max_level > PG_LEVEL_4K;
3800 3801
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3802
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3803

3804 3805
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3806
	}
3807

3808 3809
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3810 3811
}

3812 3813
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3814 3815 3816
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3817
	context->sync_page = nonpaging_sync_page;
3818
	context->invlpg = NULL;
3819
	context->root_level = 0;
A
Avi Kivity 已提交
3820
	context->shadow_root_level = PT32E_ROOT_LEVEL;
3821
	context->direct_map = true;
3822
	context->nx = false;
A
Avi Kivity 已提交
3823 3824
}

3825
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3826 3827
				  union kvm_mmu_page_role role)
{
3828
	return (role.direct || pgd == root->pgd) &&
3829 3830
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3831 3832
}

3833
/*
3834
 * Find out if a previously cached root matching the new pgd/role is available.
3835 3836 3837 3838 3839 3840
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3841
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3842 3843 3844 3845
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3846
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3847

3848
	root.pgd = mmu->root_pgd;
3849 3850
	root.hpa = mmu->root_hpa;

3851
	if (is_root_usable(&root, new_pgd, new_role))
3852 3853
		return true;

3854 3855 3856
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3857
		if (is_root_usable(&root, new_pgd, new_role))
3858 3859 3860 3861
			break;
	}

	mmu->root_hpa = root.hpa;
3862
	mmu->root_pgd = root.pgd;
3863 3864 3865 3866

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3867
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3868
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3869
{
3870
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3871 3872 3873 3874 3875 3876 3877

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3878
	    mmu->root_level >= PT64_ROOT_4LEVEL)
3879
		return cached_root_available(vcpu, new_pgd, new_role);
3880 3881

	return false;
A
Avi Kivity 已提交
3882 3883
}

3884
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3885
			      union kvm_mmu_page_role new_role,
3886
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
3887
{
3888
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

3901
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3902
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3903
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

3914 3915 3916 3917 3918 3919 3920
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
3921 3922
}

3923
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3924
		     bool skip_mmu_sync)
3925
{
3926
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3927
			  skip_tlb_flush, skip_mmu_sync);
3928
}
3929
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3930

3931 3932
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3933
	return kvm_read_cr3(vcpu);
3934 3935
}

3936
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3937
			   unsigned int access, int *nr_present)
3938 3939 3940 3941 3942 3943 3944 3945
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3946
		mark_mmio_spte(vcpu, sptep, gfn, access);
3947 3948 3949 3950 3951 3952
		return true;
	}

	return false;
}

3953 3954
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3955
{
3956 3957 3958 3959 3960 3961 3962
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3963
	/*
3964 3965 3966
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3967
	 */
3968
	gpte |= level - PG_LEVEL_4K - 1;
3969

3970
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3971 3972
}

3973 3974 3975 3976 3977
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3978 3979 3980 3981 3982 3983 3984 3985
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3986 3987 3988
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
3989
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
3990
			bool pse, bool amd)
3991
{
3992
	u64 gbpages_bit_rsvd = 0;
3993
	u64 nonleaf_bit8_rsvd = 0;
3994
	u64 high_bits_rsvd;
3995

3996
	rsvd_check->bad_mt_xwr = 0;
3997

3998
	if (!gbpages)
3999
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4000

4001 4002 4003 4004 4005 4006 4007 4008 4009
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4010 4011 4012 4013
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4014
	if (amd)
4015 4016
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4017
	switch (level) {
4018 4019
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4020 4021 4022 4023
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4024

4025
		if (!pse) {
4026
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4027 4028 4029
			break;
		}

4030 4031
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4032
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4033 4034
		else
			/* 32 bits PSE 4MB page */
4035
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4036 4037
		break;
	case PT32E_ROOT_LEVEL:
4038 4039 4040 4041 4042 4043 4044 4045
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4046 4047
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4048
		break;
4049
	case PT64_ROOT_5LEVEL:
4050 4051 4052
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4053 4054
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4055
		fallthrough;
4056
	case PT64_ROOT_4LEVEL:
4057 4058 4059 4060 4061 4062 4063
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4064 4065
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4066 4067 4068 4069 4070
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4071 4072
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4073 4074 4075 4076
		break;
	}
}

4077 4078 4079 4080
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4081 4082
				vcpu->arch.reserved_gpa_bits,
				context->root_level, context->nx,
4083
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4084 4085
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4086 4087
}

4088 4089
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4090
			    u64 pa_bits_rsvd, bool execonly)
4091
{
4092
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4093
	u64 bad_mt_xwr;
4094

4095 4096 4097 4098 4099
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4100 4101

	/* large page */
4102
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4103
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4104 4105
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4106
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4107

4108 4109 4110 4111 4112 4113 4114 4115
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4116
	}
4117
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4118 4119
}

4120 4121 4122 4123
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4124
				    vcpu->arch.reserved_gpa_bits, execonly);
4125 4126
}

4127 4128 4129 4130 4131
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4132 4133 4134 4135 4136 4137 4138 4139
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4140 4141
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4142 4143
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4144

4145 4146 4147 4148
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4149 4150
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4151
				reserved_hpa_bits(),
4152
				context->shadow_root_level, uses_nx,
4153 4154
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4155 4156 4157 4158 4159 4160 4161 4162 4163

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4164 4165 4166
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4167 4168 4169 4170 4171 4172
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4173 4174 4175 4176 4177 4178 4179 4180
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4181 4182 4183 4184 4185
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4186
	if (boot_cpu_is_amd())
4187
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4188
					reserved_hpa_bits(),
4189
					context->shadow_root_level, false,
4190 4191
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4192
	else
4193
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4194
					    reserved_hpa_bits(), false);
4195

4196 4197 4198 4199 4200 4201 4202
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4214
				    reserved_hpa_bits(), execonly);
4215 4216
}

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4227 4228
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4229
{
4230 4231 4232 4233 4234 4235 4236 4237 4238
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4239 4240

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4241 4242
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4243
		/*
4244 4245
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4246
		 */
4247

4248
		/* Faults from writes to non-writable pages */
4249
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4250
		/* Faults from user mode accesses to supervisor pages */
4251
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4252
		/* Faults from fetches of non-executable pages*/
4253
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4279
			 * conditions are true:
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4293
		}
4294 4295

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4296 4297 4298
	}
}

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4374
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4375
{
4376 4377 4378 4379 4380
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4381 4382
}

4383 4384 4385
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4386
{
4387
	context->nx = is_nx(vcpu);
4388
	context->root_level = level;
4389

4390
	reset_rsvds_bits_mask(vcpu, context);
4391
	update_permission_bitmask(vcpu, context, false);
4392
	update_pkru_bitmask(vcpu, context, false);
4393
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4394

4395
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4396 4397
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4398
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4399
	context->invlpg = paging64_invlpg;
4400
	context->shadow_root_level = level;
4401
	context->direct_map = false;
A
Avi Kivity 已提交
4402 4403
}

4404 4405
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4406
{
4407 4408 4409 4410
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4411 4412
}

4413 4414
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4415
{
4416
	context->nx = false;
4417
	context->root_level = PT32_ROOT_LEVEL;
4418

4419
	reset_rsvds_bits_mask(vcpu, context);
4420
	update_permission_bitmask(vcpu, context, false);
4421
	update_pkru_bitmask(vcpu, context, false);
4422
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4423 4424 4425

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4426
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4427
	context->invlpg = paging32_invlpg;
A
Avi Kivity 已提交
4428
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4429
	context->direct_map = false;
A
Avi Kivity 已提交
4430 4431
}

4432 4433
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4434
{
4435
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4436 4437
}

4438 4439 4440 4441
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4442
	ext.cr0_pg = !!is_paging(vcpu);
4443
	ext.cr4_pae = !!is_pae(vcpu);
4444 4445 4446 4447
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4448
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4449 4450 4451 4452 4453 4454

	ext.valid = 1;

	return ext;
}

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

4474 4475 4476
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4477
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4478 4479
		return 4;

4480
	return max_tdp_level;
4481 4482
}

4483 4484
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4485
{
4486
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4487

4488
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4489
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4490
	role.base.direct = true;
4491
	role.base.gpte_is_8_bytes = true;
4492 4493 4494 4495

	return role;
}

4496
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4497
{
4498
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4499 4500
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4501

4502 4503 4504 4505
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4506
	context->page_fault = kvm_tdp_page_fault;
4507
	context->sync_page = nonpaging_sync_page;
4508
	context->invlpg = NULL;
4509
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4510
	context->direct_map = true;
4511
	context->get_guest_pgd = get_cr3;
4512
	context->get_pdptr = kvm_pdptr_read;
4513
	context->inject_page_fault = kvm_inject_page_fault;
4514 4515

	if (!is_paging(vcpu)) {
4516
		context->nx = false;
4517 4518 4519
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4520
		context->nx = is_nx(vcpu);
4521 4522
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4523 4524
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4525
	} else if (is_pae(vcpu)) {
4526
		context->nx = is_nx(vcpu);
4527
		context->root_level = PT32E_ROOT_LEVEL;
4528 4529
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4530
	} else {
4531
		context->nx = false;
4532
		context->root_level = PT32_ROOT_LEVEL;
4533 4534
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4535 4536
	}

4537
	update_permission_bitmask(vcpu, context, false);
4538
	update_pkru_bitmask(vcpu, context, false);
4539
	update_last_nonleaf_level(vcpu, context);
4540
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4541 4542
}

4543
static union kvm_mmu_role
4544
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4545 4546 4547 4548 4549 4550 4551
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
4552
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4553

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
	return role;
}

static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, base_only);

	role.base.direct = !is_paging(vcpu);

4565
	if (!is_long_mode(vcpu))
4566
		role.base.level = PT32E_ROOT_LEVEL;
4567
	else if (is_la57_mode(vcpu))
4568
		role.base.level = PT64_ROOT_5LEVEL;
4569
	else
4570
		role.base.level = PT64_ROOT_4LEVEL;
4571 4572 4573 4574

	return role;
}

4575 4576 4577
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
				    u32 cr0, u32 cr4, u32 efer,
				    union kvm_mmu_role new_role)
4578
{
4579
	if (!(cr0 & X86_CR0_PG))
4580
		nonpaging_init_context(vcpu, context);
4581
	else if (efer & EFER_LMA)
4582
		paging64_init_context(vcpu, context);
4583
	else if (cr4 & X86_CR4_PAE)
4584
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4585
	else
4586
		paging32_init_context(vcpu, context);
4587

4588
	context->mmu_role.as_u64 = new_role.as_u64;
4589
	reset_shadow_zero_bits_mask(vcpu, context);
4590
}
4591 4592 4593

static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
{
4594
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4595 4596 4597 4598
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 != context->mmu_role.as_u64)
4599
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4600 4601
}

4602 4603 4604 4605 4606 4607 4608
static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, false);

	role.base.direct = false;
4609
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4610 4611 4612 4613

	return role;
}

4614 4615 4616
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
			     gpa_t nested_cr3)
{
4617
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4618
	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4619

4620 4621
	context->shadow_root_level = new_role.base.level;

4622 4623
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);

4624
	if (new_role.as_u64 != context->mmu_role.as_u64)
4625
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4626 4627
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4628

4629 4630
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4631
				   bool execonly, u8 level)
4632
{
4633
	union kvm_mmu_role role = {0};
4634

4635 4636
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4637

4638
	role.base.level = level;
4639
	role.base.gpte_is_8_bytes = true;
4640 4641 4642 4643
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4644

4645 4646 4647 4648 4649 4650 4651
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

4652
	role.ext = kvm_calc_mmu_role_ext(vcpu);
4653
	role.ext.execonly = execonly;
4654 4655 4656 4657

	return role;
}

4658
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4659
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4660
{
4661
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4662
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4663 4664
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4665
						   execonly, level);
4666

4667
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4668 4669 4670

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4671

4672
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4673 4674

	context->nx = true;
4675
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4676 4677 4678 4679
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4680
	context->root_level = level;
N
Nadav Har'El 已提交
4681
	context->direct_map = false;
4682
	context->mmu_role.as_u64 = new_role.as_u64;
4683

N
Nadav Har'El 已提交
4684
	update_permission_bitmask(vcpu, context, true);
4685
	update_pkru_bitmask(vcpu, context, true);
4686
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4687
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4688
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4689 4690 4691
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4692
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4693
{
4694
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4695

4696 4697 4698 4699 4700
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

4701
	context->get_guest_pgd     = get_cr3;
4702 4703
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4704 4705
}

4706
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4707
{
4708
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4709 4710
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4711 4712 4713 4714
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4715
	g_context->get_guest_pgd     = get_cr3;
4716
	g_context->get_pdptr         = kvm_pdptr_read;
4717 4718
	g_context->inject_page_fault = kvm_inject_page_fault;

4719 4720 4721 4722 4723 4724
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4725
	/*
4726
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4727 4728 4729 4730 4731
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4732 4733
	 */
	if (!is_paging(vcpu)) {
4734
		g_context->nx = false;
4735 4736 4737
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4738
		g_context->nx = is_nx(vcpu);
4739 4740
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4741
		reset_rsvds_bits_mask(vcpu, g_context);
4742 4743
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4744
		g_context->nx = is_nx(vcpu);
4745
		g_context->root_level = PT32E_ROOT_LEVEL;
4746
		reset_rsvds_bits_mask(vcpu, g_context);
4747 4748
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4749
		g_context->nx = false;
4750
		g_context->root_level = PT32_ROOT_LEVEL;
4751
		reset_rsvds_bits_mask(vcpu, g_context);
4752 4753 4754
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4755
	update_permission_bitmask(vcpu, g_context, false);
4756
	update_pkru_bitmask(vcpu, g_context, false);
4757
	update_last_nonleaf_level(vcpu, g_context);
4758 4759
}

4760
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4761
{
4762
	if (reset_roots) {
4763 4764
		uint i;

4765
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4766 4767

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4768
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4769 4770
	}

4771
	if (mmu_is_nested(vcpu))
4772
		init_kvm_nested_mmu(vcpu);
4773
	else if (tdp_enabled)
4774
		init_kvm_tdp_mmu(vcpu);
4775
	else
4776
		init_kvm_softmmu(vcpu);
4777
}
4778
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4779

4780 4781 4782
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4783 4784
	union kvm_mmu_role role;

4785
	if (tdp_enabled)
4786
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4787
	else
4788 4789 4790
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
4791
}
4792

4793
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4794
{
4795
	kvm_mmu_unload(vcpu);
4796
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4797
}
4798
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4799 4800

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4801
{
4802 4803
	int r;

4804
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
4805 4806
	if (r)
		goto out;
4807
	r = mmu_alloc_roots(vcpu);
4808
	kvm_mmu_sync_roots(vcpu);
4809 4810
	if (r)
		goto out;
4811
	kvm_mmu_load_pgd(vcpu);
4812
	static_call(kvm_x86_tlb_flush_current)(vcpu);
4813 4814
out:
	return r;
A
Avi Kivity 已提交
4815
}
A
Avi Kivity 已提交
4816 4817 4818 4819
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4820 4821 4822 4823
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4824
}
4825
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4826

4827 4828 4829 4830 4831 4832 4833 4834
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4835 4836
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4837 4838 4839
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4840
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4841
				    int *bytes)
4842
{
4843
	u64 gentry = 0;
4844
	int r;
4845 4846 4847

	/*
	 * Assume that the pte write on a page table of the same type
4848 4849
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4850
	 */
4851
	if (is_pae(vcpu) && *bytes == 4) {
4852
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4853 4854
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4855 4856
	}

4857 4858 4859 4860
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4861 4862
	}

4863 4864 4865 4866 4867 4868 4869
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4870
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4871
{
4872 4873 4874 4875
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4876
	if (sp->role.level == PG_LEVEL_4K)
4877
		return false;
4878

4879 4880
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
4896
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4897 4898 4899 4900 4901 4902 4903 4904

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
4920
	if (!sp->role.gpte_is_8_bytes) {
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4942
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4943 4944
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4945 4946 4947 4948 4949 4950
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4951
	bool remote_flush, local_flush;
4952 4953 4954 4955 4956

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
4957
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4958 4959
		return;

4960
	remote_flush = local_flush = false;
4961 4962 4963 4964 4965 4966 4967 4968

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
4969
	mmu_topup_memory_caches(vcpu, true);
4970

4971
	write_lock(&vcpu->kvm->mmu_lock);
4972 4973 4974

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

4975
	++vcpu->kvm->stat.mmu_pte_write;
4976
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4977

4978
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4979
		if (detect_write_misaligned(sp, gpa, bytes) ||
4980
		      detect_write_flooding(sp)) {
4981
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4982
			++vcpu->kvm->stat.mmu_flooded;
4983 4984
			continue;
		}
4985 4986 4987 4988 4989

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4990
		local_flush = true;
4991
		while (npte--) {
4992
			entry = *spte;
4993
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
4994 4995
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
4996
			if (need_remote_flush(entry, *spte))
4997
				remote_flush = true;
4998
			++spte;
4999 5000
		}
	}
5001
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5002
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5003
	write_unlock(&vcpu->kvm->mmu_lock);
5004 5005
}

5006 5007
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5008 5009
	gpa_t gpa;
	int r;
5010

5011
	if (vcpu->arch.mmu->direct_map)
5012 5013
		return 0;

5014
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5015 5016

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5017

5018
	return r;
5019
}
5020
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5021

5022
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5023
		       void *insn, int insn_len)
5024
{
5025
	int r, emulation_type = EMULTYPE_PF;
5026
	bool direct = vcpu->arch.mmu->direct_map;
5027

5028
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5029 5030
		return RET_PF_RETRY;

5031
	r = RET_PF_INVALID;
5032
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5033
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5034
		if (r == RET_PF_EMULATE)
5035 5036
			goto emulate;
	}
5037

5038
	if (r == RET_PF_INVALID) {
5039 5040
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5041 5042
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5043 5044
	}

5045
	if (r < 0)
5046
		return r;
5047 5048
	if (r != RET_PF_EMULATE)
		return 1;
5049

5050 5051 5052 5053 5054 5055 5056
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5057
	if (vcpu->arch.mmu->direct_map &&
5058
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5059
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5060 5061 5062
		return 1;
	}

5063 5064 5065 5066 5067 5068
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5069 5070 5071 5072
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5073
	 */
5074
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5075
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5076
emulate:
5077
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5078
				       insn_len);
5079 5080 5081
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5082 5083
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5084
{
5085
	int i;
5086

5087 5088 5089 5090 5091 5092
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5093
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5094 5095 5096
	}

	if (!mmu->invlpg)
5097 5098
		return;

5099 5100
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5101

5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5121

5122 5123 5124
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5125 5126 5127 5128
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5129

5130 5131
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5132
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5133
	bool tlb_flush = false;
5134
	uint i;
5135 5136

	if (pcid == kvm_get_active_pcid(vcpu)) {
5137
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5138
		tlb_flush = true;
5139 5140
	}

5141 5142
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5143
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5144 5145 5146
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5147
	}
5148

5149
	if (tlb_flush)
5150
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5151

5152 5153 5154
	++vcpu->stat.invlpg;

	/*
5155 5156 5157
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5158 5159 5160 5161
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5162 5163
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5164
{
5165
	tdp_enabled = enable_tdp;
5166
	max_tdp_level = tdp_max_root_level;
5167 5168

	/*
5169
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5170 5171 5172 5173 5174 5175
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5176
		max_huge_page_level = tdp_huge_page_level;
5177
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5178
		max_huge_page_level = PG_LEVEL_1G;
5179
	else
5180
		max_huge_page_level = PG_LEVEL_2M;
5181
}
5182
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

5201
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5202
			if (flush && lock_flush_tlb) {
5203 5204 5205
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5206 5207
				flush = false;
			}
5208
			cond_resched_rwlock_write(&kvm->mmu_lock);
5209 5210 5211 5212
		}
	}

	if (flush && lock_flush_tlb) {
5213 5214
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
5236
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5237
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5238 5239 5240 5241 5242 5243
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
5244
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5245
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5246 5247 5248 5249 5250 5251
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5252 5253
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5254 5255
}

5256
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5257
{
5258 5259
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5260 5261
}

5262
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5263
{
5264
	struct page *page;
A
Avi Kivity 已提交
5265 5266
	int i;

5267 5268 5269 5270 5271 5272
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5273
	/*
5274 5275 5276 5277 5278 5279 5280
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5281
	 */
5282
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5283 5284
		return 0;

5285
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5286
	if (!page)
5287 5288
		return -ENOMEM;

5289
	mmu->pae_root = page_address(page);
5290
	for (i = 0; i < 4; ++i)
5291
		mmu->pae_root[i] = INVALID_PAGE;
5292

A
Avi Kivity 已提交
5293 5294 5295
	return 0;
}

5296
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5297
{
5298
	int ret;
5299

5300
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5301 5302
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5303
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5304
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5305

5306 5307
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5308 5309
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5310

5311
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5312

5313
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5314 5315 5316
	if (ret)
		return ret;

5317
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5318 5319 5320 5321 5322 5323 5324
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5325 5326
}

5327
#define BATCH_ZAP_PAGES	10
5328 5329 5330
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5331
	int nr_zapped, batch = 0;
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5344 5345 5346
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5347
		 */
5348
		if (WARN_ON(sp->role.invalid))
5349 5350
			continue;

5351 5352 5353 5354 5355 5356
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5357
		if (batch >= BATCH_ZAP_PAGES &&
5358
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5359
			batch = 0;
5360 5361 5362
			goto restart;
		}

5363 5364
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5365
			batch += nr_zapped;
5366
			goto restart;
5367
		}
5368 5369
	}

5370 5371 5372 5373 5374
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5375
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5389 5390
	lockdep_assert_held(&kvm->slots_lock);

5391
	write_lock(&kvm->mmu_lock);
5392
	trace_kvm_mmu_zap_all_fast(kvm);
5393 5394 5395 5396 5397 5398 5399 5400 5401

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5402

5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5413
	kvm_zap_obsolete_pages(kvm);
5414

5415
	if (is_tdp_mmu_enabled(kvm))
5416 5417
		kvm_tdp_mmu_zap_all(kvm);

5418
	write_unlock(&kvm->mmu_lock);
5419 5420
}

5421 5422 5423 5424 5425
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5426
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5427 5428
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5429
{
5430
	kvm_mmu_zap_all_fast(kvm);
5431 5432
}

5433
void kvm_mmu_init_vm(struct kvm *kvm)
5434
{
5435
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5436

5437 5438
	kvm_mmu_init_tdp_mmu(kvm);

5439
	node->track_write = kvm_mmu_pte_write;
5440
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5441
	kvm_page_track_register_notifier(kvm, node);
5442 5443
}

5444
void kvm_mmu_uninit_vm(struct kvm *kvm)
5445
{
5446
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5447

5448
	kvm_page_track_unregister_notifier(kvm, node);
5449 5450

	kvm_mmu_uninit_tdp_mmu(kvm);
5451 5452
}

X
Xiao Guangrong 已提交
5453 5454 5455 5456
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5457
	int i;
5458
	bool flush;
X
Xiao Guangrong 已提交
5459

5460
	write_lock(&kvm->mmu_lock);
5461 5462 5463 5464 5465 5466 5467 5468 5469
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5470

5471
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5472
						PG_LEVEL_4K,
5473
						KVM_MAX_HUGEPAGE_LEVEL,
5474
						start, end - 1, true);
5475
		}
X
Xiao Guangrong 已提交
5476 5477
	}

5478
	if (is_tdp_mmu_enabled(kvm)) {
5479 5480 5481 5482 5483
		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
		if (flush)
			kvm_flush_remote_tlbs(kvm);
	}

5484
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5485 5486
}

5487 5488
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5489
{
5490
	return __rmap_write_protect(kvm, rmap_head, false);
5491 5492
}

5493
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5494 5495
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5496
{
5497
	bool flush;
A
Avi Kivity 已提交
5498

5499
	write_lock(&kvm->mmu_lock);
5500
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5501
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5502
	if (is_tdp_mmu_enabled(kvm))
5503
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5504
	write_unlock(&kvm->mmu_lock);
5505 5506 5507 5508 5509 5510 5511 5512

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5513
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5514 5515 5516
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5517
	if (flush)
5518
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5519
}
5520

5521
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5522
					 struct kvm_rmap_head *rmap_head)
5523 5524 5525 5526
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5527
	kvm_pfn_t pfn;
5528 5529
	struct kvm_mmu_page *sp;

5530
restart:
5531
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5532
		sp = sptep_to_sp(sptep);
5533 5534 5535
		pfn = spte_to_pfn(*sptep);

		/*
5536 5537 5538 5539 5540
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5541
		 */
5542
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5543 5544
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5545
			pte_list_remove(rmap_head, sptep);
5546 5547 5548 5549 5550 5551 5552

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5553 5554
			goto restart;
		}
5555 5556 5557 5558 5559 5560
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5561
				   const struct kvm_memory_slot *memslot)
5562
{
5563
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5564
	write_lock(&kvm->mmu_lock);
5565 5566
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5567

5568
	if (is_tdp_mmu_enabled(kvm))
5569
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5570
	write_unlock(&kvm->mmu_lock);
5571 5572
}

5573 5574 5575 5576
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5577 5578 5579 5580 5581
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5582 5583
	 */
	lockdep_assert_held(&kvm->slots_lock);
5584 5585
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5586 5587
}

5588 5589 5590
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5591
	bool flush;
5592

5593
	write_lock(&kvm->mmu_lock);
5594
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5595
	if (is_tdp_mmu_enabled(kvm))
5596
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5597
	write_unlock(&kvm->mmu_lock);
5598 5599 5600 5601 5602 5603 5604 5605

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5606
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5607 5608 5609 5610 5611 5612
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5613
	bool flush;
5614

5615
	write_lock(&kvm->mmu_lock);
5616 5617
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5618
	if (is_tdp_mmu_enabled(kvm))
5619
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5620
	write_unlock(&kvm->mmu_lock);
5621 5622

	if (flush)
5623
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5624 5625 5626 5627 5628 5629
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5630
	bool flush;
5631

5632
	write_lock(&kvm->mmu_lock);
5633
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5634
	if (is_tdp_mmu_enabled(kvm))
5635
		flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5636
	write_unlock(&kvm->mmu_lock);
5637 5638

	if (flush)
5639
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5640 5641 5642
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

5643
void kvm_mmu_zap_all(struct kvm *kvm)
5644 5645
{
	struct kvm_mmu_page *sp, *node;
5646
	LIST_HEAD(invalid_list);
5647
	int ign;
5648

5649
	write_lock(&kvm->mmu_lock);
5650
restart:
5651
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5652
		if (WARN_ON(sp->role.invalid))
5653
			continue;
5654
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5655
			goto restart;
5656
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5657 5658 5659
			goto restart;
	}

5660
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5661

5662
	if (is_tdp_mmu_enabled(kvm))
5663 5664
		kvm_tdp_mmu_zap_all(kvm);

5665
	write_unlock(&kvm->mmu_lock);
5666 5667
}

5668
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5669
{
5670
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5671

5672
	gen &= MMIO_SPTE_GEN_MASK;
5673

5674
	/*
5675 5676 5677 5678 5679 5680 5681 5682
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5683
	/*
5684
	 * The very rare case: if the MMIO generation number has wrapped,
5685 5686
	 * zap all shadow pages.
	 */
5687
	if (unlikely(gen == 0)) {
5688
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5689
		kvm_mmu_zap_all_fast(kvm);
5690
	}
5691 5692
}

5693 5694
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5695 5696
{
	struct kvm *kvm;
5697
	int nr_to_scan = sc->nr_to_scan;
5698
	unsigned long freed = 0;
5699

J
Junaid Shahid 已提交
5700
	mutex_lock(&kvm_lock);
5701 5702

	list_for_each_entry(kvm, &vm_list, vm_list) {
5703
		int idx;
5704
		LIST_HEAD(invalid_list);
5705

5706 5707 5708 5709 5710 5711 5712 5713
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5714 5715 5716 5717 5718 5719
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5720 5721
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5722 5723
			continue;

5724
		idx = srcu_read_lock(&kvm->srcu);
5725
		write_lock(&kvm->mmu_lock);
5726

5727 5728 5729 5730 5731 5732
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5733
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5734

5735
unlock:
5736
		write_unlock(&kvm->mmu_lock);
5737
		srcu_read_unlock(&kvm->srcu, idx);
5738

5739 5740 5741 5742 5743
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5744 5745
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5746 5747
	}

J
Junaid Shahid 已提交
5748
	mutex_unlock(&kvm_lock);
5749 5750 5751 5752 5753 5754
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5755
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5756 5757 5758
}

static struct shrinker mmu_shrinker = {
5759 5760
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5761 5762 5763
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5764
static void mmu_destroy_caches(void)
5765
{
5766 5767
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5768 5769
}

5770 5771 5772 5773 5774
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
5775 5776 5777 5778 5779
	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
	 * 52-bit physical addresses then there are no reserved PA bits in the
	 * PTEs and so the reserved PA approach must be disabled.
5780
	 */
5781 5782 5783 5784
	if (shadow_phys_bits < 52)
		mask = BIT_ULL(51) | PT_PRESENT_MASK;
	else
		mask = 0;
5785

P
Paolo Bonzini 已提交
5786
	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5787 5788
}

P
Paolo Bonzini 已提交
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5823
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5824
			kvm_mmu_zap_all_fast(kvm);
5825
			mutex_unlock(&kvm->slots_lock);
5826 5827

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5828 5829 5830 5831 5832 5833 5834
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5835 5836
int kvm_mmu_module_init(void)
{
5837 5838
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5839 5840 5841
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5852
	kvm_mmu_reset_all_pte_masks();
5853

5854 5855
	kvm_set_mmio_spte_mask();

5856 5857
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5858
					    0, SLAB_ACCOUNT, NULL);
5859
	if (!pte_list_desc_cache)
5860
		goto out;
5861

5862 5863
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5864
						  0, SLAB_ACCOUNT, NULL);
5865
	if (!mmu_page_header_cache)
5866
		goto out;
5867

5868
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5869
		goto out;
5870

5871 5872 5873
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5874

5875 5876
	return 0;

5877
out:
5878
	mmu_destroy_caches();
5879
	return ret;
5880 5881
}

5882
/*
P
Peng Hao 已提交
5883
 * Calculate mmu pages needed for kvm.
5884
 */
5885
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5886
{
5887 5888
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5889
	struct kvm_memslots *slots;
5890
	struct kvm_memory_slot *memslot;
5891
	int i;
5892

5893 5894
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5895

5896 5897 5898
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5899 5900

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5901
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5902 5903 5904 5905

	return nr_mmu_pages;
}

5906 5907
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5908
	kvm_mmu_unload(vcpu);
5909 5910
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
5911
	mmu_free_memory_caches(vcpu);
5912 5913 5914 5915 5916 5917 5918
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5919 5920
	mmu_audit_disable();
}
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
5956
	write_lock(&kvm->mmu_lock);
5957 5958 5959

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5960 5961 5962 5963
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

5964 5965 5966 5967 5968 5969 5970 5971 5972
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
5973
		if (is_tdp_mmu_page(sp)) {
5974 5975
			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5976
		} else {
5977 5978 5979
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
5980

5981
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5982
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
5983
			cond_resched_rwlock_write(&kvm->mmu_lock);
5984 5985
		}
	}
5986
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5987

5988
	write_unlock(&kvm->mmu_lock);
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}