i915_request.c 53.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33 34
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
35
#include "gt/intel_ring.h"
36
#include "gt/intel_rps.h"
37

38
#include "i915_active.h"
39
#include "i915_drv.h"
40
#include "i915_globals.h"
41
#include "i915_trace.h"
42
#include "intel_pm.h"
43

44 45 46 47
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
48 49
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
50 51
};

52
static struct i915_global_request {
53
	struct i915_global base;
54
	struct kmem_cache *slab_requests;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59
{
60
	return dev_name(to_request(fence)->i915->drm.dev);
61 62
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	const struct i915_gem_context *ctx;

67 68
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
69 70 71 72 73 74 75 76 77 78
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

79
	ctx = i915_request_gem_context(to_request(fence));
80 81 82 83
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
84 85
}

86
static bool i915_fence_signaled(struct dma_fence *fence)
87
{
88
	return i915_request_completed(to_request(fence));
89 90
}

91
static bool i915_fence_enable_signaling(struct dma_fence *fence)
92
{
93
	return i915_request_enable_breadcrumb(to_request(fence));
94 95
}

96
static signed long i915_fence_wait(struct dma_fence *fence,
97
				   bool interruptible,
98
				   signed long timeout)
99
{
100 101 102
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
103 104
}

105 106 107 108 109
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

110
static void i915_fence_release(struct dma_fence *fence)
111
{
112
	struct i915_request *rq = to_request(fence);
113

114 115
	/*
	 * The request is put onto a RCU freelist (i.e. the address
116 117 118 119 120
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
121
	i915_sw_fence_fini(&rq->submit);
122
	i915_sw_fence_fini(&rq->semaphore);
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
157 158
		return;

159
	kmem_cache_free(global.slab_requests, rq);
160 161
}

162
const struct dma_fence_ops i915_fence_ops = {
163 164 165 166 167 168 169 170
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

215
static inline void
216
remove_from_client(struct i915_request *request)
217
{
218
	struct drm_i915_file_private *file_priv;
219

220
	if (!READ_ONCE(request->file_priv))
221 222
		return;

223 224 225 226
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
227
		list_del(&request->client_link);
228
		spin_unlock(&file_priv->mm.lock);
229
	}
230
	rcu_read_unlock();
231 232
}

233
static void free_capture_list(struct i915_request *request)
234
{
235
	struct i915_capture_list *capture;
236

237
	capture = fetch_and_zero(&request->capture_list);
238
	while (capture) {
239
		struct i915_capture_list *next = capture->next;
240 241 242 243 244 245

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

259 260 261 262 263 264 265 266 267 268 269
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
270
	spin_lock_irq(&locked->active.lock);
271 272 273 274 275
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
276
	list_del_init(&rq->sched.link);
277 278
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
279
	spin_unlock_irq(&locked->active.lock);
280 281
}

282
bool i915_request_retire(struct i915_request *rq)
283
{
284 285
	if (!i915_request_completed(rq))
		return false;
286

287
	RQ_TRACE(rq, "\n");
288

289 290
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
291

292 293 294 295 296 297 298 299 300
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
301 302
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
303 304 305
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
306
	rq->ring->head = rq->postfix;
307

308 309 310 311 312 313
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
314
	remove_from_engine(rq);
315

316
	spin_lock_irq(&rq->lock);
317 318 319 320 321
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
322
	if (i915_request_has_waitboost(rq)) {
323 324
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
325
	}
326 327 328 329 330
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
331
	spin_unlock_irq(&rq->lock);
332

333
	remove_from_client(rq);
334
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
335

336 337
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
338

339 340 341 342 343
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
344 345
}

346
void i915_request_retire_upto(struct i915_request *rq)
347
{
348
	struct intel_timeline * const tl = i915_request_timeline(rq);
349
	struct i915_request *tmp;
350

351
	RQ_TRACE(rq, "\n");
352

353
	GEM_BUG_ON(!i915_request_completed(rq));
354

355
	do {
356
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
357
	} while (i915_request_retire(tmp) && tmp != rq);
358 359
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
	 * However, we can't rely on our tracking of ELSP[0] to known
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
	for (port = __engine_active(signal->engine); (rq = *port); port++) {
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

407
static int
408 409 410 411 412
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
413 414 415
{
	struct execute_cb *cb;

416 417 418
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
419
		return 0;
420
	}
421 422 423 424 425 426 427 428 429

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

430 431 432 433 434 435
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

436
	spin_lock_irq(&signal->lock);
437
	if (i915_request_is_active(signal) || __request_in_flight(signal)) {
438 439 440 441
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
442 443 444 445 446 447 448 449 450 451
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

496
bool __i915_request_submit(struct i915_request *request)
497
{
498
	struct intel_engine_cs *engine = request->engine;
499
	bool result = false;
500

501
	RQ_TRACE(request, "\n");
502

503
	GEM_BUG_ON(!irqs_disabled());
504
	lockdep_assert_held(&engine->active.lock);
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

525 526 527 528
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
548
		engine->saturated |= request->sched.semaphores;
549

550 551
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
552

553 554 555
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
556

557 558 559
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

560
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
561
		list_move_tail(&request->sched.link, &engine->active.requests);
562 563
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
564

565
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
566
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
567
	    !i915_request_enable_breadcrumb(request))
568
		intel_engine_signal_breadcrumbs(engine);
569

570 571
	__notify_execute_cb(request);

572 573
	spin_unlock(&request->lock);

574
	return result;
575 576
}

577
void i915_request_submit(struct i915_request *request)
578 579 580
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
581

582
	/* Will be called from irq-context when using foreign fences. */
583
	spin_lock_irqsave(&engine->active.lock, flags);
584

585
	__i915_request_submit(request);
586

587
	spin_unlock_irqrestore(&engine->active.lock, flags);
588 589
}

590
void __i915_request_unsubmit(struct i915_request *request)
591
{
592
	struct intel_engine_cs *engine = request->engine;
593

594
	RQ_TRACE(request, "\n");
595

596
	GEM_BUG_ON(!irqs_disabled());
597
	lockdep_assert_held(&engine->active.lock);
598

599 600
	/*
	 * Only unwind in reverse order, required so that the per-context list
601 602
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
603

604 605
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
606

607
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
608
		i915_request_cancel_breadcrumb(request);
609

610 611
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
612

613 614
	spin_unlock(&request->lock);

615
	/* We've already spun, don't charge on resubmitting. */
616
	if (request->sched.semaphores && i915_request_started(request))
617 618
		request->sched.semaphores = 0;

619 620
	/*
	 * We don't need to wake_up any waiters on request->execute, they
621
	 * will get woken by any other event or us re-adding this request
622
	 * to the engine timeline (__i915_request_submit()). The waiters
623 624 625 626 627
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

628
void i915_request_unsubmit(struct i915_request *request)
629 630 631 632 633
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
634
	spin_lock_irqsave(&engine->active.lock, flags);
635

636
	__i915_request_unsubmit(request);
637

638
	spin_unlock_irqrestore(&engine->active.lock, flags);
639 640
}

641
static int __i915_sw_fence_call
642
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
643
{
644
	struct i915_request *request =
645 646 647 648
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
649
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
650 651

		if (unlikely(fence->error))
652
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
653

654
		/*
655 656 657 658 659 660
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
661 662
		 */
		rcu_read_lock();
663
		request->engine->submit_request(request);
664
		rcu_read_unlock();
665 666 667
		break;

	case FENCE_FREE:
668
		i915_request_put(request);
669 670 671
		break;
	}

672 673 674
	return NOTIFY_DONE;
}

675 676 677
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
678
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
679 680 681 682 683 684

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
685
		i915_request_put(rq);
686 687 688 689 690 691
		break;
	}

	return NOTIFY_DONE;
}

692
static void retire_requests(struct intel_timeline *tl)
693 694 695
{
	struct i915_request *rq, *rn;

696
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
697
		if (!i915_request_retire(rq))
698 699 700 701
			break;
}

static noinline struct i915_request *
702 703 704
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
705 706 707
{
	struct i915_request *rq;

708 709 710 711 712
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
713

714 715 716 717
		return rq;
	}

	if (list_empty(&tl->requests))
718 719
		goto out;

720
	/* Move our oldest request to the slab-cache (if not in use!) */
721
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
722 723 724 725 726 727 728
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

729
	/* Ratelimit ourselves to prevent oom from malicious clients */
730
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
731 732 733
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
734
	retire_requests(tl);
735 736

out:
737
	return kmem_cache_alloc(global.slab_requests, gfp);
738 739
}

740 741 742 743 744 745 746 747 748
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

749 750
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

751 752 753 754 755 756
	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

757
struct i915_request *
758
__i915_request_create(struct intel_context *ce, gfp_t gfp)
759
{
760
	struct intel_timeline *tl = ce->timeline;
761 762
	struct i915_request *rq;
	u32 seqno;
763 764
	int ret;

765
	might_sleep_if(gfpflags_allow_blocking(gfp));
766

767 768
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
769

770 771
	/*
	 * Beware: Dragons be flying overhead.
772 773 774 775
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
776
	 * of being read by __i915_active_request_get_rcu(). As such,
777 778
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
779
	 * read the request->global_seqno and increment the reference count.
780 781 782 783
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
784 785
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
786 787 788 789 790 791 792 793 794 795 796 797 798
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
799
	rq = kmem_cache_alloc(global.slab_requests,
800
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
801
	if (unlikely(!rq)) {
802
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
803
		if (!rq) {
804 805 806
			ret = -ENOMEM;
			goto err_unreserve;
		}
807
	}
808

809
	rq->i915 = ce->engine->i915;
810
	rq->context = ce;
811
	rq->engine = ce->engine;
812
	rq->ring = ce->ring;
813
	rq->execution_mask = ce->engine->mask;
814

815 816 817 818 819 820 821 822 823 824 825 826
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

827 828
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
829
	rq->hwsp_seqno = tl->hwsp_seqno;
830
	GEM_BUG_ON(i915_request_completed(rq));
831

832
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
833

834
	/* We bump the ref for the fence chain */
835 836
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
837

838
	i915_sched_node_reinit(&rq->sched);
839

840
	/* No zalloc, everything must be cleared after use */
841
	rq->batch = NULL;
842 843 844
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
845

846 847 848
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
849
	 * i915_request_add() call can't fail. Note that the reserve may need
850 851
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
852 853 854 855 856
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
857
	 */
858 859
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
860

861 862
	/*
	 * Record the position of the start of the request so that
863 864 865 866
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
867
	rq->head = rq->ring->emit;
868

869
	ret = rq->engine->request_alloc(rq);
870 871
	if (ret)
		goto err_unwind;
872

873 874
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

875
	intel_context_mark_active(ce);
876 877
	list_add_tail_rcu(&rq->link, &tl->requests);

878
	return rq;
879

880
err_unwind:
881
	ce->ring->emit = rq->head;
882

883
	/* Make sure we didn't add ourselves to external state before freeing */
884 885
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
886

887
err_free:
888
	kmem_cache_free(global.slab_requests, rq);
889
err_unreserve:
890
	intel_context_unpin(ce);
891
	return ERR_PTR(ret);
892 893
}

894 895 896 897
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
898
	struct intel_timeline *tl;
899

900 901 902
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
903 904

	/* Move our oldest request to the slab-cache (if not in use!) */
905 906
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
907 908 909 910 911 912 913 914 915
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
916
	rq->cookie = lockdep_pin_lock(&tl->mutex);
917 918 919 920

	return rq;

err_unlock:
921
	intel_context_timeline_unlock(tl);
922 923 924
	return rq;
}

925 926 927
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
928 929
	struct dma_fence *fence;
	int err;
930

931 932
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
933

934 935 936
	if (i915_request_started(signal))
		return 0;

937
	fence = NULL;
938
	rcu_read_lock();
939
	spin_lock_irq(&signal->lock);
940 941 942 943 944 945 946 947 948 949 950
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
951

952 953 954 955 956 957
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
958 959 960 961 962 963 964 965
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
966
		}
967 968 969

		fence = &prev->fence;
	} while (0);
970 971 972 973
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
974 975

	err = 0;
976
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
977 978 979 980 981 982
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
1000
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1001 1002
}

1003
static int
1004 1005 1006
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1007
{
1008
	const int has_token = INTEL_GEN(to->i915) >= 12;
1009
	u32 hwsp_offset;
1010
	int len, err;
1011 1012 1013
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
1014
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1015

1016
	/* We need to pin the signaler's HWSP until we are finished reading. */
1017 1018 1019
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1020

1021 1022 1023 1024 1025
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1037 1038 1039 1040 1041
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1042
	*cs++ = seqno;
1043 1044
	*cs++ = hwsp_offset;
	*cs++ = 0;
1045 1046 1047 1048
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1049 1050

	intel_ring_advance(to, cs);
1051 1052 1053 1054 1055 1056 1057 1058
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1059
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1060
	struct i915_sw_fence *wait = &to->submit;
1061

1062 1063 1064
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1065 1066 1067
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1068 1069 1070
	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1080
	/* Just emit the first semaphore we see as request space is limited. */
1081
	if (already_busywaiting(to) & mask)
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1094
	to->sched.semaphores |= mask;
1095
	wait = &to->semaphore;
1096 1097

await_fence:
1098
	return i915_sw_fence_await_dma_fence(wait,
1099 1100
					     &from->fence, 0,
					     I915_FENCE_GFP);
1101 1102
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1117
static int
1118 1119 1120 1121
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
1122
{
1123
	int err;
1124

1125
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1126

1127 1128 1129 1130 1131 1132 1133 1134
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1135
		return 0;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1175
	}
1176

1177
	/* Couple the dependency tree for PI on this exposed to->fence */
1178
	if (to->engine->schedule) {
1179
		err = i915_sched_node_add_dependency(&to->sched,
1180
						     &from->sched,
1181 1182 1183
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1184 1185
	}

1186 1187
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1203
static int
1204
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1205
{
1206
	mark_external(rq);
1207
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1208 1209
					     i915_fence_context_timeout(rq->i915,
									fence->context),
1210 1211 1212
					     I915_FENCE_GFP);
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1239
int
1240 1241 1242 1243
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
1244
{
1245 1246
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1247 1248
	int ret;

1249 1250 1251
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1252 1253
		/* XXX Error for signal-on-any fence arrays */

1254 1255 1256 1257
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1258

1259 1260
	do {
		fence = *child++;
1261 1262
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1263
			continue;
1264
		}
1265

1266
		if (fence->context == rq->fence.context)
1267 1268
			continue;

1269 1270 1271 1272
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1273

1274
		if (dma_fence_is_i915(fence))
1275 1276 1277
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook);
1278
		else
1279
			ret = i915_request_await_external(rq, fence);
1280 1281
		if (ret < 0)
			return ret;
1282
	} while (--nchild);
1283 1284 1285 1286

	return 0;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
		return __i915_request_await_execution(to, from, NULL);
}

1306
static int
1307
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1308
{
1309
	int ret;
1310

1311 1312
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1313

1314 1315
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1316
		return 0;
1317 1318
	}

1319
	if (to->engine->schedule) {
1320
		ret = i915_sched_node_add_dependency(&to->sched,
1321
						     &from->sched,
1322 1323 1324
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1325 1326
	}

1327 1328
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1329 1330 1331 1332 1333 1334
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1335 1336
}

1337
int
1338
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1339 1340 1341 1342 1343
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1344 1345 1346 1347 1348 1349 1350 1351
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1362 1363
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1364
			continue;
1365
		}
1366

1367 1368 1369 1370 1371
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1372 1373 1374
		if (fence->context == rq->fence.context)
			continue;

1375 1376 1377 1378 1379
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1380 1381

		if (dma_fence_is_i915(fence))
1382
			ret = i915_request_await_request(rq, to_request(fence));
1383
		else
1384
			ret = i915_request_await_external(rq, fence);
1385 1386
		if (ret < 0)
			return ret;
1387 1388 1389 1390 1391

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1392 1393 1394 1395 1396
	} while (--nchild);

	return 0;
}

1397
/**
1398
 * i915_request_await_object - set this request to (async) wait upon a bo
1399 1400
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1401
 * @write: whether the wait is on behalf of a writer
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1418 1419 1420
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1421
{
1422 1423
	struct dma_fence *excl;
	int ret = 0;
1424 1425

	if (write) {
1426 1427 1428
		struct dma_fence **shared;
		unsigned int count, i;

1429
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1430 1431 1432 1433 1434
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1435
			ret = i915_request_await_dma_fence(to, shared[i]);
1436 1437 1438 1439 1440 1441 1442 1443 1444
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1445
	} else {
1446
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1447 1448
	}

1449 1450
	if (excl) {
		if (ret == 0)
1451
			ret = i915_request_await_dma_fence(to, excl);
1452

1453
		dma_fence_put(excl);
1454 1455
	}

1456
	return ret;
1457 1458
}

1459 1460 1461
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1462
	struct intel_timeline *timeline = i915_request_timeline(rq);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1485 1486
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1487
	if (prev && !i915_request_completed(prev)) {
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1498
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1513 1514 1515 1516 1517
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1518 1519 1520 1521 1522
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1523 1524 1525 1526 1527
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1528
struct i915_request *__i915_request_commit(struct i915_request *rq)
1529
{
1530 1531
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1532
	u32 *cs;
1533

1534
	RQ_TRACE(rq, "\n");
1535

1536 1537 1538 1539 1540
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1541 1542
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1543
	rq->emitted_jiffies = jiffies;
1544

1545 1546
	/*
	 * Record the position of the start of the breadcrumb so that
1547 1548
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1549
	 * position of the ring's HEAD.
1550
	 */
1551
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1552
	GEM_BUG_ON(IS_ERR(cs));
1553
	rq->postfix = intel_ring_offset(rq, cs);
1554

1555
	return __i915_request_add_to_timeline(rq);
1556 1557 1558 1559 1560
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1561 1562
	/*
	 * Let the backend know a new request has arrived that may need
1563 1564 1565 1566 1567 1568 1569 1570 1571
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1572 1573
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1574
	i915_sw_fence_commit(&rq->semaphore);
1575 1576 1577 1578 1579
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1580
	struct intel_timeline * const tl = i915_request_timeline(rq);
1581
	struct i915_sched_attr attr = {};
1582
	struct i915_gem_context *ctx;
1583

1584 1585
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1586 1587

	trace_i915_request_add(rq);
1588
	__i915_request_commit(rq);
1589

1590 1591 1592 1593 1594 1595
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1596

1597 1598
	__i915_request_queue(rq, &attr);

1599
	mutex_unlock(&tl->mutex);
1600 1601
}

1602
static unsigned long local_clock_ns(unsigned int *cpu)
1603 1604 1605
{
	unsigned long t;

1606 1607
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1619
	t = local_clock();
1620 1621 1622 1623 1624 1625 1626 1627 1628
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1629
	if (time_after(local_clock_ns(&this_cpu), timeout))
1630 1631 1632 1633 1634
		return true;

	return this_cpu != cpu;
}

1635
static bool __i915_spin_request(const struct i915_request * const rq, int state)
1636
{
1637
	unsigned long timeout_ns;
1638
	unsigned int cpu;
1639 1640 1641 1642 1643 1644 1645

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1646 1647 1648 1649
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1650
	 */
1651
	if (!i915_request_is_running(rq))
1652 1653
		return false;

1654 1655
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1656 1657 1658 1659 1660 1661 1662 1663 1664
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1665 1666
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1667
	do {
1668 1669
		if (i915_request_completed(rq))
			return true;
1670

1671 1672 1673
		if (signal_pending_state(state, current))
			break;

1674
		if (busywait_stop(timeout_ns, cpu))
1675 1676
			break;

1677
		cpu_relax();
1678 1679 1680 1681 1682
	} while (!need_resched());

	return false;
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1695
/**
1696
 * i915_request_wait - wait until execution of request has finished
1697
 * @rq: the request to wait upon
1698
 * @flags: how to wait
1699 1700
 * @timeout: how long to wait in jiffies
 *
1701
 * i915_request_wait() waits for the request to be completed, for a
1702 1703
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1704
 *
1705 1706 1707 1708
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1709
 */
1710
long i915_request_wait(struct i915_request *rq,
1711 1712
		       unsigned int flags,
		       long timeout)
1713
{
1714 1715
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1716
	struct request_wait wait;
1717 1718

	might_sleep();
1719
	GEM_BUG_ON(timeout < 0);
1720

1721
	if (dma_fence_is_signaled(&rq->fence))
1722
		return timeout;
1723

1724 1725
	if (!timeout)
		return -ETIME;
1726

1727
	trace_i915_request_wait_begin(rq, flags);
1728 1729 1730 1731 1732 1733 1734

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1735
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1760 1761
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
	    __i915_spin_request(rq, state)) {
1762
		dma_fence_signal(&rq->fence);
1763
		goto out;
1764
	}
1765

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1780
			intel_rps_boost(rq);
1781
	}
1782

1783 1784 1785
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1786

1787 1788
	for (;;) {
		set_current_state(state);
1789

1790 1791
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1792
			break;
1793
		}
1794

1795 1796
		intel_engine_flush_submission(rq->engine);

1797
		if (signal_pending_state(state, current)) {
1798
			timeout = -ERESTARTSYS;
1799 1800 1801
			break;
		}

1802 1803
		if (!timeout) {
			timeout = -ETIME;
1804 1805 1806
			break;
		}

1807
		timeout = io_schedule_timeout(timeout);
1808
	}
1809
	__set_current_state(TASK_RUNNING);
1810

1811 1812 1813
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1814
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1815
	trace_i915_request_wait_end(rq);
1816
	return timeout;
1817
}
1818

1819 1820
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1821
#include "selftests/i915_request.c"
1822
#endif
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1841 1842
int __init i915_global_request_init(void)
{
1843 1844 1845 1846 1847 1848 1849 1850
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1851 1852 1853
	if (!global.slab_requests)
		return -ENOMEM;

1854 1855 1856 1857 1858 1859 1860
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1861
	i915_global_register(&global.base);
1862 1863 1864 1865 1866 1867
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}