slab_common.c 32.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14
#include <linux/compiler.h>
15
#include <linux/kfence.h>
16
#include <linux/module.h>
17 18
#include <linux/cpu.h>
#include <linux/uaccess.h>
19 20
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
21
#include <linux/debugfs.h>
22
#include <linux/kasan.h>
23 24 25
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
26
#include <linux/memcontrol.h>
27 28

#define CREATE_TRACE_POINTS
29
#include <trace/events/kmem.h>
30

31 32
#include "internal.h"

33 34 35
#include "slab.h"

enum slab_state slab_state;
36 37
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
38
struct kmem_cache *kmem_cache;
39

40 41 42 43 44 45 46 47
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

48 49 50 51 52
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

53 54 55 56
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
57
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
58
		SLAB_FAILSLAB | kasan_never_merge())
59

V
Vladimir Davydov 已提交
60
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
61
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
62 63 64 65

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
66
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
67 68 69

static int __init setup_slab_nomerge(char *str)
{
70
	slab_nomerge = true;
71 72 73
	return 1;
}

74 75 76 77 78 79
static int __init setup_slab_merge(char *str)
{
	slab_nomerge = false;
	return 1;
}

80 81
#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82
__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
83 84 85
#endif

__setup("slab_nomerge", setup_slab_nomerge);
86
__setup("slab_merge", setup_slab_merge);
87

88 89 90 91 92 93 94 95 96
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

97
#ifdef CONFIG_DEBUG_VM
98
static int kmem_cache_sanity_check(const char *name, unsigned int size)
99
{
100
	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
101 102
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
103
	}
104

105
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
106 107 108
	return 0;
}
#else
109
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
110 111 112
{
	return 0;
}
113 114
#endif

115 116 117 118
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

119 120 121 122 123 124
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
125 126
}

127
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
128 129 130 131 132 133 134 135
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
136
			return 0;
137 138
		}
	}
139
	return i;
140 141
}

142 143 144 145
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
146 147
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
148 149 150 151 152 153 154 155 156
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
157
		unsigned int ralign;
158 159 160 161 162 163 164 165 166 167 168 169 170

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

171 172 173 174 175 176 177 178 179 180 181
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (s->ctor)
		return 1;

182 183 184
	if (s->usersize)
		return 1;

185 186 187 188 189 190 191 192 193
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

194
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
195
		slab_flags_t flags, const char *name, void (*ctor)(void *))
196 197 198
{
	struct kmem_cache *s;

199
	if (slab_nomerge)
200 201 202 203 204 205 206 207
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
208
	flags = kmem_cache_flags(size, flags, name);
209

210 211 212
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

213
	list_for_each_entry_reverse(s, &slab_caches, list) {
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

232 233 234 235
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

236 237 238 239 240
		return s;
	}
	return NULL;
}

241
static struct kmem_cache *create_cache(const char *name,
242
		unsigned int object_size, unsigned int align,
243 244
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
245
		struct kmem_cache *root_cache)
246 247 248 249
{
	struct kmem_cache *s;
	int err;

250 251 252
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

253 254 255 256 257 258
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
259
	s->size = s->object_size = object_size;
260 261
	s->align = align;
	s->ctor = ctor;
262 263
	s->useroffset = useroffset;
	s->usersize = usersize;
264 265 266 267 268 269 270 271 272 273 274 275 276

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
277
	kmem_cache_free(kmem_cache, s);
278 279
	goto out;
}
280

281 282 283
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
284 285 286 287
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
288 289
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
290 291 292 293 294 295 296 297 298 299
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
300
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
301 302 303 304 305
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
306 307
 *
 * Return: a pointer to the cache on success, NULL on failure.
308
 */
309
struct kmem_cache *
310 311
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
312 313
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
314
		  void (*ctor)(void *))
315
{
316
	struct kmem_cache *s = NULL;
317
	const char *cache_name;
318
	int err;
319

320 321 322 323 324 325 326 327 328 329
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * If no slub_debug was enabled globally, the static key is not yet
	 * enabled by setup_slub_debug(). Enable it if the cache is being
	 * created with any of the debugging flags passed explicitly.
	 */
	if (flags & SLAB_DEBUG_FLAGS)
		static_branch_enable(&slub_debug_enabled);
#endif

330
	mutex_lock(&slab_mutex);
331

332
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
333
	if (err) {
334
		goto out_unlock;
A
Andrew Morton 已提交
335
	}
336

337 338 339 340 341 342
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

343 344 345 346 347 348 349
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
350

351 352 353 354 355 356 357
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
358
	if (s)
359
		goto out_unlock;
360

361
	cache_name = kstrdup_const(name, GFP_KERNEL);
362 363 364 365
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
366

367
	s = create_cache(cache_name, size,
368
			 calculate_alignment(flags, align, size),
369
			 flags, useroffset, usersize, ctor, NULL);
370 371
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
372
		kfree_const(cache_name);
373
	}
374 375

out_unlock:
376
	mutex_unlock(&slab_mutex);
377

378
	if (err) {
379
		if (flags & SLAB_PANIC)
380 381
			panic("%s: Failed to create slab '%s'. Error %d\n",
				__func__, name, err);
382
		else {
383 384
			pr_warn("%s(%s) failed with error %d\n",
				__func__, name, err);
385 386 387 388
			dump_stack();
		}
		return NULL;
	}
389 390
	return s;
}
391 392
EXPORT_SYMBOL(kmem_cache_create_usercopy);

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
418
struct kmem_cache *
419
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
420 421
		slab_flags_t flags, void (*ctor)(void *))
{
422
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
423 424
					  ctor);
}
425
EXPORT_SYMBOL(kmem_cache_create);
426

427
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
428
{
429 430
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
431

432
	/*
433
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
434
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
435
	 * through RCU and the associated kmem_cache are dereferenced
436 437 438 439 440 441 442 443
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
444

445 446 447 448 449 450
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
451
		kfence_shutdown_cache(s);
452 453 454 455 456 457
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
458 459
}

460
static int shutdown_cache(struct kmem_cache *s)
461
{
462 463 464
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

465 466
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
467

468
	list_del(&s->list);
469

470
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
471 472 473
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
474 475 476
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
477
		kfence_shutdown_cache(s);
478
#ifdef SLAB_SUPPORTS_SYSFS
479
		sysfs_slab_unlink(s);
480
		sysfs_slab_release(s);
481 482 483 484
#else
		slab_kmem_cache_release(s);
#endif
	}
485 486

	return 0;
487 488
}

489 490
void slab_kmem_cache_release(struct kmem_cache *s)
{
491
	__kmem_cache_release(s);
492
	kfree_const(s->name);
493 494 495
	kmem_cache_free(kmem_cache, s);
}

496 497
void kmem_cache_destroy(struct kmem_cache *s)
{
498
	int err;
499

500 501 502
	if (unlikely(!s))
		return;

503
	mutex_lock(&slab_mutex);
504

505
	s->refcount--;
506 507 508
	if (s->refcount)
		goto out_unlock;

509
	err = shutdown_cache(s);
510
	if (err) {
511 512
		pr_err("%s %s: Slab cache still has objects\n",
		       __func__, s->name);
513 514
		dump_stack();
	}
515 516
out_unlock:
	mutex_unlock(&slab_mutex);
517 518 519
}
EXPORT_SYMBOL(kmem_cache_destroy);

520 521 522 523 524 525
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
526 527
 *
 * Return: %0 if all slabs were released, non-zero otherwise
528 529 530 531 532
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

533

534
	kasan_cache_shrink(cachep);
535
	ret = __kmem_cache_shrink(cachep);
536

537 538 539 540
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

541
bool slab_is_available(void)
542 543 544
{
	return slab_state >= UP;
}
545

546
#ifdef CONFIG_PRINTK
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/**
 * kmem_valid_obj - does the pointer reference a valid slab object?
 * @object: pointer to query.
 *
 * Return: %true if the pointer is to a not-yet-freed object from
 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 * is to an already-freed object, and %false otherwise.
 */
bool kmem_valid_obj(void *object)
{
	struct page *page;

	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
		return false;
	page = virt_to_head_page(object);
	return PageSlab(page);
}
565
EXPORT_SYMBOL_GPL(kmem_valid_obj);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

/**
 * kmem_dump_obj - Print available slab provenance information
 * @object: slab object for which to find provenance information.
 *
 * This function uses pr_cont(), so that the caller is expected to have
 * printed out whatever preamble is appropriate.  The provenance information
 * depends on the type of object and on how much debugging is enabled.
 * For a slab-cache object, the fact that it is a slab object is printed,
 * and, if available, the slab name, return address, and stack trace from
 * the allocation of that object.
 *
 * This function will splat if passed a pointer to a non-slab object.
 * If you are not sure what type of object you have, you should instead
 * use mem_dump_obj().
 */
void kmem_dump_obj(void *object)
{
	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
	int i;
	struct page *page;
	unsigned long ptroffset;
	struct kmem_obj_info kp = { };

	if (WARN_ON_ONCE(!virt_addr_valid(object)))
		return;
	page = virt_to_head_page(object);
	if (WARN_ON_ONCE(!PageSlab(page))) {
		pr_cont(" non-slab memory.\n");
		return;
	}
	kmem_obj_info(&kp, object, page);
	if (kp.kp_slab_cache)
		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
	else
		pr_cont(" slab%s", cp);
	if (kp.kp_objp)
		pr_cont(" start %px", kp.kp_objp);
	if (kp.kp_data_offset)
		pr_cont(" data offset %lu", kp.kp_data_offset);
	if (kp.kp_objp) {
		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
		pr_cont(" pointer offset %lu", ptroffset);
	}
	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
		pr_cont(" size %u", kp.kp_slab_cache->usersize);
	if (kp.kp_ret)
		pr_cont(" allocated at %pS\n", kp.kp_ret);
	else
		pr_cont("\n");
	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
		if (!kp.kp_stack[i])
			break;
		pr_info("    %pS\n", kp.kp_stack[i]);
	}
}
622
EXPORT_SYMBOL_GPL(kmem_dump_obj);
623
#endif
624

625 626
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
627 628 629
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
630 631
{
	int err;
632
	unsigned int align = ARCH_KMALLOC_MINALIGN;
633 634 635

	s->name = name;
	s->size = s->object_size = size;
636 637 638 639 640 641 642 643 644

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

645 646
	s->useroffset = useroffset;
	s->usersize = usersize;
647

648 649 650
	err = __kmem_cache_create(s, flags);

	if (err)
651
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
652 653 654 655 656
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

657 658 659
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
660 661 662 663 664 665
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

666
	create_boot_cache(s, name, size, flags, useroffset, usersize);
667
	kasan_cache_create_kmalloc(s);
668 669 670 671 672
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

673
struct kmem_cache *
674 675
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
676 677
EXPORT_SYMBOL(kmalloc_caches);

678 679 680 681 682 683
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
684
static u8 size_index[24] __ro_after_init = {
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

711
static inline unsigned int size_index_elem(unsigned int bytes)
712 713 714 715 716 717 718 719 720 721
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
722
	unsigned int index;
723 724 725 726 727 728

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
729
	} else {
730
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
731
			return NULL;
732
		index = fls(size - 1);
733
	}
734

735
	return kmalloc_caches[kmalloc_type(flags)][index];
736 737
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

755 756
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
757 758
 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
 * kmalloc-32M.
759
 */
760
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
786
	INIT_KMALLOC_INFO(33554432, 32M)
787 788
};

789
/*
790 791 792 793 794 795 796 797 798
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
799
 */
800
void __init setup_kmalloc_cache_index_table(void)
801
{
802
	unsigned int i;
803

804 805 806 807
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
808
		unsigned int elem = size_index_elem(i);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
834 835
}

836
static void __init
837
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
838
{
839
	if (type == KMALLOC_RECLAIM)
840 841
		flags |= SLAB_RECLAIM_ACCOUNT;

842 843
	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
844 845
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
846 847
}

848 849 850 851 852
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
853
void __init create_kmalloc_caches(slab_flags_t flags)
854
{
855 856
	int i;
	enum kmalloc_cache_type type;
857

858 859 860 861
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
862

863 864 865 866 867 868 869 870 871 872 873 874
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
875 876
	}

877 878 879 880 881
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
882
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
883 884

		if (s) {
885
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
886
				kmalloc_info[i].name[KMALLOC_DMA],
887
				kmalloc_info[i].size,
888 889
				SLAB_CACHE_DMA | flags, 0,
				kmalloc_info[i].size);
890 891 892 893
		}
	}
#endif
}
894 895
#endif /* !CONFIG_SLOB */

896 897 898 899 900 901 902 903 904 905 906 907
gfp_t kmalloc_fix_flags(gfp_t flags)
{
	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;

	flags &= ~GFP_SLAB_BUG_MASK;
	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
			invalid_mask, &invalid_mask, flags, &flags);
	dump_stack();

	return flags;
}

V
Vladimir Davydov 已提交
908 909 910 911 912
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
913 914
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
915
	void *ret = NULL;
V
Vladimir Davydov 已提交
916 917
	struct page *page;

918 919 920
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);

V
Vladimir Davydov 已提交
921
	flags |= __GFP_COMP;
922
	page = alloc_pages(flags, order);
923 924
	if (likely(page)) {
		ret = page_address(page);
925 926
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
				      PAGE_SIZE << order);
927
	}
928
	ret = kasan_kmalloc_large(ret, size, flags);
929
	/* As ret might get tagged, call kmemleak hook after KASAN. */
930
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
931 932 933 934
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

935 936 937 938 939 940 941 942 943
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
944

945 946 947
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
948
			       unsigned int count)
949 950
{
	unsigned int rand;
951
	unsigned int i;
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
992
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
993
#ifdef CONFIG_SLAB
994
#define SLABINFO_RIGHTS (0600)
995
#else
996
#define SLABINFO_RIGHTS (0400)
997 998
#endif

999
static void print_slabinfo_header(struct seq_file *m)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1010
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1011 1012 1013
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1014
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1015 1016 1017 1018 1019
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1020
void *slab_start(struct seq_file *m, loff_t *pos)
1021 1022
{
	mutex_lock(&slab_mutex);
1023
	return seq_list_start(&slab_caches, *pos);
1024 1025
}

1026
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1027
{
1028
	return seq_list_next(p, &slab_caches, pos);
1029 1030
}

1031
void slab_stop(struct seq_file *m, void *p)
1032 1033 1034 1035
{
	mutex_unlock(&slab_mutex);
}

1036
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1037
{
1038 1039 1040 1041 1042 1043
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1044
		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1045 1046 1047 1048 1049 1050 1051 1052
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1053 1054
}

1055
static int slab_show(struct seq_file *m, void *p)
1056
{
1057
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1058

1059
	if (p == slab_caches.next)
1060
		print_slabinfo_header(m);
1061
	cache_show(s, m);
1062 1063 1064
	return 0;
}

1065 1066
void dump_unreclaimable_slab(void)
{
1067
	struct kmem_cache *s;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

1085
	list_for_each_entry(s, &slab_caches, list) {
1086
		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1087 1088 1089 1090 1091
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
1092
			pr_info("%-17s %10luKB %10luKB\n", s->name,
1093 1094 1095 1096 1097 1098
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

1099
#if defined(CONFIG_MEMCG_KMEM)
1100 1101
int memcg_slab_show(struct seq_file *m, void *p)
{
1102 1103 1104 1105
	/*
	 * Deprecated.
	 * Please, take a look at tools/cgroup/slabinfo.py .
	 */
1106
	return 0;
1107
}
1108
#endif
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1124
	.start = slab_start,
1125 1126
	.next = slab_next,
	.stop = slab_stop,
1127
	.show = slab_show,
1128 1129 1130 1131 1132 1133 1134
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

1135
static const struct proc_ops slabinfo_proc_ops = {
1136
	.proc_flags	= PROC_ENTRY_PERMANENT,
1137 1138 1139 1140 1141
	.proc_open	= slabinfo_open,
	.proc_read	= seq_read,
	.proc_write	= slabinfo_write,
	.proc_lseek	= seq_lseek,
	.proc_release	= seq_release,
1142 1143 1144 1145
};

static int __init slab_proc_init(void)
{
1146
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1147 1148 1149
	return 0;
}
module_init(slab_proc_init);
1150

Y
Yang Shi 已提交
1151
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1152 1153 1154 1155 1156

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
1157
	size_t ks;
1158

1159 1160 1161 1162 1163 1164 1165
	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
	if (likely(!ZERO_OR_NULL_PTR(p))) {
		if (!kasan_check_byte(p))
			return NULL;
		ks = kfence_ksize(p) ?: __ksize(p);
	} else
		ks = 0;
1166

1167
	/* If the object still fits, repoison it precisely. */
1168
	if (ks >= new_size) {
1169
		p = kasan_krealloc((void *)p, new_size, flags);
1170
		return (void *)p;
1171
	}
1172 1173

	ret = kmalloc_track_caller(new_size, flags);
1174 1175 1176 1177 1178 1179
	if (ret && p) {
		/* Disable KASAN checks as the object's redzone is accessed. */
		kasan_disable_current();
		memcpy(ret, kasan_reset_tag(p), ks);
		kasan_enable_current();
	}
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

	return ret;
}

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
1191 1192 1193
 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1194 1195
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1207
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1208 1209 1210 1211 1212 1213 1214
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
1215
 * kfree_sensitive - Clear sensitive information in memory before freeing
1216 1217 1218
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
1219
 * If @p is %NULL, kfree_sensitive() does nothing.
1220 1221 1222 1223 1224
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
1225
void kfree_sensitive(const void *p)
1226 1227 1228 1229 1230
{
	size_t ks;
	void *mem = (void *)p;

	ks = ksize(mem);
1231 1232
	if (ks)
		memzero_explicit(mem, ks);
1233 1234
	kfree(mem);
}
1235
EXPORT_SYMBOL(kfree_sensitive);
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1253 1254 1255
	size_t size;

	/*
1256 1257 1258 1259
	 * We need to first check that the pointer to the object is valid, and
	 * only then unpoison the memory. The report printed from ksize() is
	 * more useful, then when it's printed later when the behaviour could
	 * be undefined due to a potential use-after-free or double-free.
1260
	 *
1261 1262 1263 1264
	 * We use kasan_check_byte(), which is supported for the hardware
	 * tag-based KASAN mode, unlike kasan_check_read/write().
	 *
	 * If the pointed to memory is invalid, we return 0 to avoid users of
1265 1266 1267 1268 1269
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
1270
	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1271 1272
		return 0;

1273
	size = kfence_ksize(objp) ?: __ksize(objp);
1274 1275 1276 1277
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
1278
	kasan_unpoison_range(objp, size);
1279 1280 1281 1282
	return size;
}
EXPORT_SYMBOL(ksize);

1283 1284 1285 1286 1287 1288 1289
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1290 1291 1292 1293 1294 1295 1296 1297

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);