slab_common.c 36.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
15 16
#include <linux/cpu.h>
#include <linux/uaccess.h>
17 18
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
19 20 21
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
22
#include <linux/memcontrol.h>
23 24

#define CREATE_TRACE_POINTS
25
#include <trace/events/kmem.h>
26

27 28 29
#include "slab.h"

enum slab_state slab_state;
30 31
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
32
struct kmem_cache *kmem_cache;
33

34 35 36 37 38 39 40 41
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

42 43 44 45 46
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

47 48 49 50
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
51
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
52
		SLAB_FAILSLAB | SLAB_KASAN)
53

V
Vladimir Davydov 已提交
54
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
55
			 SLAB_ACCOUNT)
56 57 58 59

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
60
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
61 62 63

static int __init setup_slab_nomerge(char *str)
{
64
	slab_nomerge = true;
65 66 67 68 69 70 71 72 73
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

74 75 76 77 78 79 80 81 82
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

83
#ifdef CONFIG_DEBUG_VM
84
static int kmem_cache_sanity_check(const char *name, size_t size)
85 86 87 88 89
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
90 91
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
92
	}
93

94 95 96 97 98 99 100 101 102 103 104
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
105
			pr_err("Slab cache with size %d has lost its name\n",
106 107 108 109 110 111
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
112 113 114
	return 0;
}
#else
115
static inline int kmem_cache_sanity_check(const char *name, size_t size)
116 117 118
{
	return 0;
}
119 120
#endif

121 122 123 124
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

125 126 127 128 129 130
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
131 132
}

133
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
134 135 136 137 138 139 140 141
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
142
			return 0;
143 144
		}
	}
145
	return i;
146 147
}

148
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
149 150 151

LIST_HEAD(slab_root_caches);

152
void slab_init_memcg_params(struct kmem_cache *s)
153
{
T
Tejun Heo 已提交
154
	s->memcg_params.root_cache = NULL;
155
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
156
	INIT_LIST_HEAD(&s->memcg_params.children);
157 158 159 160 161 162
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
163

T
Tejun Heo 已提交
164
	if (root_cache) {
165
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
166 167
		s->memcg_params.memcg = memcg;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
168
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
169
		return 0;
170
	}
171

172
	slab_init_memcg_params(s);
173

174 175
	if (!memcg_nr_cache_ids)
		return 0;
176

177 178 179
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
180 181
	if (!arr)
		return -ENOMEM;
182

183
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
184 185 186
	return 0;
}

187
static void destroy_memcg_params(struct kmem_cache *s)
188
{
189
	if (is_root_cache(s))
190 191 192 193 194 195 196 197 198
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
199 200
}

201
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
202
{
203
	struct memcg_cache_array *old, *new;
204

205 206
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
207
	if (!new)
208 209
		return -ENOMEM;

210 211 212 213 214
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
215

216 217
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
218
		call_rcu(&old->rcu, free_memcg_params);
219 220 221
	return 0;
}

222 223 224 225 226
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

227
	mutex_lock(&slab_mutex);
228
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
229
		ret = update_memcg_params(s, num_memcgs);
230 231 232 233 234
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
235
			break;
236 237 238 239
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
240

241
void memcg_link_cache(struct kmem_cache *s)
242
{
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
261
}
262
#else
263 264
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
265 266 267 268
{
	return 0;
}

269
static inline void destroy_memcg_params(struct kmem_cache *s)
270 271
{
}
272

273
static inline void memcg_unlink_cache(struct kmem_cache *s)
274 275
{
}
276
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign;

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

321 322 323
	if (s->usersize)
		return 1;

324 325 326 327 328 329 330 331 332 333
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
334
		slab_flags_t flags, const char *name, void (*ctor)(void *))
335 336 337
{
	struct kmem_cache *s;

338
	if (slab_nomerge)
339 340 341 342 343 344 345 346 347 348
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

349 350 351
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

352
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

371 372 373 374
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

375 376 377 378 379
		return s;
	}
	return NULL;
}

380 381
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
382 383
		slab_flags_t flags, size_t useroffset,
		size_t usersize, void (*ctor)(void *),
384
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
385 386 387 388
{
	struct kmem_cache *s;
	int err;

389 390 391
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

392 393 394 395 396 397 398 399 400 401
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;
402 403
	s->useroffset = useroffset;
	s->usersize = usersize;
404

405
	err = init_memcg_params(s, memcg, root_cache);
406 407 408 409 410 411 412 413 414
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
415
	memcg_link_cache(s);
416 417 418 419 420 421
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
422
	destroy_memcg_params(s);
423
	kmem_cache_free(kmem_cache, s);
424 425
	goto out;
}
426

427
/*
428
 * kmem_cache_create_usercopy - Create a cache.
429 430 431 432
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
433 434
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
453
struct kmem_cache *
454 455 456
kmem_cache_create_usercopy(const char *name, size_t size, size_t align,
		  slab_flags_t flags, size_t useroffset, size_t usersize,
		  void (*ctor)(void *))
457
{
458
	struct kmem_cache *s = NULL;
459
	const char *cache_name;
460
	int err;
461

462
	get_online_cpus();
463
	get_online_mems();
464
	memcg_get_cache_ids();
465

466
	mutex_lock(&slab_mutex);
467

468
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
469
	if (err) {
470
		goto out_unlock;
A
Andrew Morton 已提交
471
	}
472

473 474 475 476 477 478
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

479 480 481 482 483 484 485
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
486

487 488 489 490 491 492 493
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
494
	if (s)
495
		goto out_unlock;
496

497
	cache_name = kstrdup_const(name, GFP_KERNEL);
498 499 500 501
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
502

503 504
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
505
			 flags, useroffset, usersize, ctor, NULL, NULL);
506 507
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
508
		kfree_const(cache_name);
509
	}
510 511

out_unlock:
512
	mutex_unlock(&slab_mutex);
513

514
	memcg_put_cache_ids();
515
	put_online_mems();
516 517
	put_online_cpus();

518
	if (err) {
519 520 521 522
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
523
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
524 525 526 527 528
				name, err);
			dump_stack();
		}
		return NULL;
	}
529 530
	return s;
}
531 532 533 534 535 536
EXPORT_SYMBOL(kmem_cache_create_usercopy);

struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t align,
		slab_flags_t flags, void (*ctor)(void *))
{
537
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
538 539
					  ctor);
}
540
EXPORT_SYMBOL(kmem_cache_create);
541

542
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
543
{
544 545
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
546

547
	/*
548
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
549 550 551 552 553 554 555 556 557 558
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
559

560 561 562 563 564 565 566 567 568 569 570 571
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
572 573
}

574
static int shutdown_cache(struct kmem_cache *s)
575
{
576 577 578
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

579 580
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
581

582
	memcg_unlink_cache(s);
583
	list_del(&s->list);
584

585
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
586 587 588
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
589
#ifdef SLAB_SUPPORTS_SYSFS
590
		sysfs_slab_release(s);
591 592 593 594
#else
		slab_kmem_cache_release(s);
#endif
	}
595 596

	return 0;
597 598
}

599
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
600
/*
601
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
602 603 604 605 606 607 608
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
609 610
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
611
{
612
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
613
	struct cgroup_subsys_state *css = &memcg->css;
614
	struct memcg_cache_array *arr;
615
	struct kmem_cache *s = NULL;
616
	char *cache_name;
617
	int idx;
618 619

	get_online_cpus();
620 621
	get_online_mems();

622 623
	mutex_lock(&slab_mutex);

624
	/*
625
	 * The memory cgroup could have been offlined while the cache
626 627
	 * creation work was pending.
	 */
628
	if (memcg->kmem_state != KMEM_ONLINE)
629 630
		goto out_unlock;

631 632 633 634
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

635 636 637 638 639
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
640
	if (arr->entries[idx])
641 642
		goto out_unlock;

643
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
644 645
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
646 647 648
	if (!cache_name)
		goto out_unlock;

649 650
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
651
			 root_cache->flags & CACHE_CREATE_MASK,
652
			 root_cache->useroffset, root_cache->usersize,
653
			 root_cache->ctor, memcg, root_cache);
654 655 656 657 658
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
659
	if (IS_ERR(s)) {
660
		kfree(cache_name);
661
		goto out_unlock;
662
	}
663

664 665 666 667 668 669
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
670
	arr->entries[idx] = s;
671

672 673
out_unlock:
	mutex_unlock(&slab_mutex);
674 675

	put_online_mems();
676
	put_online_cpus();
677
}
678

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
static void kmemcg_deactivate_workfn(struct work_struct *work)
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
					    memcg_params.deact_work);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	s->memcg_params.deact_fn(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
	css_put(&s->memcg_params.memcg->css);
}

static void kmemcg_deactivate_rcufn(struct rcu_head *head)
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
					    memcg_params.deact_rcu_head);

	/*
	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
711
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
}

/**
 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 *					   sched RCU grace period
 * @s: target kmem_cache
 * @deact_fn: deactivation function to call
 *
 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 * held after a sched RCU grace period.  The slab is guaranteed to stay
 * alive until @deact_fn is finished.  This is to be used from
 * __kmemcg_cache_deactivate().
 */
void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
					   void (*deact_fn)(struct kmem_cache *))
{
	if (WARN_ON_ONCE(is_root_cache(s)) ||
	    WARN_ON_ONCE(s->memcg_params.deact_fn))
		return;

	/* pin memcg so that @s doesn't get destroyed in the middle */
	css_get(&s->memcg_params.memcg->css);

	s->memcg_params.deact_fn = deact_fn;
	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
}

739 740 741 742
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
743
	struct kmem_cache *s, *c;
744 745 746

	idx = memcg_cache_id(memcg);

747 748 749
	get_online_cpus();
	get_online_mems();

750
	mutex_lock(&slab_mutex);
751
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
752 753
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
754 755 756 757
		c = arr->entries[idx];
		if (!c)
			continue;

758
		__kmemcg_cache_deactivate(c);
759 760 761
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
762 763 764

	put_online_mems();
	put_online_cpus();
765 766
}

767
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
768
{
769
	struct kmem_cache *s, *s2;
770

771 772
	get_online_cpus();
	get_online_mems();
773 774

	mutex_lock(&slab_mutex);
775 776
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
777 778 779 780
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
781
		BUG_ON(shutdown_cache(s));
782 783
	}
	mutex_unlock(&slab_mutex);
784

785 786
	put_online_mems();
	put_online_cpus();
787
}
788

789
static int shutdown_memcg_caches(struct kmem_cache *s)
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
808
		if (shutdown_cache(c))
809 810 811 812 813
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
814
			list_move(&c->memcg_params.children_node, &busy);
815 816 817 818 819 820 821 822 823 824 825 826 827 828
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
829 830
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
831
		shutdown_cache(c);
832

T
Tejun Heo 已提交
833
	list_splice(&busy, &s->memcg_params.children);
834 835 836 837 838

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
839
	if (!list_empty(&s->memcg_params.children))
840 841 842 843
		return -EBUSY;
	return 0;
}
#else
844
static inline int shutdown_memcg_caches(struct kmem_cache *s)
845 846 847
{
	return 0;
}
848
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
849

850 851
void slab_kmem_cache_release(struct kmem_cache *s)
{
852
	__kmem_cache_release(s);
853
	destroy_memcg_params(s);
854
	kfree_const(s->name);
855 856 857
	kmem_cache_free(kmem_cache, s);
}

858 859
void kmem_cache_destroy(struct kmem_cache *s)
{
860
	int err;
861

862 863 864
	if (unlikely(!s))
		return;

865
	get_online_cpus();
866 867
	get_online_mems();

868
	mutex_lock(&slab_mutex);
869

870
	s->refcount--;
871 872 873
	if (s->refcount)
		goto out_unlock;

874
	err = shutdown_memcg_caches(s);
875
	if (!err)
876
		err = shutdown_cache(s);
877

878
	if (err) {
J
Joe Perches 已提交
879 880
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
881 882
		dump_stack();
	}
883 884
out_unlock:
	mutex_unlock(&slab_mutex);
885

886
	put_online_mems();
887 888 889 890
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

891 892 893 894 895 896 897 898 899 900 901 902 903
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
904
	kasan_cache_shrink(cachep);
905
	ret = __kmem_cache_shrink(cachep);
906 907 908 909 910 911
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

912
bool slab_is_available(void)
913 914 915
{
	return slab_state >= UP;
}
916

917 918 919
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
920
		slab_flags_t flags, size_t useroffset, size_t usersize)
921 922 923 924 925
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
926
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
927 928
	s->useroffset = useroffset;
	s->usersize = usersize;
929 930 931

	slab_init_memcg_params(s);

932 933 934
	err = __kmem_cache_create(s, flags);

	if (err)
935
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
936 937 938 939 940 941
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
942 943
				slab_flags_t flags, size_t useroffset,
				size_t usersize)
944 945 946 947 948 949
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

950
	create_boot_cache(s, name, size, flags, useroffset, usersize);
951
	list_add(&s->list, &slab_caches);
952
	memcg_link_cache(s);
953 954 955 956
	s->refcount = 1;
	return s;
}

957 958 959 960 961 962 963 964
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

1011
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
1012
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
1013
		return NULL;
1014
	}
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
1025
	if (unlikely((flags & GFP_DMA)))
1026 1027 1028 1029 1030 1031
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

1032 1033 1034 1035 1036
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1037
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

1054
/*
1055 1056 1057 1058 1059 1060 1061 1062 1063
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1064
 */
1065
void __init setup_kmalloc_cache_index_table(void)
1066 1067 1068
{
	int i;

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1099 1100
}

1101
static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1102 1103
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1104 1105
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
1106 1107
}

1108 1109 1110 1111 1112
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1113
void __init create_kmalloc_caches(slab_flags_t flags)
1114 1115 1116
{
	int i;

1117 1118 1119
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
1120

1121
		/*
1122 1123 1124
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1125
		 */
1126 1127 1128 1129
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1130 1131
	}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1146
				size, SLAB_CACHE_DMA | flags, 0, 0);
1147 1148 1149 1150
		}
	}
#endif
}
1151 1152
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1153 1154 1155 1156 1157
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1158 1159 1160 1161 1162 1163
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1164
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1165 1166
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1167
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1168 1169 1170 1171
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1172 1173 1174 1175 1176 1177 1178 1179 1180
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1229
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1230 1231 1232 1233 1234 1235
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1236
static void print_slabinfo_header(struct seq_file *m)
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1247
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1248 1249 1250
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1251
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1252 1253 1254 1255 1256
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1257
void *slab_start(struct seq_file *m, loff_t *pos)
1258 1259
{
	mutex_lock(&slab_mutex);
1260
	return seq_list_start(&slab_root_caches, *pos);
1261 1262
}

1263
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1264
{
1265
	return seq_list_next(p, &slab_root_caches, pos);
1266 1267
}

1268
void slab_stop(struct seq_file *m, void *p)
1269 1270 1271 1272
{
	mutex_unlock(&slab_mutex);
}

1273 1274 1275 1276 1277 1278 1279 1280 1281
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1282
	for_each_memcg_cache(c, s) {
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1294
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1295
{
1296 1297 1298 1299 1300
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1301 1302
	memcg_accumulate_slabinfo(s, &sinfo);

1303
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1304
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1305 1306 1307 1308 1309 1310 1311 1312
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1313 1314
}

1315
static int slab_show(struct seq_file *m, void *p)
1316
{
1317
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1318

1319
	if (p == slab_root_caches.next)
1320
		print_slabinfo_header(m);
1321
	cache_show(s, m);
1322 1323 1324
	return 0;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

Y
Yang Shi 已提交
1359
#if defined(CONFIG_MEMCG)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1380 1381
int memcg_slab_show(struct seq_file *m, void *p)
{
1382 1383
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1384 1385
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

1386
	if (p == memcg->kmem_caches.next)
1387
		print_slabinfo_header(m);
1388
	cache_show(s, m);
1389
	return 0;
1390
}
1391
#endif
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1407
	.start = slab_start,
1408 1409
	.next = slab_next,
	.stop = slab_stop,
1410
	.show = slab_show,
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1428 1429
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1430 1431 1432
	return 0;
}
module_init(slab_proc_init);
Y
Yang Shi 已提交
1433
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1444
	if (ks >= new_size) {
1445
		kasan_krealloc((void *)p, new_size, flags);
1446
		return (void *)p;
1447
	}
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);