slab_common.c 34.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20
#include <linux/debugfs.h>
21 22 23
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
24
#include <linux/memcontrol.h>
25 26

#define CREATE_TRACE_POINTS
27
#include <trace/events/kmem.h>
28

29 30
#include "internal.h"

31 32 33
#include "slab.h"

enum slab_state slab_state;
34 35
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
36
struct kmem_cache *kmem_cache;
37

38 39 40 41 42 43 44 45
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

46 47 48 49 50
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

51 52 53 54
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
55
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
56
		SLAB_FAILSLAB | SLAB_KASAN)
57

V
Vladimir Davydov 已提交
58
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
59
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
60 61 62 63

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
64
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
65 66 67

static int __init setup_slab_nomerge(char *str)
{
68
	slab_nomerge = true;
69 70 71 72 73 74 75 76 77
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

78 79 80 81 82 83 84 85 86
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

87
#ifdef CONFIG_DEBUG_VM
88
static int kmem_cache_sanity_check(const char *name, unsigned int size)
89 90 91
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
92 93
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
94
	}
95

96
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
97 98 99
	return 0;
}
#else
100
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
101 102 103
{
	return 0;
}
104 105
#endif

106 107 108 109
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

110 111 112 113 114 115
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
116 117
}

118
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
119 120 121 122 123 124 125 126
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
127
			return 0;
128 129
		}
	}
130
	return i;
131 132
}

133
#ifdef CONFIG_MEMCG_KMEM
134 135 136 137 138 139 140
static void memcg_kmem_cache_create_func(struct work_struct *work)
{
	struct kmem_cache *cachep = container_of(work, struct kmem_cache,
						 memcg_params.work);
	memcg_create_kmem_cache(cachep);
}

141
void slab_init_memcg_params(struct kmem_cache *s)
142
{
T
Tejun Heo 已提交
143
	s->memcg_params.root_cache = NULL;
144
	s->memcg_params.memcg_cache = NULL;
145
	INIT_WORK(&s->memcg_params.work, memcg_kmem_cache_create_func);
146 147
}

148 149
static void init_memcg_params(struct kmem_cache *s,
			      struct kmem_cache *root_cache)
150
{
151
	if (root_cache)
152
		s->memcg_params.root_cache = root_cache;
153 154
	else
		slab_init_memcg_params(s);
155
}
156
#else
157 158
static inline void init_memcg_params(struct kmem_cache *s,
				     struct kmem_cache *root_cache)
159 160
{
}
161
#endif /* CONFIG_MEMCG_KMEM */
162

163 164 165 166
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
167 168
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
169 170 171 172 173 174 175 176 177
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
178
		unsigned int ralign;
179 180 181 182 183 184 185 186 187 188 189 190 191

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

206 207 208
	if (s->usersize)
		return 1;

209 210 211 212 213 214 215 216 217
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

218
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
219
		slab_flags_t flags, const char *name, void (*ctor)(void *))
220 221 222
{
	struct kmem_cache *s;

223
	if (slab_nomerge)
224 225 226 227 228 229 230 231 232 233
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

234 235 236
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

237
	list_for_each_entry_reverse(s, &slab_caches, list) {
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

256 257 258 259
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

260 261 262 263 264
		return s;
	}
	return NULL;
}

265
static struct kmem_cache *create_cache(const char *name,
266
		unsigned int object_size, unsigned int align,
267 268
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
269
		struct kmem_cache *root_cache)
270 271 272 273
{
	struct kmem_cache *s;
	int err;

274 275 276
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

277 278 279 280 281 282
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
283
	s->size = s->object_size = object_size;
284 285
	s->align = align;
	s->ctor = ctor;
286 287
	s->useroffset = useroffset;
	s->usersize = usersize;
288

289
	init_memcg_params(s, root_cache);
290 291 292 293 294 295 296 297 298 299 300 301
	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
302
	kmem_cache_free(kmem_cache, s);
303 304
	goto out;
}
305

306 307 308
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
309 310 311 312
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
313 314
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
315 316 317 318 319 320 321 322 323 324
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
325
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
326 327 328 329 330
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
331 332
 *
 * Return: a pointer to the cache on success, NULL on failure.
333
 */
334
struct kmem_cache *
335 336
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
337 338
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
339
		  void (*ctor)(void *))
340
{
341
	struct kmem_cache *s = NULL;
342
	const char *cache_name;
343
	int err;
344

345
	get_online_cpus();
346
	get_online_mems();
347
	memcg_get_cache_ids();
348

349
	mutex_lock(&slab_mutex);
350

351
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
352
	if (err) {
353
		goto out_unlock;
A
Andrew Morton 已提交
354
	}
355

356 357 358 359 360 361
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

362 363 364 365 366 367 368
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
369

370 371 372 373 374 375 376
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
377
	if (s)
378
		goto out_unlock;
379

380
	cache_name = kstrdup_const(name, GFP_KERNEL);
381 382 383 384
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
385

386
	s = create_cache(cache_name, size,
387
			 calculate_alignment(flags, align, size),
388
			 flags, useroffset, usersize, ctor, NULL);
389 390
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
391
		kfree_const(cache_name);
392
	}
393 394

out_unlock:
395
	mutex_unlock(&slab_mutex);
396

397
	memcg_put_cache_ids();
398
	put_online_mems();
399 400
	put_online_cpus();

401
	if (err) {
402 403 404 405
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
406
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
407 408 409 410 411
				name, err);
			dump_stack();
		}
		return NULL;
	}
412 413
	return s;
}
414 415
EXPORT_SYMBOL(kmem_cache_create_usercopy);

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
441
struct kmem_cache *
442
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
443 444
		slab_flags_t flags, void (*ctor)(void *))
{
445
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
446 447
					  ctor);
}
448
EXPORT_SYMBOL(kmem_cache_create);
449

450
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
451
{
452 453
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
454

455
	/*
456
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
457 458 459 460 461 462 463 464 465 466
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
467

468 469 470 471 472 473 474 475 476 477 478 479
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
480 481
}

482
static int shutdown_cache(struct kmem_cache *s)
483
{
484 485 486
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

487 488
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
489

490
	list_del(&s->list);
491

492
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
493 494 495
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
496 497 498
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
499
#ifdef SLAB_SUPPORTS_SYSFS
500
		sysfs_slab_unlink(s);
501
		sysfs_slab_release(s);
502 503 504 505
#else
		slab_kmem_cache_release(s);
#endif
	}
506 507

	return 0;
508 509
}

510
#ifdef CONFIG_MEMCG_KMEM
511
/*
512
 * memcg_create_kmem_cache - Create a cache for non-root memory cgroups.
513 514 515
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
516 517
 * requests going all non-root memory cgroups to @root_cache. The new cache
 * inherits properties from its parent.
518
 */
519
void memcg_create_kmem_cache(struct kmem_cache *root_cache)
520
{
521
	struct kmem_cache *s = NULL;
522 523 524
	char *cache_name;

	get_online_cpus();
525 526
	get_online_mems();

527 528
	mutex_lock(&slab_mutex);

529
	if (root_cache->memcg_params.memcg_cache)
530 531
		goto out_unlock;

532
	cache_name = kasprintf(GFP_KERNEL, "%s-memcg", root_cache->name);
533 534 535
	if (!cache_name)
		goto out_unlock;

536
	s = create_cache(cache_name, root_cache->object_size,
537
			 root_cache->align,
538
			 root_cache->flags & CACHE_CREATE_MASK,
539
			 root_cache->useroffset, root_cache->usersize,
540
			 root_cache->ctor, root_cache);
541 542 543 544 545
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
546
	if (IS_ERR(s)) {
547
		kfree(cache_name);
548
		goto out_unlock;
549
	}
550

551
	/*
552
	 * Since readers won't lock (see memcg_slab_pre_alloc_hook()), we need a
553 554 555 556
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
557
	root_cache->memcg_params.memcg_cache = s;
558

559 560
out_unlock:
	mutex_unlock(&slab_mutex);
561 562

	put_online_mems();
563
	put_online_cpus();
564
}
565

566
static int shutdown_memcg_caches(struct kmem_cache *s)
567 568 569
{
	BUG_ON(!is_root_cache(s));

570 571
	if (s->memcg_params.memcg_cache)
		WARN_ON(shutdown_cache(s->memcg_params.memcg_cache));
572 573 574

	return 0;
}
575

576
static void cancel_memcg_cache_creation(struct kmem_cache *s)
577
{
578
	cancel_work_sync(&s->memcg_params.work);
579
}
580
#else
581
static inline int shutdown_memcg_caches(struct kmem_cache *s)
582 583 584
{
	return 0;
}
585

586
static inline void cancel_memcg_cache_creation(struct kmem_cache *s)
587 588
{
}
589
#endif /* CONFIG_MEMCG_KMEM */
590

591 592
void slab_kmem_cache_release(struct kmem_cache *s)
{
593
	__kmem_cache_release(s);
594
	kfree_const(s->name);
595 596 597
	kmem_cache_free(kmem_cache, s);
}

598 599
void kmem_cache_destroy(struct kmem_cache *s)
{
600
	int err;
601

602 603 604
	if (unlikely(!s))
		return;

605
	cancel_memcg_cache_creation(s);
606

607
	get_online_cpus();
608 609
	get_online_mems();

610
	mutex_lock(&slab_mutex);
611

612
	s->refcount--;
613 614 615
	if (s->refcount)
		goto out_unlock;

616
	err = shutdown_memcg_caches(s);
617
	if (!err)
618
		err = shutdown_cache(s);
619

620
	if (err) {
J
Joe Perches 已提交
621 622
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
623 624
		dump_stack();
	}
625 626
out_unlock:
	mutex_unlock(&slab_mutex);
627

628
	put_online_mems();
629 630 631 632
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

633 634 635 636 637 638
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
639 640
 *
 * Return: %0 if all slabs were released, non-zero otherwise
641 642 643 644 645 646 647
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
648
	kasan_cache_shrink(cachep);
649
	ret = __kmem_cache_shrink(cachep);
650 651 652 653 654 655
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

656
/**
657
 * kmem_cache_shrink_all - shrink root and memcg caches
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
 * @s: The cache pointer
 */
void kmem_cache_shrink_all(struct kmem_cache *s)
{
	struct kmem_cache *c;

	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
		kmem_cache_shrink(s);
		return;
	}

	get_online_cpus();
	get_online_mems();
	kasan_cache_shrink(s);
	__kmem_cache_shrink(s);

674 675
	c = memcg_cache(s);
	if (c) {
676 677 678 679 680 681 682
		kasan_cache_shrink(c);
		__kmem_cache_shrink(c);
	}
	put_online_mems();
	put_online_cpus();
}

683
bool slab_is_available(void)
684 685 686
{
	return slab_state >= UP;
}
687

688 689
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
690 691 692
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
693 694
{
	int err;
695
	unsigned int align = ARCH_KMALLOC_MINALIGN;
696 697 698

	s->name = name;
	s->size = s->object_size = size;
699 700 701 702 703 704 705 706 707

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

708 709
	s->useroffset = useroffset;
	s->usersize = usersize;
710 711 712

	slab_init_memcg_params(s);

713 714 715
	err = __kmem_cache_create(s, flags);

	if (err)
716
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
717 718 719 720 721
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

722 723 724
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
725 726 727 728 729 730
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

731
	create_boot_cache(s, name, size, flags, useroffset, usersize);
732 733 734 735 736
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

737
struct kmem_cache *
738 739
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
740 741
EXPORT_SYMBOL(kmalloc_caches);

742 743 744 745 746 747
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
748
static u8 size_index[24] __ro_after_init = {
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

775
static inline unsigned int size_index_elem(unsigned int bytes)
776 777 778 779 780 781 782 783 784 785
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
786
	unsigned int index;
787 788 789 790 791 792

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
793
	} else {
794
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
795
			return NULL;
796
		index = fls(size - 1);
797
	}
798

799
	return kmalloc_caches[kmalloc_type(flags)][index];
800 801
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

819 820 821 822 823
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
824
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
	INIT_KMALLOC_INFO(33554432, 32M),
	INIT_KMALLOC_INFO(67108864, 64M)
852 853
};

854
/*
855 856 857 858 859 860 861 862 863
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
864
 */
865
void __init setup_kmalloc_cache_index_table(void)
866
{
867
	unsigned int i;
868

869 870 871 872
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
873
		unsigned int elem = size_index_elem(i);
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
899 900
}

901
static void __init
902
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
903
{
904
	if (type == KMALLOC_RECLAIM)
905 906
		flags |= SLAB_RECLAIM_ACCOUNT;

907 908
	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
909 910
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
911 912
}

913 914 915 916 917
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
918
void __init create_kmalloc_caches(slab_flags_t flags)
919
{
920 921
	int i;
	enum kmalloc_cache_type type;
922

923 924 925 926
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
927

928 929 930 931 932 933 934 935 936 937 938 939
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
940 941
	}

942 943 944 945 946
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
947
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
948 949

		if (s) {
950
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
951
				kmalloc_info[i].name[KMALLOC_DMA],
952
				kmalloc_info[i].size,
953 954
				SLAB_CACHE_DMA | flags, 0,
				kmalloc_info[i].size);
955 956 957 958
		}
	}
#endif
}
959 960
#endif /* !CONFIG_SLOB */

961 962 963 964 965 966 967 968 969 970 971 972
gfp_t kmalloc_fix_flags(gfp_t flags)
{
	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;

	flags &= ~GFP_SLAB_BUG_MASK;
	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
			invalid_mask, &invalid_mask, flags, &flags);
	dump_stack();

	return flags;
}

V
Vladimir Davydov 已提交
973 974 975 976 977
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
978 979
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
980
	void *ret = NULL;
V
Vladimir Davydov 已提交
981 982
	struct page *page;

983 984 985
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);

V
Vladimir Davydov 已提交
986
	flags |= __GFP_COMP;
987
	page = alloc_pages(flags, order);
988 989
	if (likely(page)) {
		ret = page_address(page);
990 991
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
				    PAGE_SIZE << order);
992
	}
993
	ret = kasan_kmalloc_large(ret, size, flags);
994
	/* As ret might get tagged, call kmemleak hook after KASAN. */
995
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
996 997 998 999
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1000 1001 1002 1003 1004 1005 1006 1007 1008
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1009

1010 1011 1012
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1013
			       unsigned int count)
1014 1015
{
	unsigned int rand;
1016
	unsigned int i;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1057
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1058
#ifdef CONFIG_SLAB
1059
#define SLABINFO_RIGHTS (0600)
1060
#else
1061
#define SLABINFO_RIGHTS (0400)
1062 1063
#endif

1064
static void print_slabinfo_header(struct seq_file *m)
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1075
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1076 1077 1078
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1079
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1080 1081 1082 1083 1084
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1085
void *slab_start(struct seq_file *m, loff_t *pos)
1086 1087
{
	mutex_lock(&slab_mutex);
1088
	return seq_list_start(&slab_caches, *pos);
1089 1090
}

1091
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1092
{
1093
	return seq_list_next(p, &slab_caches, pos);
1094 1095
}

1096
void slab_stop(struct seq_file *m, void *p)
1097 1098 1099 1100
{
	mutex_unlock(&slab_mutex);
}

1101 1102 1103 1104 1105 1106
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

1107 1108
	c = memcg_cache(s);
	if (c) {
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1120
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1121
{
1122 1123 1124 1125 1126
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1127 1128
	memcg_accumulate_slabinfo(s, &sinfo);

1129
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1130
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1131 1132 1133 1134 1135 1136 1137 1138
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1139 1140
}

1141
static int slab_show(struct seq_file *m, void *p)
1142
{
1143
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1144

1145
	if (p == slab_caches.next)
1146
		print_slabinfo_header(m);
1147 1148
	if (is_root_cache(s))
		cache_show(s, m);
1149 1150 1151
	return 0;
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

1186
#if defined(CONFIG_MEMCG_KMEM)
1187 1188
int memcg_slab_show(struct seq_file *m, void *p)
{
1189 1190 1191 1192
	/*
	 * Deprecated.
	 * Please, take a look at tools/cgroup/slabinfo.py .
	 */
1193
	return 0;
1194
}
1195
#endif
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1211
	.start = slab_start,
1212 1213
	.next = slab_next,
	.stop = slab_stop,
1214
	.show = slab_show,
1215 1216 1217 1218 1219 1220 1221
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

1222
static const struct proc_ops slabinfo_proc_ops = {
1223
	.proc_flags	= PROC_ENTRY_PERMANENT,
1224 1225 1226 1227 1228
	.proc_open	= slabinfo_open,
	.proc_read	= seq_read,
	.proc_write	= slabinfo_write,
	.proc_lseek	= seq_lseek,
	.proc_release	= seq_release,
1229 1230 1231 1232
};

static int __init slab_proc_init(void)
{
1233
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1234 1235 1236
	return 0;
}
module_init(slab_proc_init);
1237 1238 1239

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
/*
1240
 * Display information about kmem caches that have memcg cache.
1241 1242 1243 1244 1245 1246 1247 1248 1249
 */
static int memcg_slabinfo_show(struct seq_file *m, void *unused)
{
	struct kmem_cache *s, *c;
	struct slabinfo sinfo;

	mutex_lock(&slab_mutex);
	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
	seq_puts(m, " <active_slabs> <num_slabs>\n");
1250
	list_for_each_entry(s, &slab_caches, list) {
1251
		/*
1252
		 * Skip kmem caches that don't have the memcg cache.
1253
		 */
1254
		if (!s->memcg_params.memcg_cache)
1255 1256 1257 1258 1259 1260 1261 1262
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(s, &sinfo);
		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
			   sinfo.active_slabs, sinfo.num_slabs);

1263 1264 1265 1266 1267 1268 1269
		c = s->memcg_params.memcg_cache;
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);
		seq_printf(m, "%-17s %4d %6lu %6lu %6lu %6lu\n",
			   cache_name(c), root_mem_cgroup->css.id,
			   sinfo.active_objs, sinfo.num_objs,
			   sinfo.active_slabs, sinfo.num_slabs);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	}
	mutex_unlock(&slab_mutex);
	return 0;
}
DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);

static int __init memcg_slabinfo_init(void)
{
	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
			    NULL, NULL, &memcg_slabinfo_fops);
	return 0;
}

late_initcall(memcg_slabinfo_init);
#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
Y
Yang Shi 已提交
1285
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1286 1287 1288 1289 1290

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
1291
	size_t ks;
1292

1293
	ks = ksize(p);
1294

1295
	if (ks >= new_size) {
1296
		p = kasan_krealloc((void *)p, new_size, flags);
1297
		return (void *)p;
1298
	}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
1317 1318
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1330
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1331 1332 1333 1334 1335 1336 1337
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
1338
 * kfree_sensitive - Clear sensitive information in memory before freeing
1339 1340 1341
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
1342
 * If @p is %NULL, kfree_sensitive() does nothing.
1343 1344 1345 1346 1347
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
1348
void kfree_sensitive(const void *p)
1349 1350 1351 1352 1353
{
	size_t ks;
	void *mem = (void *)p;

	ks = ksize(mem);
1354 1355
	if (ks)
		memzero_explicit(mem, ks);
1356 1357
	kfree(mem);
}
1358
EXPORT_SYMBOL(kfree_sensitive);
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	size_t size;

	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
1391
	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1392 1393 1394
		return 0;

	size = __ksize(objp);
1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(objp, size);
	return size;
}
EXPORT_SYMBOL(ksize);

1404 1405 1406 1407 1408 1409 1410
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1411 1412 1413 1414 1415 1416 1417 1418

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);