slab_common.c 27.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37 38 39
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)

40
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK)
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 * (Could be removed. This was introduced to pacify the merge skeptics.)
 */
static int slab_nomerge;

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = 1;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

60 61 62 63 64 65 66 67 68
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

69
#ifdef CONFIG_DEBUG_VM
70
static int kmem_cache_sanity_check(const char *name, size_t size)
71 72 73 74 75
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
76 77
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
78
	}
79

80 81 82 83 84 85 86 87 88 89 90
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
91
			pr_err("Slab cache with size %d has lost its name\n",
92 93 94 95 96 97
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
98 99 100
	return 0;
}
#else
101
static inline int kmem_cache_sanity_check(const char *name, size_t size)
102 103 104
{
	return 0;
}
105 106
#endif

107
#ifdef CONFIG_MEMCG_KMEM
108
void slab_init_memcg_params(struct kmem_cache *s)
109
{
110
	s->memcg_params.is_root_cache = true;
111
	INIT_LIST_HEAD(&s->memcg_params.list);
112 113 114 115 116 117 118
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
119

120 121 122 123
	if (memcg) {
		s->memcg_params.is_root_cache = false;
		s->memcg_params.memcg = memcg;
		s->memcg_params.root_cache = root_cache;
124
		return 0;
125
	}
126

127
	slab_init_memcg_params(s);
128

129 130
	if (!memcg_nr_cache_ids)
		return 0;
131

132 133 134 135 136
	arr = kzalloc(sizeof(struct memcg_cache_array) +
		      memcg_nr_cache_ids * sizeof(void *),
		      GFP_KERNEL);
	if (!arr)
		return -ENOMEM;
137

138
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
139 140 141
	return 0;
}

142
static void destroy_memcg_params(struct kmem_cache *s)
143
{
144 145
	if (is_root_cache(s))
		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
146 147
}

148
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
149
{
150
	struct memcg_cache_array *old, *new;
151

152 153
	if (!is_root_cache(s))
		return 0;
154

155 156 157
	new = kzalloc(sizeof(struct memcg_cache_array) +
		      new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
158 159
		return -ENOMEM;

160 161 162 163 164
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
165

166 167 168
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		kfree_rcu(old, rcu);
169 170 171
	return 0;
}

172 173 174 175 176
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

177
	mutex_lock(&slab_mutex);
178
	list_for_each_entry(s, &slab_caches, list) {
179
		ret = update_memcg_params(s, num_memcgs);
180 181 182 183 184
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
185
			break;
186 187 188 189
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
190
#else
191 192
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
193 194 195 196
{
	return 0;
}

197
static inline void destroy_memcg_params(struct kmem_cache *s)
198 199 200
{
}
#endif /* CONFIG_MEMCG_KMEM */
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

241
	list_for_each_entry_reverse(s, &slab_caches, list) {
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

260 261 262 263
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

264 265 266 267 268
		return s;
	}
	return NULL;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

296
static struct kmem_cache *
297 298
do_kmem_cache_create(const char *name, size_t object_size, size_t size,
		     size_t align, unsigned long flags, void (*ctor)(void *),
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

315
	err = init_memcg_params(s, memcg, root_cache);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
331
	destroy_memcg_params(s);
332
	kmem_cache_free(kmem_cache, s);
333 334
	goto out;
}
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
360
struct kmem_cache *
361 362
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
363
{
364
	struct kmem_cache *s;
365
	const char *cache_name;
366
	int err;
367

368
	get_online_cpus();
369
	get_online_mems();
370
	memcg_get_cache_ids();
371

372
	mutex_lock(&slab_mutex);
373

374
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
375 376
	if (err) {
		s = NULL;	/* suppress uninit var warning */
377
		goto out_unlock;
A
Andrew Morton 已提交
378
	}
379

380 381 382 383 384 385 386
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
387

388 389
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
390
		goto out_unlock;
391

392
	cache_name = kstrdup_const(name, GFP_KERNEL);
393 394 395 396
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
397

398 399 400 401 402
	s = do_kmem_cache_create(cache_name, size, size,
				 calculate_alignment(flags, align, size),
				 flags, ctor, NULL, NULL);
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
403
		kfree_const(cache_name);
404
	}
405 406

out_unlock:
407
	mutex_unlock(&slab_mutex);
408

409
	memcg_put_cache_ids();
410
	put_online_mems();
411 412
	put_online_cpus();

413
	if (err) {
414 415 416 417 418 419 420 421 422 423
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}
		return NULL;
	}
424 425
	return s;
}
426
EXPORT_SYMBOL(kmem_cache_create);
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441
static int do_kmem_cache_shutdown(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	if (__kmem_cache_shutdown(s) != 0) {
		printk(KERN_ERR "kmem_cache_destroy %s: "
		       "Slab cache still has objects\n", s->name);
		dump_stack();
		return -EBUSY;
	}

	if (s->flags & SLAB_DESTROY_BY_RCU)
		*need_rcu_barrier = true;

#ifdef CONFIG_MEMCG_KMEM
442
	if (!is_root_cache(s))
443
		list_del(&s->memcg_params.list);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
#endif
	list_move(&s->list, release);
	return 0;
}

static void do_kmem_cache_release(struct list_head *release,
				  bool need_rcu_barrier)
{
	struct kmem_cache *s, *s2;

	if (need_rcu_barrier)
		rcu_barrier();

	list_for_each_entry_safe(s, s2, release, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_remove(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
}

466 467
#ifdef CONFIG_MEMCG_KMEM
/*
468
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
469 470 471 472 473 474 475
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
476 477
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
478
{
479
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
480
	struct cgroup_subsys_state *css = mem_cgroup_css(memcg);
481
	struct memcg_cache_array *arr;
482
	struct kmem_cache *s = NULL;
483
	char *cache_name;
484
	int idx;
485 486

	get_online_cpus();
487 488
	get_online_mems();

489 490
	mutex_lock(&slab_mutex);

491 492 493 494 495 496 497
	/*
	 * The memory cgroup could have been deactivated while the cache
	 * creation work was pending.
	 */
	if (!memcg_kmem_is_active(memcg))
		goto out_unlock;

498 499 500 501
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

502 503 504 505 506
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
507
	if (arr->entries[idx])
508 509
		goto out_unlock;

510
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
511
	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
512
			       css->id, memcg_name_buf);
513 514 515 516 517 518 519
	if (!cache_name)
		goto out_unlock;

	s = do_kmem_cache_create(cache_name, root_cache->object_size,
				 root_cache->size, root_cache->align,
				 root_cache->flags, root_cache->ctor,
				 memcg, root_cache);
520 521 522 523 524
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
525
	if (IS_ERR(s)) {
526
		kfree(cache_name);
527
		goto out_unlock;
528
	}
529

530 531
	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);

532 533 534 535 536 537
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
538
	arr->entries[idx] = s;
539

540 541
out_unlock:
	mutex_unlock(&slab_mutex);
542 543

	put_online_mems();
544
	put_online_cpus();
545
}
546

547 548 549 550
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
551
	struct kmem_cache *s, *c;
552 553 554

	idx = memcg_cache_id(memcg);

555 556 557
	get_online_cpus();
	get_online_mems();

558 559 560 561 562 563 564
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
565 566 567 568 569
		c = arr->entries[idx];
		if (!c)
			continue;

		__kmem_cache_shrink(c, true);
570 571 572
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
573 574 575

	put_online_mems();
	put_online_cpus();
576 577
}

578
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
579
{
580 581 582
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
	struct kmem_cache *s, *s2;
583

584 585
	get_online_cpus();
	get_online_mems();
586 587

	mutex_lock(&slab_mutex);
588
	list_for_each_entry_safe(s, s2, &slab_caches, list) {
589
		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
590 591 592 593 594 595 596 597
			continue;
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
		BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
	}
	mutex_unlock(&slab_mutex);
598

599 600 601 602
	put_online_mems();
	put_online_cpus();

	do_kmem_cache_release(&release, need_rcu_barrier);
603
}
604
#endif /* CONFIG_MEMCG_KMEM */
605

606 607
void slab_kmem_cache_release(struct kmem_cache *s)
{
608
	destroy_memcg_params(s);
609
	kfree_const(s->name);
610 611 612
	kmem_cache_free(kmem_cache, s);
}

613 614
void kmem_cache_destroy(struct kmem_cache *s)
{
615
	struct kmem_cache *c, *c2;
616 617 618 619
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
	bool busy = false;

620 621
	BUG_ON(!is_root_cache(s));

622
	get_online_cpus();
623 624
	get_online_mems();

625
	mutex_lock(&slab_mutex);
626

627
	s->refcount--;
628 629 630
	if (s->refcount)
		goto out_unlock;

631 632
	for_each_memcg_cache_safe(c, c2, s) {
		if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
633
			busy = true;
634
	}
635

636 637
	if (!busy)
		do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
638 639 640

out_unlock:
	mutex_unlock(&slab_mutex);
641

642
	put_online_mems();
643
	put_online_cpus();
644 645

	do_kmem_cache_release(&release, need_rcu_barrier);
646 647 648
}
EXPORT_SYMBOL(kmem_cache_destroy);

649 650 651 652 653 654 655 656 657 658 659 660 661
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
662
	ret = __kmem_cache_shrink(cachep, false);
663 664 665 666 667 668
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

669 670 671 672
int slab_is_available(void)
{
	return slab_state >= UP;
}
673

674 675 676 677 678 679 680 681 682
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
683
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
684 685 686

	slab_init_memcg_params(s);

687 688 689
	err = __kmem_cache_create(s, flags);

	if (err)
690
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

710 711 712 713 714 715 716 717
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

764
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
765
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
766
		return NULL;
767
	}
768

769 770 771 772 773 774 775 776 777
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
778
	if (unlikely((flags & GFP_DMA)))
779 780 781 782 783 784
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
static struct {
	const char *name;
	unsigned long size;
} const kmalloc_info[] __initconst = {
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

810
/*
811 812 813 814 815 816 817 818 819
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
820
 */
821
void __init setup_kmalloc_cache_index_table(void)
822 823 824
{
	int i;

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
855 856
}

857
static void __init new_kmalloc_cache(int idx, unsigned long flags)
858 859 860 861 862
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

863 864 865 866 867 868 869 870 871
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

872 873 874
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
875

876
		/*
877 878 879
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
880
		 */
881 882 883 884
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
885 886
	}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
906 907
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
908 909 910 911 912
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
913 914 915 916 917 918 919 920 921
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
	page = alloc_kmem_pages(flags, order);
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
922
	kasan_kmalloc_large(ret, size);
V
Vladimir Davydov 已提交
923 924 925 926
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

927 928 929 930 931 932 933 934 935
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
936

937
#ifdef CONFIG_SLABINFO
938 939 940 941 942 943 944

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

945
static void print_slabinfo_header(struct seq_file *m)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

968
void *slab_start(struct seq_file *m, loff_t *pos)
969 970 971 972 973
{
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
}

974
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
975 976 977 978
{
	return seq_list_next(p, &slab_caches, pos);
}

979
void slab_stop(struct seq_file *m, void *p)
980 981 982 983
{
	mutex_unlock(&slab_mutex);
}

984 985 986 987 988 989 990 991 992
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

993
	for_each_memcg_cache(c, s) {
994 995 996 997 998 999 1000 1001 1002 1003 1004
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1005
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1006
{
1007 1008 1009 1010 1011
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1012 1013
	memcg_accumulate_slabinfo(s, &sinfo);

1014
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1015
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1016 1017 1018 1019 1020 1021 1022 1023
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1024 1025
}

1026
static int slab_show(struct seq_file *m, void *p)
1027 1028 1029
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

1030 1031
	if (p == slab_caches.next)
		print_slabinfo_header(m);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (is_root_cache(s))
		cache_show(s, m);
	return 0;
}

#ifdef CONFIG_MEMCG_KMEM
int memcg_slab_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	if (p == slab_caches.next)
		print_slabinfo_header(m);
1045
	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1046 1047
		cache_show(s, m);
	return 0;
1048
}
1049
#endif
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1065
	.start = slab_start,
1066 1067
	.next = slab_next,
	.stop = slab_stop,
1068
	.show = slab_show,
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1086 1087
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1088 1089 1090 1091
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1102 1103
	if (ks >= new_size) {
		kasan_krealloc((void *)p, new_size);
1104
		return (void *)p;
1105
	}
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);