slab_common.c 36.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
15 16
#include <linux/cpu.h>
#include <linux/uaccess.h>
17 18
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
19 20 21
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
22
#include <linux/memcontrol.h>
23 24

#define CREATE_TRACE_POINTS
25
#include <trace/events/kmem.h>
26

27 28 29
#include "slab.h"

enum slab_state slab_state;
30 31
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
32
struct kmem_cache *kmem_cache;
33

34 35 36 37 38
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

39 40 41 42
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
43
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
44
		SLAB_FAILSLAB | SLAB_KASAN)
45

V
Vladimir Davydov 已提交
46
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
47
			 SLAB_ACCOUNT)
48 49 50 51

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
52
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
53 54 55

static int __init setup_slab_nomerge(char *str)
{
56
	slab_nomerge = true;
57 58 59 60 61 62 63 64 65
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

66 67 68 69 70 71 72 73 74
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

75
#ifdef CONFIG_DEBUG_VM
76
static int kmem_cache_sanity_check(const char *name, size_t size)
77 78 79 80 81
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
82 83
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
84
	}
85

86 87 88 89 90 91 92 93 94 95 96
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
97
			pr_err("Slab cache with size %d has lost its name\n",
98 99 100 101 102 103
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
104 105 106
	return 0;
}
#else
107
static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 109 110
{
	return 0;
}
111 112
#endif

113 114 115 116
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

117 118 119 120 121 122
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
123 124
}

125
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
126 127 128 129 130 131 132 133
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
134
			return 0;
135 136
		}
	}
137
	return i;
138 139
}

140
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
141 142 143

LIST_HEAD(slab_root_caches);

144
void slab_init_memcg_params(struct kmem_cache *s)
145
{
T
Tejun Heo 已提交
146
	s->memcg_params.root_cache = NULL;
147
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
148
	INIT_LIST_HEAD(&s->memcg_params.children);
149 150 151 152 153 154
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
155

T
Tejun Heo 已提交
156
	if (root_cache) {
157
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
158 159
		s->memcg_params.memcg = memcg;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
160
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161
		return 0;
162
	}
163

164
	slab_init_memcg_params(s);
165

166 167
	if (!memcg_nr_cache_ids)
		return 0;
168

169 170 171
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
172 173
	if (!arr)
		return -ENOMEM;
174

175
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 177 178
	return 0;
}

179
static void destroy_memcg_params(struct kmem_cache *s)
180
{
181
	if (is_root_cache(s))
182 183 184 185 186 187 188 189 190
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
191 192
}

193
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
194
{
195
	struct memcg_cache_array *old, *new;
196

197 198
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
199
	if (!new)
200 201
		return -ENOMEM;

202 203 204 205 206
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
207

208 209
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
210
		call_rcu(&old->rcu, free_memcg_params);
211 212 213
	return 0;
}

214 215 216 217 218
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

219
	mutex_lock(&slab_mutex);
220
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
221
		ret = update_memcg_params(s, num_memcgs);
222 223 224 225 226
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
227
			break;
228 229 230 231
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
232

233
void memcg_link_cache(struct kmem_cache *s)
234
{
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
253
}
254
#else
255 256
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
257 258 259 260
{
	return 0;
}

261
static inline void destroy_memcg_params(struct kmem_cache *s)
262 263
{
}
264

265
static inline void memcg_unlink_cache(struct kmem_cache *s)
266 267
{
}
268
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

284 285 286
	if (s->usersize)
		return 1;

287 288 289 290 291 292 293 294 295 296
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
297
		slab_flags_t flags, const char *name, void (*ctor)(void *))
298 299 300
{
	struct kmem_cache *s;

301
	if (slab_nomerge)
302 303 304 305 306 307 308 309 310 311
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

312 313 314
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

315
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

334 335 336 337
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

338 339 340 341 342
		return s;
	}
	return NULL;
}

343 344 345 346
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
347
unsigned long calculate_alignment(slab_flags_t flags,
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

370 371
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
372 373
		slab_flags_t flags, size_t useroffset,
		size_t usersize, void (*ctor)(void *),
374
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
375 376 377 378
{
	struct kmem_cache *s;
	int err;

379 380 381
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

382 383 384 385 386 387 388 389 390 391
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;
392 393
	s->useroffset = useroffset;
	s->usersize = usersize;
394

395
	err = init_memcg_params(s, memcg, root_cache);
396 397 398 399 400 401 402 403 404
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
405
	memcg_link_cache(s);
406 407 408 409 410 411
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
412
	destroy_memcg_params(s);
413
	kmem_cache_free(kmem_cache, s);
414 415
	goto out;
}
416

417
/*
418
 * kmem_cache_create_usercopy - Create a cache.
419 420 421 422
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
423 424
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
443
struct kmem_cache *
444 445 446
kmem_cache_create_usercopy(const char *name, size_t size, size_t align,
		  slab_flags_t flags, size_t useroffset, size_t usersize,
		  void (*ctor)(void *))
447
{
448
	struct kmem_cache *s = NULL;
449
	const char *cache_name;
450
	int err;
451

452
	get_online_cpus();
453
	get_online_mems();
454
	memcg_get_cache_ids();
455

456
	mutex_lock(&slab_mutex);
457

458
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
459
	if (err) {
460
		goto out_unlock;
A
Andrew Morton 已提交
461
	}
462

463 464 465 466 467 468
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

469 470 471 472 473 474 475
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
476

477 478 479 480 481 482 483
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
484
	if (s)
485
		goto out_unlock;
486

487
	cache_name = kstrdup_const(name, GFP_KERNEL);
488 489 490 491
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
492

493 494
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
495
			 flags, useroffset, usersize, ctor, NULL, NULL);
496 497
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
498
		kfree_const(cache_name);
499
	}
500 501

out_unlock:
502
	mutex_unlock(&slab_mutex);
503

504
	memcg_put_cache_ids();
505
	put_online_mems();
506 507
	put_online_cpus();

508
	if (err) {
509 510 511 512
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
513
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
514 515 516 517 518
				name, err);
			dump_stack();
		}
		return NULL;
	}
519 520
	return s;
}
521 522 523 524 525 526 527 528 529
EXPORT_SYMBOL(kmem_cache_create_usercopy);

struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t align,
		slab_flags_t flags, void (*ctor)(void *))
{
	return kmem_cache_create_usercopy(name, size, align, flags, 0, size,
					  ctor);
}
530
EXPORT_SYMBOL(kmem_cache_create);
531

532
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
533
{
534 535
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
536

537
	/*
538
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
539 540 541 542 543 544 545 546 547 548
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
549

550 551 552 553 554 555 556 557 558 559 560 561
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
562 563
}

564
static int shutdown_cache(struct kmem_cache *s)
565
{
566 567 568
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

569 570
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
571

572
	memcg_unlink_cache(s);
573
	list_del(&s->list);
574

575
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
576 577 578
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
579
#ifdef SLAB_SUPPORTS_SYSFS
580
		sysfs_slab_release(s);
581 582 583 584
#else
		slab_kmem_cache_release(s);
#endif
	}
585 586

	return 0;
587 588
}

589
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
590
/*
591
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
592 593 594 595 596 597 598
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
599 600
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
601
{
602
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
603
	struct cgroup_subsys_state *css = &memcg->css;
604
	struct memcg_cache_array *arr;
605
	struct kmem_cache *s = NULL;
606
	char *cache_name;
607
	int idx;
608 609

	get_online_cpus();
610 611
	get_online_mems();

612 613
	mutex_lock(&slab_mutex);

614
	/*
615
	 * The memory cgroup could have been offlined while the cache
616 617
	 * creation work was pending.
	 */
618
	if (memcg->kmem_state != KMEM_ONLINE)
619 620
		goto out_unlock;

621 622 623 624
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

625 626 627 628 629
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
630
	if (arr->entries[idx])
631 632
		goto out_unlock;

633
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
634 635
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
636 637 638
	if (!cache_name)
		goto out_unlock;

639 640
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
641
			 root_cache->flags & CACHE_CREATE_MASK,
642
			 root_cache->useroffset, root_cache->usersize,
643
			 root_cache->ctor, memcg, root_cache);
644 645 646 647 648
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
649
	if (IS_ERR(s)) {
650
		kfree(cache_name);
651
		goto out_unlock;
652
	}
653

654 655 656 657 658 659
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
660
	arr->entries[idx] = s;
661

662 663
out_unlock:
	mutex_unlock(&slab_mutex);
664 665

	put_online_mems();
666
	put_online_cpus();
667
}
668

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
static void kmemcg_deactivate_workfn(struct work_struct *work)
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
					    memcg_params.deact_work);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	s->memcg_params.deact_fn(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
	css_put(&s->memcg_params.memcg->css);
}

static void kmemcg_deactivate_rcufn(struct rcu_head *head)
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
					    memcg_params.deact_rcu_head);

	/*
	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
701
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
}

/**
 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 *					   sched RCU grace period
 * @s: target kmem_cache
 * @deact_fn: deactivation function to call
 *
 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 * held after a sched RCU grace period.  The slab is guaranteed to stay
 * alive until @deact_fn is finished.  This is to be used from
 * __kmemcg_cache_deactivate().
 */
void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
					   void (*deact_fn)(struct kmem_cache *))
{
	if (WARN_ON_ONCE(is_root_cache(s)) ||
	    WARN_ON_ONCE(s->memcg_params.deact_fn))
		return;

	/* pin memcg so that @s doesn't get destroyed in the middle */
	css_get(&s->memcg_params.memcg->css);

	s->memcg_params.deact_fn = deact_fn;
	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
}

729 730 731 732
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
733
	struct kmem_cache *s, *c;
734 735 736

	idx = memcg_cache_id(memcg);

737 738 739
	get_online_cpus();
	get_online_mems();

740
	mutex_lock(&slab_mutex);
741
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
742 743
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
744 745 746 747
		c = arr->entries[idx];
		if (!c)
			continue;

748
		__kmemcg_cache_deactivate(c);
749 750 751
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
752 753 754

	put_online_mems();
	put_online_cpus();
755 756
}

757
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
758
{
759
	struct kmem_cache *s, *s2;
760

761 762
	get_online_cpus();
	get_online_mems();
763 764

	mutex_lock(&slab_mutex);
765 766
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
767 768 769 770
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
771
		BUG_ON(shutdown_cache(s));
772 773
	}
	mutex_unlock(&slab_mutex);
774

775 776
	put_online_mems();
	put_online_cpus();
777
}
778

779
static int shutdown_memcg_caches(struct kmem_cache *s)
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
798
		if (shutdown_cache(c))
799 800 801 802 803
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
804
			list_move(&c->memcg_params.children_node, &busy);
805 806 807 808 809 810 811 812 813 814 815 816 817 818
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
819 820
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
821
		shutdown_cache(c);
822

T
Tejun Heo 已提交
823
	list_splice(&busy, &s->memcg_params.children);
824 825 826 827 828

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
829
	if (!list_empty(&s->memcg_params.children))
830 831 832 833
		return -EBUSY;
	return 0;
}
#else
834
static inline int shutdown_memcg_caches(struct kmem_cache *s)
835 836 837
{
	return 0;
}
838
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
839

840 841
void slab_kmem_cache_release(struct kmem_cache *s)
{
842
	__kmem_cache_release(s);
843
	destroy_memcg_params(s);
844
	kfree_const(s->name);
845 846 847
	kmem_cache_free(kmem_cache, s);
}

848 849
void kmem_cache_destroy(struct kmem_cache *s)
{
850
	int err;
851

852 853 854
	if (unlikely(!s))
		return;

855
	get_online_cpus();
856 857
	get_online_mems();

858
	mutex_lock(&slab_mutex);
859

860
	s->refcount--;
861 862 863
	if (s->refcount)
		goto out_unlock;

864
	err = shutdown_memcg_caches(s);
865
	if (!err)
866
		err = shutdown_cache(s);
867

868
	if (err) {
J
Joe Perches 已提交
869 870
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
871 872
		dump_stack();
	}
873 874
out_unlock:
	mutex_unlock(&slab_mutex);
875

876
	put_online_mems();
877 878 879 880
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

881 882 883 884 885 886 887 888 889 890 891 892 893
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
894
	kasan_cache_shrink(cachep);
895
	ret = __kmem_cache_shrink(cachep);
896 897 898 899 900 901
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

902
bool slab_is_available(void)
903 904 905
{
	return slab_state >= UP;
}
906

907 908 909
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
910
		slab_flags_t flags, size_t useroffset, size_t usersize)
911 912 913 914 915
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
916
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
917 918
	s->useroffset = useroffset;
	s->usersize = usersize;
919 920 921

	slab_init_memcg_params(s);

922 923 924
	err = __kmem_cache_create(s, flags);

	if (err)
925
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
926 927 928 929 930 931
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
932
				slab_flags_t flags)
933 934 935 936 937 938
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

939
	create_boot_cache(s, name, size, flags, 0, size);
940
	list_add(&s->list, &slab_caches);
941
	memcg_link_cache(s);
942 943 944 945
	s->refcount = 1;
	return s;
}

946 947 948 949 950 951 952 953
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

1000
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
1001
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
1002
		return NULL;
1003
	}
1004

1005 1006 1007 1008 1009 1010 1011 1012 1013
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
1014
	if (unlikely((flags & GFP_DMA)))
1015 1016 1017 1018 1019 1020
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

1021 1022 1023 1024 1025
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1026
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

1043
/*
1044 1045 1046 1047 1048 1049 1050 1051 1052
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1053
 */
1054
void __init setup_kmalloc_cache_index_table(void)
1055 1056 1057
{
	int i;

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1088 1089
}

1090
static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1091 1092 1093 1094 1095
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

1096 1097 1098 1099 1100
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1101
void __init create_kmalloc_caches(slab_flags_t flags)
1102 1103 1104
{
	int i;

1105 1106 1107
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
1108

1109
		/*
1110 1111 1112
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1113
		 */
1114 1115 1116 1117
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1118 1119
	}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
1139 1140
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1141 1142 1143 1144 1145
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1146 1147 1148 1149 1150 1151
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1152
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1153 1154
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1155
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1156 1157 1158 1159
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1160 1161 1162 1163 1164 1165 1166 1167 1168
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1217
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1218 1219 1220 1221 1222 1223
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1224
static void print_slabinfo_header(struct seq_file *m)
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1235
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1236 1237 1238
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1239
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1240 1241 1242 1243 1244
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1245
void *slab_start(struct seq_file *m, loff_t *pos)
1246 1247
{
	mutex_lock(&slab_mutex);
1248
	return seq_list_start(&slab_root_caches, *pos);
1249 1250
}

1251
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1252
{
1253
	return seq_list_next(p, &slab_root_caches, pos);
1254 1255
}

1256
void slab_stop(struct seq_file *m, void *p)
1257 1258 1259 1260
{
	mutex_unlock(&slab_mutex);
}

1261 1262 1263 1264 1265 1266 1267 1268 1269
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1270
	for_each_memcg_cache(c, s) {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1282
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1283
{
1284 1285 1286 1287 1288
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1289 1290
	memcg_accumulate_slabinfo(s, &sinfo);

1291
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1292
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1293 1294 1295 1296 1297 1298 1299 1300
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1301 1302
}

1303
static int slab_show(struct seq_file *m, void *p)
1304
{
1305
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1306

1307
	if (p == slab_root_caches.next)
1308
		print_slabinfo_header(m);
1309
	cache_show(s, m);
1310 1311 1312
	return 0;
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

Y
Yang Shi 已提交
1347
#if defined(CONFIG_MEMCG)
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1368 1369
int memcg_slab_show(struct seq_file *m, void *p)
{
1370 1371
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1372 1373
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

1374
	if (p == memcg->kmem_caches.next)
1375
		print_slabinfo_header(m);
1376
	cache_show(s, m);
1377
	return 0;
1378
}
1379
#endif
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1395
	.start = slab_start,
1396 1397
	.next = slab_next,
	.stop = slab_stop,
1398
	.show = slab_show,
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1416 1417
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1418 1419 1420
	return 0;
}
module_init(slab_proc_init);
Y
Yang Shi 已提交
1421
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1432
	if (ks >= new_size) {
1433
		kasan_krealloc((void *)p, new_size, flags);
1434
		return (void *)p;
1435
	}
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);