slab_common.c 32.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14
#include <linux/compiler.h>
15
#include <linux/kfence.h>
16
#include <linux/module.h>
17 18
#include <linux/cpu.h>
#include <linux/uaccess.h>
19 20
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
21
#include <linux/debugfs.h>
22
#include <linux/kasan.h>
23 24 25
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
26
#include <linux/memcontrol.h>
27 28

#define CREATE_TRACE_POINTS
29
#include <trace/events/kmem.h>
30

31 32
#include "internal.h"

33 34 35
#include "slab.h"

enum slab_state slab_state;
36 37
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
38
struct kmem_cache *kmem_cache;
39

40 41 42 43 44 45 46 47
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

48 49 50 51 52
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

53 54 55 56
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
57
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
58
		SLAB_FAILSLAB | kasan_never_merge())
59

V
Vladimir Davydov 已提交
60
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
61
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
62 63 64 65

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
66
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
67 68 69

static int __init setup_slab_nomerge(char *str)
{
70
	slab_nomerge = true;
71 72 73 74 75 76 77 78 79
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

80 81 82 83 84 85 86 87 88
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

89
#ifdef CONFIG_DEBUG_VM
90
static int kmem_cache_sanity_check(const char *name, unsigned int size)
91 92 93
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
94 95
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
96
	}
97

98
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 100 101
	return 0;
}
#else
102
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 104 105
{
	return 0;
}
106 107
#endif

108 109 110 111
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

112 113 114 115 116 117
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
118 119
}

120
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 122 123 124 125 126 127 128
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
129
			return 0;
130 131
		}
	}
132
	return i;
133 134
}

135 136 137 138
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
139 140
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
141 142 143 144 145 146 147 148 149
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
150
		unsigned int ralign;
151 152 153 154 155 156 157 158 159 160 161 162 163

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

164 165 166 167 168 169 170 171 172 173 174
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (s->ctor)
		return 1;

175 176 177
	if (s->usersize)
		return 1;

178 179 180 181 182 183 184 185 186
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

187
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
188
		slab_flags_t flags, const char *name, void (*ctor)(void *))
189 190 191
{
	struct kmem_cache *s;

192
	if (slab_nomerge)
193 194 195 196 197 198 199 200
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
201
	flags = kmem_cache_flags(size, flags, name);
202

203 204 205
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

206
	list_for_each_entry_reverse(s, &slab_caches, list) {
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

225 226 227 228
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

229 230 231 232 233
		return s;
	}
	return NULL;
}

234
static struct kmem_cache *create_cache(const char *name,
235
		unsigned int object_size, unsigned int align,
236 237
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
238
		struct kmem_cache *root_cache)
239 240 241 242
{
	struct kmem_cache *s;
	int err;

243 244 245
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

246 247 248 249 250 251
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
252
	s->size = s->object_size = object_size;
253 254
	s->align = align;
	s->ctor = ctor;
255 256
	s->useroffset = useroffset;
	s->usersize = usersize;
257 258 259 260 261 262 263 264 265 266 267 268 269

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
270
	kmem_cache_free(kmem_cache, s);
271 272
	goto out;
}
273

274 275 276
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
277 278 279 280
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
281 282
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
283 284 285 286 287 288 289 290 291 292
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
293
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
294 295 296 297 298
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
299 300
 *
 * Return: a pointer to the cache on success, NULL on failure.
301
 */
302
struct kmem_cache *
303 304
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
305 306
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
307
		  void (*ctor)(void *))
308
{
309
	struct kmem_cache *s = NULL;
310
	const char *cache_name;
311
	int err;
312

313
	mutex_lock(&slab_mutex);
314

315
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
316
	if (err) {
317
		goto out_unlock;
A
Andrew Morton 已提交
318
	}
319

320 321 322 323 324 325
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

326 327 328 329 330 331 332
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
333

334 335 336 337 338 339 340
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
341
	if (s)
342
		goto out_unlock;
343

344
	cache_name = kstrdup_const(name, GFP_KERNEL);
345 346 347 348
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
349

350
	s = create_cache(cache_name, size,
351
			 calculate_alignment(flags, align, size),
352
			 flags, useroffset, usersize, ctor, NULL);
353 354
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
355
		kfree_const(cache_name);
356
	}
357 358

out_unlock:
359
	mutex_unlock(&slab_mutex);
360

361
	if (err) {
362 363 364 365
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
366
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
367 368 369 370 371
				name, err);
			dump_stack();
		}
		return NULL;
	}
372 373
	return s;
}
374 375
EXPORT_SYMBOL(kmem_cache_create_usercopy);

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
401
struct kmem_cache *
402
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
403 404
		slab_flags_t flags, void (*ctor)(void *))
{
405
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
406 407
					  ctor);
}
408
EXPORT_SYMBOL(kmem_cache_create);
409

410
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
411
{
412 413
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
414

415
	/*
416
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
417
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
418
	 * through RCU and the associated kmem_cache are dereferenced
419 420 421 422 423 424 425 426
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
427

428 429 430 431 432 433
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
434
		kfence_shutdown_cache(s);
435 436 437 438 439 440
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
441 442
}

443
static int shutdown_cache(struct kmem_cache *s)
444
{
445 446 447
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

448 449
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
450

451
	list_del(&s->list);
452

453
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
454 455 456
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
457 458 459
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
460
		kfence_shutdown_cache(s);
461
#ifdef SLAB_SUPPORTS_SYSFS
462
		sysfs_slab_unlink(s);
463
		sysfs_slab_release(s);
464 465 466 467
#else
		slab_kmem_cache_release(s);
#endif
	}
468 469

	return 0;
470 471
}

472 473
void slab_kmem_cache_release(struct kmem_cache *s)
{
474
	__kmem_cache_release(s);
475
	kfree_const(s->name);
476 477 478
	kmem_cache_free(kmem_cache, s);
}

479 480
void kmem_cache_destroy(struct kmem_cache *s)
{
481
	int err;
482

483 484 485
	if (unlikely(!s))
		return;

486
	mutex_lock(&slab_mutex);
487

488
	s->refcount--;
489 490 491
	if (s->refcount)
		goto out_unlock;

492
	err = shutdown_cache(s);
493
	if (err) {
J
Joe Perches 已提交
494 495
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
496 497
		dump_stack();
	}
498 499
out_unlock:
	mutex_unlock(&slab_mutex);
500 501 502
}
EXPORT_SYMBOL(kmem_cache_destroy);

503 504 505 506 507 508
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
509 510
 *
 * Return: %0 if all slabs were released, non-zero otherwise
511 512 513 514 515
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

516

517
	kasan_cache_shrink(cachep);
518
	ret = __kmem_cache_shrink(cachep);
519

520 521 522 523
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

524
bool slab_is_available(void)
525 526 527
{
	return slab_state >= UP;
}
528

529
#ifdef CONFIG_PRINTK
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
 * kmem_valid_obj - does the pointer reference a valid slab object?
 * @object: pointer to query.
 *
 * Return: %true if the pointer is to a not-yet-freed object from
 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 * is to an already-freed object, and %false otherwise.
 */
bool kmem_valid_obj(void *object)
{
	struct page *page;

	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
		return false;
	page = virt_to_head_page(object);
	return PageSlab(page);
}

/**
 * kmem_dump_obj - Print available slab provenance information
 * @object: slab object for which to find provenance information.
 *
 * This function uses pr_cont(), so that the caller is expected to have
 * printed out whatever preamble is appropriate.  The provenance information
 * depends on the type of object and on how much debugging is enabled.
 * For a slab-cache object, the fact that it is a slab object is printed,
 * and, if available, the slab name, return address, and stack trace from
 * the allocation of that object.
 *
 * This function will splat if passed a pointer to a non-slab object.
 * If you are not sure what type of object you have, you should instead
 * use mem_dump_obj().
 */
void kmem_dump_obj(void *object)
{
	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
	int i;
	struct page *page;
	unsigned long ptroffset;
	struct kmem_obj_info kp = { };

	if (WARN_ON_ONCE(!virt_addr_valid(object)))
		return;
	page = virt_to_head_page(object);
	if (WARN_ON_ONCE(!PageSlab(page))) {
		pr_cont(" non-slab memory.\n");
		return;
	}
	kmem_obj_info(&kp, object, page);
	if (kp.kp_slab_cache)
		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
	else
		pr_cont(" slab%s", cp);
	if (kp.kp_objp)
		pr_cont(" start %px", kp.kp_objp);
	if (kp.kp_data_offset)
		pr_cont(" data offset %lu", kp.kp_data_offset);
	if (kp.kp_objp) {
		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
		pr_cont(" pointer offset %lu", ptroffset);
	}
	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
		pr_cont(" size %u", kp.kp_slab_cache->usersize);
	if (kp.kp_ret)
		pr_cont(" allocated at %pS\n", kp.kp_ret);
	else
		pr_cont("\n");
	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
		if (!kp.kp_stack[i])
			break;
		pr_info("    %pS\n", kp.kp_stack[i]);
	}
}
604
#endif
605

606 607
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
608 609 610
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
611 612
{
	int err;
613
	unsigned int align = ARCH_KMALLOC_MINALIGN;
614 615 616

	s->name = name;
	s->size = s->object_size = size;
617 618 619 620 621 622 623 624 625

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

626 627
	s->useroffset = useroffset;
	s->usersize = usersize;
628

629 630 631
	err = __kmem_cache_create(s, flags);

	if (err)
632
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
633 634 635 636 637
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

638 639 640
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
641 642 643 644 645 646
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

647
	create_boot_cache(s, name, size, flags, useroffset, usersize);
648
	kasan_cache_create_kmalloc(s);
649 650 651 652 653
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

654
struct kmem_cache *
655 656
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
657 658
EXPORT_SYMBOL(kmalloc_caches);

659 660 661 662 663 664
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
665
static u8 size_index[24] __ro_after_init = {
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

692
static inline unsigned int size_index_elem(unsigned int bytes)
693 694 695 696 697 698 699 700 701 702
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
703
	unsigned int index;
704 705 706 707 708 709

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
710
	} else {
711
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
712
			return NULL;
713
		index = fls(size - 1);
714
	}
715

716
	return kmalloc_caches[kmalloc_type(flags)][index];
717 718
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

736 737 738 739 740
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
741
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
	INIT_KMALLOC_INFO(33554432, 32M),
	INIT_KMALLOC_INFO(67108864, 64M)
769 770
};

771
/*
772 773 774 775 776 777 778 779 780
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
781
 */
782
void __init setup_kmalloc_cache_index_table(void)
783
{
784
	unsigned int i;
785

786 787 788 789
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
790
		unsigned int elem = size_index_elem(i);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
816 817
}

818
static void __init
819
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
820
{
821
	if (type == KMALLOC_RECLAIM)
822 823
		flags |= SLAB_RECLAIM_ACCOUNT;

824 825
	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
826 827
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
828 829
}

830 831 832 833 834
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
835
void __init create_kmalloc_caches(slab_flags_t flags)
836
{
837 838
	int i;
	enum kmalloc_cache_type type;
839

840 841 842 843
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
844

845 846 847 848 849 850 851 852 853 854 855 856
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
857 858
	}

859 860 861 862 863
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
864
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
865 866

		if (s) {
867
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
868
				kmalloc_info[i].name[KMALLOC_DMA],
869
				kmalloc_info[i].size,
870 871
				SLAB_CACHE_DMA | flags, 0,
				kmalloc_info[i].size);
872 873 874 875
		}
	}
#endif
}
876 877
#endif /* !CONFIG_SLOB */

878 879 880 881 882 883 884 885 886 887 888 889
gfp_t kmalloc_fix_flags(gfp_t flags)
{
	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;

	flags &= ~GFP_SLAB_BUG_MASK;
	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
			invalid_mask, &invalid_mask, flags, &flags);
	dump_stack();

	return flags;
}

V
Vladimir Davydov 已提交
890 891 892 893 894
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
895 896
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
897
	void *ret = NULL;
V
Vladimir Davydov 已提交
898 899
	struct page *page;

900 901 902
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);

V
Vladimir Davydov 已提交
903
	flags |= __GFP_COMP;
904
	page = alloc_pages(flags, order);
905 906
	if (likely(page)) {
		ret = page_address(page);
907 908
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
				      PAGE_SIZE << order);
909
	}
910
	ret = kasan_kmalloc_large(ret, size, flags);
911
	/* As ret might get tagged, call kmemleak hook after KASAN. */
912
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
913 914 915 916
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

917 918 919 920 921 922 923 924 925
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
926

927 928 929
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
930
			       unsigned int count)
931 932
{
	unsigned int rand;
933
	unsigned int i;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
974
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
975
#ifdef CONFIG_SLAB
976
#define SLABINFO_RIGHTS (0600)
977
#else
978
#define SLABINFO_RIGHTS (0400)
979 980
#endif

981
static void print_slabinfo_header(struct seq_file *m)
982 983 984 985 986 987 988 989 990 991
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
992
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
993 994 995
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
996
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
997 998 999 1000 1001
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1002
void *slab_start(struct seq_file *m, loff_t *pos)
1003 1004
{
	mutex_lock(&slab_mutex);
1005
	return seq_list_start(&slab_caches, *pos);
1006 1007
}

1008
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1009
{
1010
	return seq_list_next(p, &slab_caches, pos);
1011 1012
}

1013
void slab_stop(struct seq_file *m, void *p)
1014 1015 1016 1017
{
	mutex_unlock(&slab_mutex);
}

1018
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1019
{
1020 1021 1022 1023 1024 1025
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1026
		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1027 1028 1029 1030 1031 1032 1033 1034
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1035 1036
}

1037
static int slab_show(struct seq_file *m, void *p)
1038
{
1039
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1040

1041
	if (p == slab_caches.next)
1042
		print_slabinfo_header(m);
1043
	cache_show(s, m);
1044 1045 1046
	return 0;
}

1047 1048
void dump_unreclaimable_slab(void)
{
1049
	struct kmem_cache *s;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

1067
	list_for_each_entry(s, &slab_caches, list) {
1068
		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1069 1070 1071 1072 1073
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
1074
			pr_info("%-17s %10luKB %10luKB\n", s->name,
1075 1076 1077 1078 1079 1080
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

1081
#if defined(CONFIG_MEMCG_KMEM)
1082 1083
int memcg_slab_show(struct seq_file *m, void *p)
{
1084 1085 1086 1087
	/*
	 * Deprecated.
	 * Please, take a look at tools/cgroup/slabinfo.py .
	 */
1088
	return 0;
1089
}
1090
#endif
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1106
	.start = slab_start,
1107 1108
	.next = slab_next,
	.stop = slab_stop,
1109
	.show = slab_show,
1110 1111 1112 1113 1114 1115 1116
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

1117
static const struct proc_ops slabinfo_proc_ops = {
1118
	.proc_flags	= PROC_ENTRY_PERMANENT,
1119 1120 1121 1122 1123
	.proc_open	= slabinfo_open,
	.proc_read	= seq_read,
	.proc_write	= slabinfo_write,
	.proc_lseek	= seq_lseek,
	.proc_release	= seq_release,
1124 1125 1126 1127
};

static int __init slab_proc_init(void)
{
1128
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1129 1130 1131
	return 0;
}
module_init(slab_proc_init);
1132

Y
Yang Shi 已提交
1133
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1134 1135 1136 1137 1138

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
1139
	size_t ks;
1140

1141 1142 1143 1144 1145 1146 1147
	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
	if (likely(!ZERO_OR_NULL_PTR(p))) {
		if (!kasan_check_byte(p))
			return NULL;
		ks = kfence_ksize(p) ?: __ksize(p);
	} else
		ks = 0;
1148

1149
	/* If the object still fits, repoison it precisely. */
1150
	if (ks >= new_size) {
1151
		p = kasan_krealloc((void *)p, new_size, flags);
1152
		return (void *)p;
1153
	}
1154 1155

	ret = kmalloc_track_caller(new_size, flags);
1156 1157 1158 1159 1160 1161
	if (ret && p) {
		/* Disable KASAN checks as the object's redzone is accessed. */
		kasan_disable_current();
		memcpy(ret, kasan_reset_tag(p), ks);
		kasan_enable_current();
	}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	return ret;
}

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
1173 1174 1175
 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1176 1177
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1189
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1190 1191 1192 1193 1194 1195 1196
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
1197
 * kfree_sensitive - Clear sensitive information in memory before freeing
1198 1199 1200
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
1201
 * If @p is %NULL, kfree_sensitive() does nothing.
1202 1203 1204 1205 1206
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
1207
void kfree_sensitive(const void *p)
1208 1209 1210 1211 1212
{
	size_t ks;
	void *mem = (void *)p;

	ks = ksize(mem);
1213 1214
	if (ks)
		memzero_explicit(mem, ks);
1215 1216
	kfree(mem);
}
1217
EXPORT_SYMBOL(kfree_sensitive);
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1235 1236 1237
	size_t size;

	/*
1238 1239 1240 1241
	 * We need to first check that the pointer to the object is valid, and
	 * only then unpoison the memory. The report printed from ksize() is
	 * more useful, then when it's printed later when the behaviour could
	 * be undefined due to a potential use-after-free or double-free.
1242
	 *
1243 1244 1245 1246
	 * We use kasan_check_byte(), which is supported for the hardware
	 * tag-based KASAN mode, unlike kasan_check_read/write().
	 *
	 * If the pointed to memory is invalid, we return 0 to avoid users of
1247 1248 1249 1250 1251
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
1252
	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1253 1254
		return 0;

1255
	size = kfence_ksize(objp) ?: __ksize(objp);
1256 1257 1258 1259
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
1260
	kasan_unpoison_range(objp, size);
1261 1262 1263 1264
	return size;
}
EXPORT_SYMBOL(ksize);

1265 1266 1267 1268 1269 1270 1271
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1272 1273 1274 1275 1276 1277 1278 1279

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);