slab_common.c 44.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20
#include <linux/debugfs.h>
21 22 23
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
24
#include <linux/memcontrol.h>
25 26

#define CREATE_TRACE_POINTS
27
#include <trace/events/kmem.h>
28

29 30 31
#include "slab.h"

enum slab_state slab_state;
32 33
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
34
struct kmem_cache *kmem_cache;
35

36 37 38 39 40 41 42 43
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

44 45 46 47 48
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

49 50 51 52
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
54
		SLAB_FAILSLAB | SLAB_KASAN)
55

V
Vladimir Davydov 已提交
56
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
58 59 60 61

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
62
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
63 64 65

static int __init setup_slab_nomerge(char *str)
{
66
	slab_nomerge = true;
67 68 69 70 71 72 73 74 75
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

76 77 78 79 80 81 82 83 84
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

85
#ifdef CONFIG_DEBUG_VM
86
static int kmem_cache_sanity_check(const char *name, unsigned int size)
87 88 89
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
90 91
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
92
	}
93

94
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
95 96 97
	return 0;
}
#else
98
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
99 100 101
{
	return 0;
}
102 103
#endif

104 105 106 107
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

108 109 110 111 112 113
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
114 115
}

116
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 118 119 120 121 122 123 124
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
125
			return 0;
126 127
		}
	}
128
	return i;
129 130
}

131
#ifdef CONFIG_MEMCG_KMEM
132 133

LIST_HEAD(slab_root_caches);
134
static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
135

136 137
static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);

138
void slab_init_memcg_params(struct kmem_cache *s)
139
{
T
Tejun Heo 已提交
140
	s->memcg_params.root_cache = NULL;
141
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
142
	INIT_LIST_HEAD(&s->memcg_params.children);
143
	s->memcg_params.dying = false;
144 145 146
}

static int init_memcg_params(struct kmem_cache *s,
147
			     struct kmem_cache *root_cache)
148 149
{
	struct memcg_cache_array *arr;
150

T
Tejun Heo 已提交
151
	if (root_cache) {
152 153 154 155 156 157
		int ret = percpu_ref_init(&s->memcg_params.refcnt,
					  kmemcg_cache_shutdown,
					  0, GFP_KERNEL);
		if (ret)
			return ret;

158
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
159
		INIT_LIST_HEAD(&s->memcg_params.children_node);
160
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161
		return 0;
162
	}
163

164
	slab_init_memcg_params(s);
165

166 167
	if (!memcg_nr_cache_ids)
		return 0;
168

169 170 171
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
172 173
	if (!arr)
		return -ENOMEM;
174

175
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 177 178
	return 0;
}

179
static void destroy_memcg_params(struct kmem_cache *s)
180
{
181
	if (is_root_cache(s)) {
182
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 184 185
	} else {
		mem_cgroup_put(s->memcg_params.memcg);
		WRITE_ONCE(s->memcg_params.memcg, NULL);
186
		percpu_ref_exit(&s->memcg_params.refcnt);
187
	}
188 189 190 191 192 193 194 195
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
196 197
}

198
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
199
{
200
	struct memcg_cache_array *old, *new;
201

202 203
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
204
	if (!new)
205 206
		return -ENOMEM;

207 208 209 210 211
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
212

213 214
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
215
		call_rcu(&old->rcu, free_memcg_params);
216 217 218
	return 0;
}

219 220 221 222 223
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

224
	mutex_lock(&slab_mutex);
225
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
226
		ret = update_memcg_params(s, num_memcgs);
227 228 229 230 231
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
232
			break;
233 234 235 236
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
237

238
void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
239
{
240 241 242
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
243
		css_get(&memcg->css);
244
		s->memcg_params.memcg = memcg;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
260
}
261
#else
262
static inline int init_memcg_params(struct kmem_cache *s,
263
				    struct kmem_cache *root_cache)
264 265 266 267
{
	return 0;
}

268
static inline void destroy_memcg_params(struct kmem_cache *s)
269 270
{
}
271

272
static inline void memcg_unlink_cache(struct kmem_cache *s)
273 274
{
}
275
#endif /* CONFIG_MEMCG_KMEM */
276

277 278 279 280
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
281 282
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
283 284 285 286 287 288 289 290 291
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
292
		unsigned int ralign;
293 294 295 296 297 298 299 300 301 302 303 304 305

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

320 321 322
	if (s->usersize)
		return 1;

323 324 325 326 327 328 329 330 331
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

332
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
333
		slab_flags_t flags, const char *name, void (*ctor)(void *))
334 335 336
{
	struct kmem_cache *s;

337
	if (slab_nomerge)
338 339 340 341 342 343 344 345 346 347
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

348 349 350
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

351
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

370 371 372 373
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

374 375 376 377 378
		return s;
	}
	return NULL;
}

379
static struct kmem_cache *create_cache(const char *name,
380
		unsigned int object_size, unsigned int align,
381 382
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
383
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
384 385 386 387
{
	struct kmem_cache *s;
	int err;

388 389 390
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

391 392 393 394 395 396
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
397
	s->size = s->object_size = object_size;
398 399
	s->align = align;
	s->ctor = ctor;
400 401
	s->useroffset = useroffset;
	s->usersize = usersize;
402

403
	err = init_memcg_params(s, root_cache);
404 405 406 407 408 409 410 411 412
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
413
	memcg_link_cache(s, memcg);
414 415 416 417 418 419
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
420
	destroy_memcg_params(s);
421
	kmem_cache_free(kmem_cache, s);
422 423
	goto out;
}
424

425 426 427
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
428 429 430 431
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
432 433
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
434 435 436 437 438 439 440 441 442 443
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
444
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
445 446 447 448 449
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
450 451
 *
 * Return: a pointer to the cache on success, NULL on failure.
452
 */
453
struct kmem_cache *
454 455
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
456 457
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
458
		  void (*ctor)(void *))
459
{
460
	struct kmem_cache *s = NULL;
461
	const char *cache_name;
462
	int err;
463

464
	get_online_cpus();
465
	get_online_mems();
466
	memcg_get_cache_ids();
467

468
	mutex_lock(&slab_mutex);
469

470
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
471
	if (err) {
472
		goto out_unlock;
A
Andrew Morton 已提交
473
	}
474

475 476 477 478 479 480
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

481 482 483 484 485 486 487
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
488

489 490 491 492 493 494 495
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
496
	if (s)
497
		goto out_unlock;
498

499
	cache_name = kstrdup_const(name, GFP_KERNEL);
500 501 502 503
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
504

505
	s = create_cache(cache_name, size,
506
			 calculate_alignment(flags, align, size),
507
			 flags, useroffset, usersize, ctor, NULL, NULL);
508 509
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
510
		kfree_const(cache_name);
511
	}
512 513

out_unlock:
514
	mutex_unlock(&slab_mutex);
515

516
	memcg_put_cache_ids();
517
	put_online_mems();
518 519
	put_online_cpus();

520
	if (err) {
521 522 523 524
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
525
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
526 527 528 529 530
				name, err);
			dump_stack();
		}
		return NULL;
	}
531 532
	return s;
}
533 534
EXPORT_SYMBOL(kmem_cache_create_usercopy);

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
560
struct kmem_cache *
561
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
562 563
		slab_flags_t flags, void (*ctor)(void *))
{
564
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
565 566
					  ctor);
}
567
EXPORT_SYMBOL(kmem_cache_create);
568

569
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
570
{
571 572
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
573

574
	/*
575
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
576 577 578 579 580 581 582 583 584 585
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
586

587 588 589 590 591 592 593 594 595 596 597 598
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
599 600
}

601
static int shutdown_cache(struct kmem_cache *s)
602
{
603 604 605
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

606 607
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
608

609
	memcg_unlink_cache(s);
610
	list_del(&s->list);
611

612
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
613 614 615
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
616 617 618
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
619
#ifdef SLAB_SUPPORTS_SYSFS
620
		sysfs_slab_unlink(s);
621
		sysfs_slab_release(s);
622 623 624 625
#else
		slab_kmem_cache_release(s);
#endif
	}
626 627

	return 0;
628 629
}

630
#ifdef CONFIG_MEMCG_KMEM
631
/*
632
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
633 634 635 636 637 638 639
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
640 641
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
642
{
643
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
644
	struct cgroup_subsys_state *css = &memcg->css;
645
	struct memcg_cache_array *arr;
646
	struct kmem_cache *s = NULL;
647
	char *cache_name;
648
	int idx;
649 650

	get_online_cpus();
651 652
	get_online_mems();

653 654
	mutex_lock(&slab_mutex);

655
	/*
656
	 * The memory cgroup could have been offlined while the cache
657 658
	 * creation work was pending.
	 */
659
	if (memcg->kmem_state != KMEM_ONLINE)
660 661
		goto out_unlock;

662 663 664 665
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

666 667 668 669 670
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
671
	if (arr->entries[idx])
672 673
		goto out_unlock;

674
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
675 676
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
677 678 679
	if (!cache_name)
		goto out_unlock;

680
	s = create_cache(cache_name, root_cache->object_size,
681
			 root_cache->align,
682
			 root_cache->flags & CACHE_CREATE_MASK,
683
			 root_cache->useroffset, root_cache->usersize,
684
			 root_cache->ctor, memcg, root_cache);
685 686 687 688 689
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
690
	if (IS_ERR(s)) {
691
		kfree(cache_name);
692
		goto out_unlock;
693
	}
694

695
	/*
696
	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
697 698 699 700
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
701
	arr->entries[idx] = s;
702

703 704
out_unlock:
	mutex_unlock(&slab_mutex);
705 706

	put_online_mems();
707
	put_online_cpus();
708
}
709

710
static void kmemcg_workfn(struct work_struct *work)
711 712
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
713
					    memcg_params.work);
714 715 716 717 718

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);
719
	s->memcg_params.work_fn(s);
720 721 722 723 724 725
	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();
}

726
static void kmemcg_rcufn(struct rcu_head *head)
727 728
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
729
					    memcg_params.rcu_head);
730 731

	/*
732
	 * We need to grab blocking locks.  Bounce to ->work.  The
733 734 735
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
736 737
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
738 739
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
{
	WARN_ON(shutdown_cache(s));
}

static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
{
	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
					    memcg_params.refcnt);
	unsigned long flags;

	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
	if (s->memcg_params.root_cache->memcg_params.dying)
		goto unlock;

	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);

unlock:
	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
}

static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
{
	__kmemcg_cache_deactivate_after_rcu(s);
	percpu_ref_kill(&s->memcg_params.refcnt);
}

769
static void kmemcg_cache_deactivate(struct kmem_cache *s)
770
{
771
	if (WARN_ON_ONCE(is_root_cache(s)))
772 773
		return;

774
	__kmemcg_cache_deactivate(s);
775
	s->flags |= SLAB_DEACTIVATED;
776

777 778 779 780 781 782
	/*
	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
	 * flag and make sure that no new kmem_cache deactivation tasks
	 * are queued (see flush_memcg_workqueue() ).
	 */
	spin_lock_irq(&memcg_kmem_wq_lock);
783
	if (s->memcg_params.root_cache->memcg_params.dying)
784
		goto unlock;
785

786
	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
787
	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
788 789
unlock:
	spin_unlock_irq(&memcg_kmem_wq_lock);
790 791
}

792 793
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
794 795 796
{
	int idx;
	struct memcg_cache_array *arr;
797
	struct kmem_cache *s, *c;
798
	unsigned int nr_reparented;
799 800 801

	idx = memcg_cache_id(memcg);

802 803 804
	get_online_cpus();
	get_online_mems();

805
	mutex_lock(&slab_mutex);
806
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
807 808
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
809 810 811 812
		c = arr->entries[idx];
		if (!c)
			continue;

813
		kmemcg_cache_deactivate(c);
814 815
		arr->entries[idx] = NULL;
	}
816 817 818 819 820 821 822 823 824 825 826 827
	nr_reparented = 0;
	list_for_each_entry(s, &memcg->kmem_caches,
			    memcg_params.kmem_caches_node) {
		WRITE_ONCE(s->memcg_params.memcg, parent);
		css_put(&memcg->css);
		nr_reparented++;
	}
	if (nr_reparented) {
		list_splice_init(&memcg->kmem_caches,
				 &parent->kmem_caches);
		css_get_many(&parent->css, nr_reparented);
	}
828
	mutex_unlock(&slab_mutex);
829 830 831

	put_online_mems();
	put_online_cpus();
832 833
}

834
static int shutdown_memcg_caches(struct kmem_cache *s)
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
853
		if (shutdown_cache(c))
854 855 856 857 858
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
859
			list_move(&c->memcg_params.children_node, &busy);
860 861 862 863 864 865 866 867 868 869 870 871 872 873
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
874 875
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
876
		shutdown_cache(c);
877

T
Tejun Heo 已提交
878
	list_splice(&busy, &s->memcg_params.children);
879 880 881 882 883

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
884
	if (!list_empty(&s->memcg_params.children))
885 886 887
		return -EBUSY;
	return 0;
}
888 889 890

static void flush_memcg_workqueue(struct kmem_cache *s)
{
891
	spin_lock_irq(&memcg_kmem_wq_lock);
892
	s->memcg_params.dying = true;
893
	spin_unlock_irq(&memcg_kmem_wq_lock);
894 895

	/*
896
	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
897 898
	 * sure all registered rcu callbacks have been invoked.
	 */
899
	rcu_barrier();
900 901 902 903 904 905 906 907

	/*
	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
	 * deactivates the memcg kmem_caches through workqueue. Make sure all
	 * previous workitems on workqueue are processed.
	 */
	flush_workqueue(memcg_kmem_cache_wq);
}
908
#else
909
static inline int shutdown_memcg_caches(struct kmem_cache *s)
910 911 912
{
	return 0;
}
913 914 915 916

static inline void flush_memcg_workqueue(struct kmem_cache *s)
{
}
917
#endif /* CONFIG_MEMCG_KMEM */
918

919 920
void slab_kmem_cache_release(struct kmem_cache *s)
{
921
	__kmem_cache_release(s);
922
	destroy_memcg_params(s);
923
	kfree_const(s->name);
924 925 926
	kmem_cache_free(kmem_cache, s);
}

927 928
void kmem_cache_destroy(struct kmem_cache *s)
{
929
	int err;
930

931 932 933
	if (unlikely(!s))
		return;

934 935
	flush_memcg_workqueue(s);

936
	get_online_cpus();
937 938
	get_online_mems();

939
	mutex_lock(&slab_mutex);
940

941
	s->refcount--;
942 943 944
	if (s->refcount)
		goto out_unlock;

945
	err = shutdown_memcg_caches(s);
946
	if (!err)
947
		err = shutdown_cache(s);
948

949
	if (err) {
J
Joe Perches 已提交
950 951
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
952 953
		dump_stack();
	}
954 955
out_unlock:
	mutex_unlock(&slab_mutex);
956

957
	put_online_mems();
958 959 960 961
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

962 963 964 965 966 967
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
968 969
 *
 * Return: %0 if all slabs were released, non-zero otherwise
970 971 972 973 974 975 976
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
977
	kasan_cache_shrink(cachep);
978
	ret = __kmem_cache_shrink(cachep);
979 980 981 982 983 984
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/**
 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
 * @s: The cache pointer
 */
void kmem_cache_shrink_all(struct kmem_cache *s)
{
	struct kmem_cache *c;

	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
		kmem_cache_shrink(s);
		return;
	}

	get_online_cpus();
	get_online_mems();
	kasan_cache_shrink(s);
	__kmem_cache_shrink(s);

	/*
	 * We have to take the slab_mutex to protect from the memcg list
	 * modification.
	 */
	mutex_lock(&slab_mutex);
	for_each_memcg_cache(c, s) {
		/*
		 * Don't need to shrink deactivated memcg caches.
		 */
		if (s->flags & SLAB_DEACTIVATED)
			continue;
		kasan_cache_shrink(c);
		__kmem_cache_shrink(c);
	}
	mutex_unlock(&slab_mutex);
	put_online_mems();
	put_online_cpus();
}

1022
bool slab_is_available(void)
1023 1024 1025
{
	return slab_state >= UP;
}
1026

1027 1028
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
1029 1030 1031
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
1032 1033
{
	int err;
1034
	unsigned int align = ARCH_KMALLOC_MINALIGN;
1035 1036 1037

	s->name = name;
	s->size = s->object_size = size;
1038 1039 1040 1041 1042 1043 1044 1045 1046

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

1047 1048
	s->useroffset = useroffset;
	s->usersize = usersize;
1049 1050 1051

	slab_init_memcg_params(s);

1052 1053 1054
	err = __kmem_cache_create(s, flags);

	if (err)
1055
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1056 1057 1058 1059 1060
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

1061 1062 1063
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
1064 1065 1066 1067 1068 1069
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

1070
	create_boot_cache(s, name, size, flags, useroffset, usersize);
1071
	list_add(&s->list, &slab_caches);
1072
	memcg_link_cache(s, NULL);
1073 1074 1075 1076
	s->refcount = 1;
	return s;
}

1077
struct kmem_cache *
1078 1079
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1080 1081
EXPORT_SYMBOL(kmalloc_caches);

1082 1083 1084 1085 1086 1087
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
1088
static u8 size_index[24] __ro_after_init = {
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

1115
static inline unsigned int size_index_elem(unsigned int bytes)
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
1126
	unsigned int index;
1127 1128 1129 1130 1131 1132

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
1133
	} else {
1134
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1135
			return NULL;
1136
		index = fls(size - 1);
1137
	}
1138

1139
	return kmalloc_caches[kmalloc_type(flags)][index];
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

1159 1160 1161 1162 1163
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1164
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
	INIT_KMALLOC_INFO(33554432, 32M),
	INIT_KMALLOC_INFO(67108864, 64M)
1192 1193
};

1194
/*
1195 1196 1197 1198 1199 1200 1201 1202 1203
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1204
 */
1205
void __init setup_kmalloc_cache_index_table(void)
1206
{
1207
	unsigned int i;
1208

1209 1210 1211 1212
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1213
		unsigned int elem = size_index_elem(i);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1239 1240
}

1241 1242
static void __init
new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1243
{
1244
	if (type == KMALLOC_RECLAIM)
1245 1246
		flags |= SLAB_RECLAIM_ACCOUNT;

1247 1248
	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
1249 1250
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
1251 1252
}

1253 1254 1255 1256 1257
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1258
void __init create_kmalloc_caches(slab_flags_t flags)
1259
{
1260
	int i, type;
1261

1262 1263 1264 1265
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
1279 1280
	}

1281 1282 1283 1284 1285
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1286
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1287 1288

		if (s) {
1289
			unsigned int size = kmalloc_size(i);
1290

1291
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1292 1293
				kmalloc_info[i].name[KMALLOC_DMA],
				size, SLAB_CACHE_DMA | flags, 0, 0);
1294 1295 1296 1297
		}
	}
#endif
}
1298 1299
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1300 1301 1302 1303 1304
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1305 1306
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
1307
	void *ret = NULL;
V
Vladimir Davydov 已提交
1308 1309 1310
	struct page *page;

	flags |= __GFP_COMP;
1311
	page = alloc_pages(flags, order);
1312 1313 1314 1315 1316
	if (likely(page)) {
		ret = page_address(page);
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    1 << order);
	}
1317
	ret = kasan_kmalloc_large(ret, size, flags);
1318
	/* As ret might get tagged, call kmemleak hook after KASAN. */
1319
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
1320 1321 1322 1323
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1324 1325 1326 1327 1328 1329 1330 1331 1332
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1333

1334 1335 1336
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1337
			       unsigned int count)
1338 1339
{
	unsigned int rand;
1340
	unsigned int i;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1381
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1382
#ifdef CONFIG_SLAB
1383
#define SLABINFO_RIGHTS (0600)
1384
#else
1385
#define SLABINFO_RIGHTS (0400)
1386 1387
#endif

1388
static void print_slabinfo_header(struct seq_file *m)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1399
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1400 1401 1402
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1403
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1404 1405 1406 1407 1408
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1409
void *slab_start(struct seq_file *m, loff_t *pos)
1410 1411
{
	mutex_lock(&slab_mutex);
1412
	return seq_list_start(&slab_root_caches, *pos);
1413 1414
}

1415
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1416
{
1417
	return seq_list_next(p, &slab_root_caches, pos);
1418 1419
}

1420
void slab_stop(struct seq_file *m, void *p)
1421 1422 1423 1424
{
	mutex_unlock(&slab_mutex);
}

1425 1426 1427 1428 1429 1430 1431 1432 1433
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1434
	for_each_memcg_cache(c, s) {
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1446
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1447
{
1448 1449 1450 1451 1452
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1453 1454
	memcg_accumulate_slabinfo(s, &sinfo);

1455
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1456
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1457 1458 1459 1460 1461 1462 1463 1464
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1465 1466
}

1467
static int slab_show(struct seq_file *m, void *p)
1468
{
1469
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1470

1471
	if (p == slab_root_caches.next)
1472
		print_slabinfo_header(m);
1473
	cache_show(s, m);
1474 1475 1476
	return 0;
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

Y
Yang Shi 已提交
1511
#if defined(CONFIG_MEMCG)
1512 1513
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
1514
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1515 1516 1517 1518 1519 1520 1521

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
1522
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1523 1524 1525 1526 1527 1528 1529 1530 1531

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1532 1533
int memcg_slab_show(struct seq_file *m, void *p)
{
1534 1535
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1536
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1537

1538
	if (p == memcg->kmem_caches.next)
1539
		print_slabinfo_header(m);
1540
	cache_show(s, m);
1541
	return 0;
1542
}
1543
#endif
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1559
	.start = slab_start,
1560 1561
	.next = slab_next,
	.stop = slab_stop,
1562
	.show = slab_show,
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1580 1581
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1582 1583 1584
	return 0;
}
module_init(slab_proc_init);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
/*
 * Display information about kmem caches that have child memcg caches.
 */
static int memcg_slabinfo_show(struct seq_file *m, void *unused)
{
	struct kmem_cache *s, *c;
	struct slabinfo sinfo;

	mutex_lock(&slab_mutex);
	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
	seq_puts(m, " <active_slabs> <num_slabs>\n");
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
		/*
		 * Skip kmem caches that don't have any memcg children.
		 */
		if (list_empty(&s->memcg_params.children))
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(s, &sinfo);
		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
			   sinfo.active_slabs, sinfo.num_slabs);

		for_each_memcg_cache(c, s) {
			struct cgroup_subsys_state *css;
			char *status = "";

			css = &c->memcg_params.memcg->css;
			if (!(css->flags & CSS_ONLINE))
				status = ":dead";
			else if (c->flags & SLAB_DEACTIVATED)
				status = ":deact";

			memset(&sinfo, 0, sizeof(sinfo));
			get_slabinfo(c, &sinfo);
			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
				   cache_name(c), css->id, status,
				   sinfo.active_objs, sinfo.num_objs,
				   sinfo.active_slabs, sinfo.num_slabs);
		}
	}
	mutex_unlock(&slab_mutex);
	return 0;
}
DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);

static int __init memcg_slabinfo_init(void)
{
	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
			    NULL, NULL, &memcg_slabinfo_fops);
	return 0;
}

late_initcall(memcg_slabinfo_init);
#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
Y
Yang Shi 已提交
1643
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1654
	if (ks >= new_size) {
1655
		p = kasan_krealloc((void *)p, new_size, flags);
1656
		return (void *)p;
1657
	}
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
1675 1676
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
1698 1699
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1711
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	size_t size;

	if (WARN_ON_ONCE(!objp))
		return 0;
	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
		return 0;

	size = __ksize(objp);
1779 1780 1781 1782 1783 1784 1785 1786 1787
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(objp, size);
	return size;
}
EXPORT_SYMBOL(ksize);

1788 1789 1790 1791 1792 1793 1794
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1795 1796 1797 1798 1799 1800 1801 1802

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);