slab_common.c 36.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20 21 22
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
23
#include <linux/memcontrol.h>
24 25

#define CREATE_TRACE_POINTS
26
#include <trace/events/kmem.h>
27

28 29 30
#include "slab.h"

enum slab_state slab_state;
31 32
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
33
struct kmem_cache *kmem_cache;
34

35 36 37 38 39 40 41 42
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

43 44 45 46 47
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

48 49 50 51
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
53
		SLAB_FAILSLAB | SLAB_KASAN)
54

V
Vladimir Davydov 已提交
55
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56
			 SLAB_ACCOUNT)
57 58 59 60

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
61
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 63 64

static int __init setup_slab_nomerge(char *str)
{
65
	slab_nomerge = true;
66 67 68 69 70 71 72 73 74
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

75 76 77 78 79 80 81 82 83
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

84
#ifdef CONFIG_DEBUG_VM
85
static int kmem_cache_sanity_check(const char *name, unsigned int size)
86 87 88
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
89 90
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
91
	}
92

93
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
94 95 96
	return 0;
}
#else
97
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
98 99 100
{
	return 0;
}
101 102
#endif

103 104 105 106
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

107 108 109 110 111 112
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
113 114
}

115
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
116 117 118 119 120 121 122 123
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
124
			return 0;
125 126
		}
	}
127
	return i;
128 129
}

130
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
131 132 133

LIST_HEAD(slab_root_caches);

134
void slab_init_memcg_params(struct kmem_cache *s)
135
{
T
Tejun Heo 已提交
136
	s->memcg_params.root_cache = NULL;
137
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
138
	INIT_LIST_HEAD(&s->memcg_params.children);
139 140 141 142 143 144
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
145

T
Tejun Heo 已提交
146
	if (root_cache) {
147
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
148 149
		s->memcg_params.memcg = memcg;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
150
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
151
		return 0;
152
	}
153

154
	slab_init_memcg_params(s);
155

156 157
	if (!memcg_nr_cache_ids)
		return 0;
158

159 160 161
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
162 163
	if (!arr)
		return -ENOMEM;
164

165
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
166 167 168
	return 0;
}

169
static void destroy_memcg_params(struct kmem_cache *s)
170
{
171
	if (is_root_cache(s))
172 173 174 175 176 177 178 179 180
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
181 182
}

183
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
184
{
185
	struct memcg_cache_array *old, *new;
186

187 188
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
189
	if (!new)
190 191
		return -ENOMEM;

192 193 194 195 196
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
197

198 199
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
200
		call_rcu(&old->rcu, free_memcg_params);
201 202 203
	return 0;
}

204 205 206 207 208
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

209
	mutex_lock(&slab_mutex);
210
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
211
		ret = update_memcg_params(s, num_memcgs);
212 213 214 215 216
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
217
			break;
218 219 220 221
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
222

223
void memcg_link_cache(struct kmem_cache *s)
224
{
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
243
}
244
#else
245 246
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
247 248 249 250
{
	return 0;
}

251
static inline void destroy_memcg_params(struct kmem_cache *s)
252 253
{
}
254

255
static inline void memcg_unlink_cache(struct kmem_cache *s)
256 257
{
}
258
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
259

260 261 262 263
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
264 265
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
266 267 268 269 270 271 272 273 274
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
275
		unsigned int ralign;
276 277 278 279 280 281 282 283 284 285 286 287 288

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

303 304 305
	if (s->usersize)
		return 1;

306 307 308 309 310 311 312 313 314
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

315
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
316
		slab_flags_t flags, const char *name, void (*ctor)(void *))
317 318 319
{
	struct kmem_cache *s;

320
	if (slab_nomerge)
321 322 323 324 325 326 327 328 329 330
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

331 332 333
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

334
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

353 354 355 356
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

357 358 359 360 361
		return s;
	}
	return NULL;
}

362
static struct kmem_cache *create_cache(const char *name,
363
		unsigned int object_size, unsigned int align,
364 365
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
366
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
367 368 369 370
{
	struct kmem_cache *s;
	int err;

371 372 373
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

374 375 376 377 378 379
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
380
	s->size = s->object_size = object_size;
381 382
	s->align = align;
	s->ctor = ctor;
383 384
	s->useroffset = useroffset;
	s->usersize = usersize;
385

386
	err = init_memcg_params(s, memcg, root_cache);
387 388 389 390 391 392 393 394 395
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
396
	memcg_link_cache(s);
397 398 399 400 401 402
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
403
	destroy_memcg_params(s);
404
	kmem_cache_free(kmem_cache, s);
405 406
	goto out;
}
407

408
/*
409
 * kmem_cache_create_usercopy - Create a cache.
410 411 412 413
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
414 415
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
434
struct kmem_cache *
435 436
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
437 438
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
439
		  void (*ctor)(void *))
440
{
441
	struct kmem_cache *s = NULL;
442
	const char *cache_name;
443
	int err;
444

445
	get_online_cpus();
446
	get_online_mems();
447
	memcg_get_cache_ids();
448

449
	mutex_lock(&slab_mutex);
450

451
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
452
	if (err) {
453
		goto out_unlock;
A
Andrew Morton 已提交
454
	}
455

456 457 458 459 460 461
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

462 463 464 465 466 467 468
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
469

470 471 472 473 474 475 476
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
477
	if (s)
478
		goto out_unlock;
479

480
	cache_name = kstrdup_const(name, GFP_KERNEL);
481 482 483 484
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
485

486
	s = create_cache(cache_name, size,
487
			 calculate_alignment(flags, align, size),
488
			 flags, useroffset, usersize, ctor, NULL, NULL);
489 490
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
491
		kfree_const(cache_name);
492
	}
493 494

out_unlock:
495
	mutex_unlock(&slab_mutex);
496

497
	memcg_put_cache_ids();
498
	put_online_mems();
499 500
	put_online_cpus();

501
	if (err) {
502 503 504 505
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
506
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
507 508 509 510 511
				name, err);
			dump_stack();
		}
		return NULL;
	}
512 513
	return s;
}
514 515 516
EXPORT_SYMBOL(kmem_cache_create_usercopy);

struct kmem_cache *
517
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
518 519
		slab_flags_t flags, void (*ctor)(void *))
{
520
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
521 522
					  ctor);
}
523
EXPORT_SYMBOL(kmem_cache_create);
524

525
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
526
{
527 528
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
529

530
	/*
531
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
532 533 534 535 536 537 538 539 540 541
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
542

543 544 545 546 547 548 549 550 551 552 553 554
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
555 556
}

557
static int shutdown_cache(struct kmem_cache *s)
558
{
559 560 561
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

562 563
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
564

565
	memcg_unlink_cache(s);
566
	list_del(&s->list);
567

568
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
569 570 571
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
572
#ifdef SLAB_SUPPORTS_SYSFS
573
		sysfs_slab_release(s);
574 575 576 577
#else
		slab_kmem_cache_release(s);
#endif
	}
578 579

	return 0;
580 581
}

582
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
583
/*
584
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
585 586 587 588 589 590 591
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
592 593
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
594
{
595
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
596
	struct cgroup_subsys_state *css = &memcg->css;
597
	struct memcg_cache_array *arr;
598
	struct kmem_cache *s = NULL;
599
	char *cache_name;
600
	int idx;
601 602

	get_online_cpus();
603 604
	get_online_mems();

605 606
	mutex_lock(&slab_mutex);

607
	/*
608
	 * The memory cgroup could have been offlined while the cache
609 610
	 * creation work was pending.
	 */
611
	if (memcg->kmem_state != KMEM_ONLINE)
612 613
		goto out_unlock;

614 615 616 617
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

618 619 620 621 622
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
623
	if (arr->entries[idx])
624 625
		goto out_unlock;

626
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
627 628
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
629 630 631
	if (!cache_name)
		goto out_unlock;

632
	s = create_cache(cache_name, root_cache->object_size,
633
			 root_cache->align,
634
			 root_cache->flags & CACHE_CREATE_MASK,
635
			 root_cache->useroffset, root_cache->usersize,
636
			 root_cache->ctor, memcg, root_cache);
637 638 639 640 641
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
642
	if (IS_ERR(s)) {
643
		kfree(cache_name);
644
		goto out_unlock;
645
	}
646

647 648 649 650 651 652
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
653
	arr->entries[idx] = s;
654

655 656
out_unlock:
	mutex_unlock(&slab_mutex);
657 658

	put_online_mems();
659
	put_online_cpus();
660
}
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static void kmemcg_deactivate_workfn(struct work_struct *work)
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
					    memcg_params.deact_work);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	s->memcg_params.deact_fn(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
	css_put(&s->memcg_params.memcg->css);
}

static void kmemcg_deactivate_rcufn(struct rcu_head *head)
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
					    memcg_params.deact_rcu_head);

	/*
	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
694
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
}

/**
 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 *					   sched RCU grace period
 * @s: target kmem_cache
 * @deact_fn: deactivation function to call
 *
 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 * held after a sched RCU grace period.  The slab is guaranteed to stay
 * alive until @deact_fn is finished.  This is to be used from
 * __kmemcg_cache_deactivate().
 */
void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
					   void (*deact_fn)(struct kmem_cache *))
{
	if (WARN_ON_ONCE(is_root_cache(s)) ||
	    WARN_ON_ONCE(s->memcg_params.deact_fn))
		return;

	/* pin memcg so that @s doesn't get destroyed in the middle */
	css_get(&s->memcg_params.memcg->css);

	s->memcg_params.deact_fn = deact_fn;
	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
}

722 723 724 725
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
726
	struct kmem_cache *s, *c;
727 728 729

	idx = memcg_cache_id(memcg);

730 731 732
	get_online_cpus();
	get_online_mems();

733
	mutex_lock(&slab_mutex);
734
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
735 736
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
737 738 739 740
		c = arr->entries[idx];
		if (!c)
			continue;

741
		__kmemcg_cache_deactivate(c);
742 743 744
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
745 746 747

	put_online_mems();
	put_online_cpus();
748 749
}

750
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
751
{
752
	struct kmem_cache *s, *s2;
753

754 755
	get_online_cpus();
	get_online_mems();
756 757

	mutex_lock(&slab_mutex);
758 759
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
760 761 762 763
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
764
		BUG_ON(shutdown_cache(s));
765 766
	}
	mutex_unlock(&slab_mutex);
767

768 769
	put_online_mems();
	put_online_cpus();
770
}
771

772
static int shutdown_memcg_caches(struct kmem_cache *s)
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
791
		if (shutdown_cache(c))
792 793 794 795 796
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
797
			list_move(&c->memcg_params.children_node, &busy);
798 799 800 801 802 803 804 805 806 807 808 809 810 811
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
812 813
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
814
		shutdown_cache(c);
815

T
Tejun Heo 已提交
816
	list_splice(&busy, &s->memcg_params.children);
817 818 819 820 821

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
822
	if (!list_empty(&s->memcg_params.children))
823 824 825 826
		return -EBUSY;
	return 0;
}
#else
827
static inline int shutdown_memcg_caches(struct kmem_cache *s)
828 829 830
{
	return 0;
}
831
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
832

833 834
void slab_kmem_cache_release(struct kmem_cache *s)
{
835
	__kmem_cache_release(s);
836
	destroy_memcg_params(s);
837
	kfree_const(s->name);
838 839 840
	kmem_cache_free(kmem_cache, s);
}

841 842
void kmem_cache_destroy(struct kmem_cache *s)
{
843
	int err;
844

845 846 847
	if (unlikely(!s))
		return;

848
	get_online_cpus();
849 850
	get_online_mems();

851
	mutex_lock(&slab_mutex);
852

853
	s->refcount--;
854 855 856
	if (s->refcount)
		goto out_unlock;

857
	err = shutdown_memcg_caches(s);
858
	if (!err)
859
		err = shutdown_cache(s);
860

861
	if (err) {
J
Joe Perches 已提交
862 863
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
864 865
		dump_stack();
	}
866 867
out_unlock:
	mutex_unlock(&slab_mutex);
868

869
	put_online_mems();
870 871 872 873
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

874 875 876 877 878 879 880 881 882 883 884 885 886
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
887
	kasan_cache_shrink(cachep);
888
	ret = __kmem_cache_shrink(cachep);
889 890 891 892 893 894
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

895
bool slab_is_available(void)
896 897 898
{
	return slab_state >= UP;
}
899

900 901
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
902 903 904
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
905 906 907 908 909
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
910
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
911 912
	s->useroffset = useroffset;
	s->usersize = usersize;
913 914 915

	slab_init_memcg_params(s);

916 917 918
	err = __kmem_cache_create(s, flags);

	if (err)
919
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
920 921 922 923 924
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

925 926 927
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
928 929 930 931 932 933
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

934
	create_boot_cache(s, name, size, flags, useroffset, usersize);
935
	list_add(&s->list, &slab_caches);
936
	memcg_link_cache(s);
937 938 939 940
	s->refcount = 1;
	return s;
}

941
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
942 943 944
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
945
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
946 947 948
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

949 950 951 952 953 954
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
955
static u8 size_index[24] __ro_after_init = {
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

982
static inline unsigned int size_index_elem(unsigned int bytes)
983 984 985 986 987 988 989 990 991 992
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
993
	unsigned int index;
994

995
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
996
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
997
		return NULL;
998
	}
999

1000 1001 1002 1003 1004 1005 1006 1007 1008
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
1009
	if (unlikely((flags & GFP_DMA)))
1010 1011 1012 1013 1014 1015
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

1016 1017 1018 1019 1020
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1021
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

1038
/*
1039 1040 1041 1042 1043 1044 1045 1046 1047
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1048
 */
1049
void __init setup_kmalloc_cache_index_table(void)
1050
{
1051
	unsigned int i;
1052

1053 1054 1055 1056
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1057
		unsigned int elem = size_index_elem(i);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1083 1084
}

1085
static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1086 1087
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1088 1089
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
1090 1091
}

1092 1093 1094 1095 1096
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1097
void __init create_kmalloc_caches(slab_flags_t flags)
1098 1099 1100
{
	int i;

1101 1102 1103
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
1104

1105
		/*
1106 1107 1108
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1109
		 */
1110 1111 1112 1113
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1114 1115
	}

1116 1117 1118 1119 1120 1121 1122 1123
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
1124
			unsigned int size = kmalloc_size(i);
1125
			char *n = kasprintf(GFP_NOWAIT,
1126
				 "dma-kmalloc-%u", size);
1127 1128 1129

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1130
				size, SLAB_CACHE_DMA | flags, 0, 0);
1131 1132 1133 1134
		}
	}
#endif
}
1135 1136
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1137 1138 1139 1140 1141
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1142 1143 1144 1145 1146 1147
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1148
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1149 1150
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1151
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1152 1153 1154 1155
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1156 1157 1158 1159 1160 1161 1162 1163 1164
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1165

1166 1167 1168
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1169
			       unsigned int count)
1170 1171
{
	unsigned int rand;
1172
	unsigned int i;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1213
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1214 1215 1216 1217 1218 1219
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1220
static void print_slabinfo_header(struct seq_file *m)
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1231
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1232 1233 1234
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1235
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1236 1237 1238 1239 1240
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1241
void *slab_start(struct seq_file *m, loff_t *pos)
1242 1243
{
	mutex_lock(&slab_mutex);
1244
	return seq_list_start(&slab_root_caches, *pos);
1245 1246
}

1247
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1248
{
1249
	return seq_list_next(p, &slab_root_caches, pos);
1250 1251
}

1252
void slab_stop(struct seq_file *m, void *p)
1253 1254 1255 1256
{
	mutex_unlock(&slab_mutex);
}

1257 1258 1259 1260 1261 1262 1263 1264 1265
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1266
	for_each_memcg_cache(c, s) {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1278
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1279
{
1280 1281 1282 1283 1284
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1285 1286
	memcg_accumulate_slabinfo(s, &sinfo);

1287
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1288
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1289 1290 1291 1292 1293 1294 1295 1296
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1297 1298
}

1299
static int slab_show(struct seq_file *m, void *p)
1300
{
1301
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1302

1303
	if (p == slab_root_caches.next)
1304
		print_slabinfo_header(m);
1305
	cache_show(s, m);
1306 1307 1308
	return 0;
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

Y
Yang Shi 已提交
1343
#if defined(CONFIG_MEMCG)
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1364 1365
int memcg_slab_show(struct seq_file *m, void *p)
{
1366 1367
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1368 1369
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

1370
	if (p == memcg->kmem_caches.next)
1371
		print_slabinfo_header(m);
1372
	cache_show(s, m);
1373
	return 0;
1374
}
1375
#endif
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1391
	.start = slab_start,
1392 1393
	.next = slab_next,
	.stop = slab_stop,
1394
	.show = slab_show,
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1412 1413
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1414 1415 1416
	return 0;
}
module_init(slab_proc_init);
Y
Yang Shi 已提交
1417
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1428
	if (ks >= new_size) {
1429
		kasan_krealloc((void *)p, new_size, flags);
1430
		return (void *)p;
1431
	}
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);