slab_common.c 29.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20
#include <linux/debugfs.h>
21
#include <linux/kasan.h>
22 23 24
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
25
#include <linux/memcontrol.h>
26 27

#define CREATE_TRACE_POINTS
28
#include <trace/events/kmem.h>
29

30 31
#include "internal.h"

32 33 34
#include "slab.h"

enum slab_state slab_state;
35 36
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
37
struct kmem_cache *kmem_cache;
38

39 40 41 42 43 44 45 46
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

47 48 49 50 51
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

52 53 54 55
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
56
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
57
		SLAB_FAILSLAB | kasan_never_merge())
58

V
Vladimir Davydov 已提交
59
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
60
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
61 62 63 64

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
65
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
66 67 68

static int __init setup_slab_nomerge(char *str)
{
69
	slab_nomerge = true;
70 71 72 73 74 75 76 77 78
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

79 80 81 82 83 84 85 86 87
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

88
#ifdef CONFIG_DEBUG_VM
89
static int kmem_cache_sanity_check(const char *name, unsigned int size)
90 91 92
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
93 94
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
95
	}
96

97
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
98 99 100
	return 0;
}
#else
101
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
102 103 104
{
	return 0;
}
105 106
#endif

107 108 109 110
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

111 112 113 114 115 116
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
117 118
}

119
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
120 121 122 123 124 125 126 127
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
128
			return 0;
129 130
		}
	}
131
	return i;
132 133
}

134 135 136 137
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
138 139
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
140 141 142 143 144 145 146 147 148
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
149
		unsigned int ralign;
150 151 152 153 154 155 156 157 158 159 160 161 162

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

163 164 165 166 167 168 169 170 171 172 173
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (s->ctor)
		return 1;

174 175 176
	if (s->usersize)
		return 1;

177 178 179 180 181 182 183 184 185
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

186
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
187
		slab_flags_t flags, const char *name, void (*ctor)(void *))
188 189 190
{
	struct kmem_cache *s;

191
	if (slab_nomerge)
192 193 194 195 196 197 198 199 200 201
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

202 203 204
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

205
	list_for_each_entry_reverse(s, &slab_caches, list) {
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

224 225 226 227
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

228 229 230 231 232
		return s;
	}
	return NULL;
}

233
static struct kmem_cache *create_cache(const char *name,
234
		unsigned int object_size, unsigned int align,
235 236
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
237
		struct kmem_cache *root_cache)
238 239 240 241
{
	struct kmem_cache *s;
	int err;

242 243 244
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

245 246 247 248 249 250
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
251
	s->size = s->object_size = object_size;
252 253
	s->align = align;
	s->ctor = ctor;
254 255
	s->useroffset = useroffset;
	s->usersize = usersize;
256 257 258 259 260 261 262 263 264 265 266 267 268

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
269
	kmem_cache_free(kmem_cache, s);
270 271
	goto out;
}
272

273 274 275
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
276 277 278 279
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
280 281
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
282 283 284 285 286 287 288 289 290 291
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
292
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
293 294 295 296 297
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
298 299
 *
 * Return: a pointer to the cache on success, NULL on failure.
300
 */
301
struct kmem_cache *
302 303
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
304 305
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
306
		  void (*ctor)(void *))
307
{
308
	struct kmem_cache *s = NULL;
309
	const char *cache_name;
310
	int err;
311

312
	get_online_cpus();
313 314
	get_online_mems();

315
	mutex_lock(&slab_mutex);
316

317
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
318
	if (err) {
319
		goto out_unlock;
A
Andrew Morton 已提交
320
	}
321

322 323 324 325 326 327
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

328 329 330 331 332 333 334
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
335

336 337 338 339 340 341 342
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
343
	if (s)
344
		goto out_unlock;
345

346
	cache_name = kstrdup_const(name, GFP_KERNEL);
347 348 349 350
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
351

352
	s = create_cache(cache_name, size,
353
			 calculate_alignment(flags, align, size),
354
			 flags, useroffset, usersize, ctor, NULL);
355 356
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
357
		kfree_const(cache_name);
358
	}
359 360

out_unlock:
361
	mutex_unlock(&slab_mutex);
362 363

	put_online_mems();
364 365
	put_online_cpus();

366
	if (err) {
367 368 369 370
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
371
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
372 373 374 375 376
				name, err);
			dump_stack();
		}
		return NULL;
	}
377 378
	return s;
}
379 380
EXPORT_SYMBOL(kmem_cache_create_usercopy);

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
406
struct kmem_cache *
407
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
408 409
		slab_flags_t flags, void (*ctor)(void *))
{
410
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
411 412
					  ctor);
}
413
EXPORT_SYMBOL(kmem_cache_create);
414

415
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
416
{
417 418
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
419

420
	/*
421
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
422
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
423
	 * through RCU and the associated kmem_cache are dereferenced
424 425 426 427 428 429 430 431
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
432

433 434 435 436 437 438 439 440 441 442 443 444
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
445 446
}

447
static int shutdown_cache(struct kmem_cache *s)
448
{
449 450 451
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

452 453
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
454

455
	list_del(&s->list);
456

457
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
458 459 460
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
461 462 463
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
464
#ifdef SLAB_SUPPORTS_SYSFS
465
		sysfs_slab_unlink(s);
466
		sysfs_slab_release(s);
467 468 469 470
#else
		slab_kmem_cache_release(s);
#endif
	}
471 472

	return 0;
473 474
}

475 476
void slab_kmem_cache_release(struct kmem_cache *s)
{
477
	__kmem_cache_release(s);
478
	kfree_const(s->name);
479 480 481
	kmem_cache_free(kmem_cache, s);
}

482 483
void kmem_cache_destroy(struct kmem_cache *s)
{
484
	int err;
485

486 487 488
	if (unlikely(!s))
		return;

489
	get_online_cpus();
490 491
	get_online_mems();

492
	mutex_lock(&slab_mutex);
493

494
	s->refcount--;
495 496 497
	if (s->refcount)
		goto out_unlock;

498
	err = shutdown_cache(s);
499
	if (err) {
J
Joe Perches 已提交
500 501
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
502 503
		dump_stack();
	}
504 505
out_unlock:
	mutex_unlock(&slab_mutex);
506

507
	put_online_mems();
508 509 510 511
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

512 513 514 515 516 517
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
518 519
 *
 * Return: %0 if all slabs were released, non-zero otherwise
520 521 522 523 524 525 526
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
527
	kasan_cache_shrink(cachep);
528
	ret = __kmem_cache_shrink(cachep);
529 530 531 532 533 534
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

535
bool slab_is_available(void)
536 537 538
{
	return slab_state >= UP;
}
539

540 541
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
542 543 544
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
545 546
{
	int err;
547
	unsigned int align = ARCH_KMALLOC_MINALIGN;
548 549 550

	s->name = name;
	s->size = s->object_size = size;
551 552 553 554 555 556 557 558 559

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

560 561
	s->useroffset = useroffset;
	s->usersize = usersize;
562

563 564 565
	err = __kmem_cache_create(s, flags);

	if (err)
566
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
567 568 569 570 571
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

572 573 574
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
575 576 577 578 579 580
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

581
	create_boot_cache(s, name, size, flags, useroffset, usersize);
582 583 584 585 586
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

587
struct kmem_cache *
588 589
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
590 591
EXPORT_SYMBOL(kmalloc_caches);

592 593 594 595 596 597
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
598
static u8 size_index[24] __ro_after_init = {
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

625
static inline unsigned int size_index_elem(unsigned int bytes)
626 627 628 629 630 631 632 633 634 635
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
636
	unsigned int index;
637 638 639 640 641 642

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
643
	} else {
644
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
645
			return NULL;
646
		index = fls(size - 1);
647
	}
648

649
	return kmalloc_caches[kmalloc_type(flags)][index];
650 651
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

669 670 671 672 673
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
674
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
	INIT_KMALLOC_INFO(33554432, 32M),
	INIT_KMALLOC_INFO(67108864, 64M)
702 703
};

704
/*
705 706 707 708 709 710 711 712 713
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
714
 */
715
void __init setup_kmalloc_cache_index_table(void)
716
{
717
	unsigned int i;
718

719 720 721 722
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
723
		unsigned int elem = size_index_elem(i);
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
749 750
}

751
static void __init
752
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
753
{
754
	if (type == KMALLOC_RECLAIM)
755 756
		flags |= SLAB_RECLAIM_ACCOUNT;

757 758
	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
759 760
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
761 762
}

763 764 765 766 767
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
768
void __init create_kmalloc_caches(slab_flags_t flags)
769
{
770 771
	int i;
	enum kmalloc_cache_type type;
772

773 774 775 776
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
777

778 779 780 781 782 783 784 785 786 787 788 789
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
790 791
	}

792 793 794 795 796
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
797
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
798 799

		if (s) {
800
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
801
				kmalloc_info[i].name[KMALLOC_DMA],
802
				kmalloc_info[i].size,
803 804
				SLAB_CACHE_DMA | flags, 0,
				kmalloc_info[i].size);
805 806 807 808
		}
	}
#endif
}
809 810
#endif /* !CONFIG_SLOB */

811 812 813 814 815 816 817 818 819 820 821 822
gfp_t kmalloc_fix_flags(gfp_t flags)
{
	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;

	flags &= ~GFP_SLAB_BUG_MASK;
	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
			invalid_mask, &invalid_mask, flags, &flags);
	dump_stack();

	return flags;
}

V
Vladimir Davydov 已提交
823 824 825 826 827
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
828 829
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
830
	void *ret = NULL;
V
Vladimir Davydov 已提交
831 832
	struct page *page;

833 834 835
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);

V
Vladimir Davydov 已提交
836
	flags |= __GFP_COMP;
837
	page = alloc_pages(flags, order);
838 839
	if (likely(page)) {
		ret = page_address(page);
840 841
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
				    PAGE_SIZE << order);
842
	}
843
	ret = kasan_kmalloc_large(ret, size, flags);
844
	/* As ret might get tagged, call kmemleak hook after KASAN. */
845
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
846 847 848 849
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

850 851 852 853 854 855 856 857 858
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
859

860 861 862
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
863
			       unsigned int count)
864 865
{
	unsigned int rand;
866
	unsigned int i;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
907
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
908
#ifdef CONFIG_SLAB
909
#define SLABINFO_RIGHTS (0600)
910
#else
911
#define SLABINFO_RIGHTS (0400)
912 913
#endif

914
static void print_slabinfo_header(struct seq_file *m)
915 916 917 918 919 920 921 922 923 924
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
925
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
926 927 928
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
929
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
930 931 932 933 934
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

935
void *slab_start(struct seq_file *m, loff_t *pos)
936 937
{
	mutex_lock(&slab_mutex);
938
	return seq_list_start(&slab_caches, *pos);
939 940
}

941
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
942
{
943
	return seq_list_next(p, &slab_caches, pos);
944 945
}

946
void slab_stop(struct seq_file *m, void *p)
947 948 949 950
{
	mutex_unlock(&slab_mutex);
}

951
static void cache_show(struct kmem_cache *s, struct seq_file *m)
952
{
953 954 955 956 957 958
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
959
		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
960 961 962 963 964 965 966 967
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
968 969
}

970
static int slab_show(struct seq_file *m, void *p)
971
{
972
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
973

974
	if (p == slab_caches.next)
975
		print_slabinfo_header(m);
976
	cache_show(s, m);
977 978 979
	return 0;
}

980 981
void dump_unreclaimable_slab(void)
{
982
	struct kmem_cache *s;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

1000
	list_for_each_entry(s, &slab_caches, list) {
1001
		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1002 1003 1004 1005 1006
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
1007
			pr_info("%-17s %10luKB %10luKB\n", s->name,
1008 1009 1010 1011 1012 1013
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

1014
#if defined(CONFIG_MEMCG_KMEM)
1015 1016
int memcg_slab_show(struct seq_file *m, void *p)
{
1017 1018 1019 1020
	/*
	 * Deprecated.
	 * Please, take a look at tools/cgroup/slabinfo.py .
	 */
1021
	return 0;
1022
}
1023
#endif
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1039
	.start = slab_start,
1040 1041
	.next = slab_next,
	.stop = slab_stop,
1042
	.show = slab_show,
1043 1044 1045 1046 1047 1048 1049
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

1050
static const struct proc_ops slabinfo_proc_ops = {
1051
	.proc_flags	= PROC_ENTRY_PERMANENT,
1052 1053 1054 1055 1056
	.proc_open	= slabinfo_open,
	.proc_read	= seq_read,
	.proc_write	= slabinfo_write,
	.proc_lseek	= seq_lseek,
	.proc_release	= seq_release,
1057 1058 1059 1060
};

static int __init slab_proc_init(void)
{
1061
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1062 1063 1064
	return 0;
}
module_init(slab_proc_init);
1065

Y
Yang Shi 已提交
1066
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1067 1068 1069 1070 1071

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
1072
	size_t ks;
1073

1074
	ks = ksize(p);
1075

1076
	if (ks >= new_size) {
1077
		p = kasan_krealloc((void *)p, new_size, flags);
1078
		return (void *)p;
1079
	}
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
1095 1096 1097
 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1098 1099
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1111
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1112 1113 1114 1115 1116 1117 1118
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
1119
 * kfree_sensitive - Clear sensitive information in memory before freeing
1120 1121 1122
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
1123
 * If @p is %NULL, kfree_sensitive() does nothing.
1124 1125 1126 1127 1128
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
1129
void kfree_sensitive(const void *p)
1130 1131 1132 1133 1134
{
	size_t ks;
	void *mem = (void *)p;

	ks = ksize(mem);
1135 1136
	if (ks)
		memzero_explicit(mem, ks);
1137 1138
	kfree(mem);
}
1139
EXPORT_SYMBOL(kfree_sensitive);
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	size_t size;

	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
1172
	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1173 1174 1175
		return 0;

	size = __ksize(objp);
1176 1177 1178 1179
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
1180
	kasan_unpoison_range(objp, size);
1181 1182 1183 1184
	return size;
}
EXPORT_SYMBOL(ksize);

1185 1186 1187 1188 1189 1190 1191
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1192 1193 1194 1195 1196 1197 1198 1199

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);