slab_common.c 44.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20
#include <linux/debugfs.h>
21 22 23
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
24
#include <linux/memcontrol.h>
25 26

#define CREATE_TRACE_POINTS
27
#include <trace/events/kmem.h>
28

29 30 31
#include "slab.h"

enum slab_state slab_state;
32 33
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
34
struct kmem_cache *kmem_cache;
35

36 37 38 39 40 41 42 43
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

44 45 46 47 48
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

49 50 51 52
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
54
		SLAB_FAILSLAB | SLAB_KASAN)
55

V
Vladimir Davydov 已提交
56
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
58 59 60 61

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
62
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
63 64 65

static int __init setup_slab_nomerge(char *str)
{
66
	slab_nomerge = true;
67 68 69 70 71 72 73 74 75
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

76 77 78 79 80 81 82 83 84
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

85
#ifdef CONFIG_DEBUG_VM
86
static int kmem_cache_sanity_check(const char *name, unsigned int size)
87 88 89
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
90 91
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
92
	}
93

94
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
95 96 97
	return 0;
}
#else
98
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
99 100 101
{
	return 0;
}
102 103
#endif

104 105 106 107
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

108 109 110 111 112 113
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
114 115
}

116
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 118 119 120 121 122 123 124
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
125
			return 0;
126 127
		}
	}
128
	return i;
129 130
}

131
#ifdef CONFIG_MEMCG_KMEM
132 133

LIST_HEAD(slab_root_caches);
134
static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
135

136 137
static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);

138
void slab_init_memcg_params(struct kmem_cache *s)
139
{
T
Tejun Heo 已提交
140
	s->memcg_params.root_cache = NULL;
141
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
142
	INIT_LIST_HEAD(&s->memcg_params.children);
143
	s->memcg_params.dying = false;
144 145 146
}

static int init_memcg_params(struct kmem_cache *s,
147
			     struct kmem_cache *root_cache)
148 149
{
	struct memcg_cache_array *arr;
150

T
Tejun Heo 已提交
151
	if (root_cache) {
152 153 154 155 156 157
		int ret = percpu_ref_init(&s->memcg_params.refcnt,
					  kmemcg_cache_shutdown,
					  0, GFP_KERNEL);
		if (ret)
			return ret;

158
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
159
		INIT_LIST_HEAD(&s->memcg_params.children_node);
160
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161
		return 0;
162
	}
163

164
	slab_init_memcg_params(s);
165

166 167
	if (!memcg_nr_cache_ids)
		return 0;
168

169 170 171
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
172 173
	if (!arr)
		return -ENOMEM;
174

175
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 177 178
	return 0;
}

179
static void destroy_memcg_params(struct kmem_cache *s)
180
{
181
	if (is_root_cache(s)) {
182
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 184 185
	} else {
		mem_cgroup_put(s->memcg_params.memcg);
		WRITE_ONCE(s->memcg_params.memcg, NULL);
186
		percpu_ref_exit(&s->memcg_params.refcnt);
187
	}
188 189 190 191 192 193 194 195
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
196 197
}

198
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
199
{
200
	struct memcg_cache_array *old, *new;
201

202 203
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
204
	if (!new)
205 206
		return -ENOMEM;

207 208 209 210 211
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
212

213 214
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
215
		call_rcu(&old->rcu, free_memcg_params);
216 217 218
	return 0;
}

219 220 221 222 223
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

224
	mutex_lock(&slab_mutex);
225
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
226
		ret = update_memcg_params(s, num_memcgs);
227 228 229 230 231
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
232
			break;
233 234 235 236
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
237

238
void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
239
{
240 241 242
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
243
		css_get(&memcg->css);
244
		s->memcg_params.memcg = memcg;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
260
}
261
#else
262
static inline int init_memcg_params(struct kmem_cache *s,
263
				    struct kmem_cache *root_cache)
264 265 266 267
{
	return 0;
}

268
static inline void destroy_memcg_params(struct kmem_cache *s)
269 270
{
}
271

272
static inline void memcg_unlink_cache(struct kmem_cache *s)
273 274
{
}
275
#endif /* CONFIG_MEMCG_KMEM */
276

277 278 279 280
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
281 282
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
283 284 285 286 287 288 289 290 291
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
292
		unsigned int ralign;
293 294 295 296 297 298 299 300 301 302 303 304 305

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

320 321 322
	if (s->usersize)
		return 1;

323 324 325 326 327 328
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

329 330 331 332 333 334 335 336
#ifdef CONFIG_MEMCG_KMEM
	/*
	 * Skip the dying kmem_cache.
	 */
	if (s->memcg_params.dying)
		return 1;
#endif

337 338 339
	return 0;
}

340
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
341
		slab_flags_t flags, const char *name, void (*ctor)(void *))
342 343 344
{
	struct kmem_cache *s;

345
	if (slab_nomerge)
346 347 348 349 350 351 352 353 354 355
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

356 357 358
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

359
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

378 379 380 381
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

382 383 384 385 386
		return s;
	}
	return NULL;
}

387
static struct kmem_cache *create_cache(const char *name,
388
		unsigned int object_size, unsigned int align,
389 390
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
391
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
392 393 394 395
{
	struct kmem_cache *s;
	int err;

396 397 398
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

399 400 401 402 403 404
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
405
	s->size = s->object_size = object_size;
406 407
	s->align = align;
	s->ctor = ctor;
408 409
	s->useroffset = useroffset;
	s->usersize = usersize;
410

411
	err = init_memcg_params(s, root_cache);
412 413 414 415 416 417 418 419 420
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
421
	memcg_link_cache(s, memcg);
422 423 424 425 426 427
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
428
	destroy_memcg_params(s);
429
	kmem_cache_free(kmem_cache, s);
430 431
	goto out;
}
432

433 434 435
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
436 437 438 439
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
440 441
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
442 443 444 445 446 447 448 449 450 451
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
452
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
453 454 455 456 457
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
458 459
 *
 * Return: a pointer to the cache on success, NULL on failure.
460
 */
461
struct kmem_cache *
462 463
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
464 465
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
466
		  void (*ctor)(void *))
467
{
468
	struct kmem_cache *s = NULL;
469
	const char *cache_name;
470
	int err;
471

472
	get_online_cpus();
473
	get_online_mems();
474
	memcg_get_cache_ids();
475

476
	mutex_lock(&slab_mutex);
477

478
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
479
	if (err) {
480
		goto out_unlock;
A
Andrew Morton 已提交
481
	}
482

483 484 485 486 487 488
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

489 490 491 492 493 494 495
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
496

497 498 499 500 501 502 503
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
504
	if (s)
505
		goto out_unlock;
506

507
	cache_name = kstrdup_const(name, GFP_KERNEL);
508 509 510 511
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
512

513
	s = create_cache(cache_name, size,
514
			 calculate_alignment(flags, align, size),
515
			 flags, useroffset, usersize, ctor, NULL, NULL);
516 517
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
518
		kfree_const(cache_name);
519
	}
520 521

out_unlock:
522
	mutex_unlock(&slab_mutex);
523

524
	memcg_put_cache_ids();
525
	put_online_mems();
526 527
	put_online_cpus();

528
	if (err) {
529 530 531 532
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
533
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
534 535 536 537 538
				name, err);
			dump_stack();
		}
		return NULL;
	}
539 540
	return s;
}
541 542
EXPORT_SYMBOL(kmem_cache_create_usercopy);

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
568
struct kmem_cache *
569
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
570 571
		slab_flags_t flags, void (*ctor)(void *))
{
572
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
573 574
					  ctor);
}
575
EXPORT_SYMBOL(kmem_cache_create);
576

577
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
578
{
579 580
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
581

582
	/*
583
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
584 585 586 587 588 589 590 591 592 593
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
594

595 596 597 598 599 600 601 602 603 604 605 606
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
607 608
}

609
static int shutdown_cache(struct kmem_cache *s)
610
{
611 612 613
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

614 615
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
616

617
	memcg_unlink_cache(s);
618
	list_del(&s->list);
619

620
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
621 622 623
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
624 625 626
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
627
#ifdef SLAB_SUPPORTS_SYSFS
628
		sysfs_slab_unlink(s);
629
		sysfs_slab_release(s);
630 631 632 633
#else
		slab_kmem_cache_release(s);
#endif
	}
634 635

	return 0;
636 637
}

638
#ifdef CONFIG_MEMCG_KMEM
639
/*
640
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
641 642 643 644 645 646 647
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
648 649
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
650
{
651
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
652
	struct cgroup_subsys_state *css = &memcg->css;
653
	struct memcg_cache_array *arr;
654
	struct kmem_cache *s = NULL;
655
	char *cache_name;
656
	int idx;
657 658

	get_online_cpus();
659 660
	get_online_mems();

661 662
	mutex_lock(&slab_mutex);

663
	/*
664
	 * The memory cgroup could have been offlined while the cache
665 666
	 * creation work was pending.
	 */
667
	if (memcg->kmem_state != KMEM_ONLINE)
668 669
		goto out_unlock;

670 671 672 673
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

674 675 676 677 678
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
679
	if (arr->entries[idx])
680 681
		goto out_unlock;

682
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
683 684
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
685 686 687
	if (!cache_name)
		goto out_unlock;

688
	s = create_cache(cache_name, root_cache->object_size,
689
			 root_cache->align,
690
			 root_cache->flags & CACHE_CREATE_MASK,
691
			 root_cache->useroffset, root_cache->usersize,
692
			 root_cache->ctor, memcg, root_cache);
693 694 695 696 697
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
698
	if (IS_ERR(s)) {
699
		kfree(cache_name);
700
		goto out_unlock;
701
	}
702

703
	/*
704
	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
705 706 707 708
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
709
	arr->entries[idx] = s;
710

711 712
out_unlock:
	mutex_unlock(&slab_mutex);
713 714

	put_online_mems();
715
	put_online_cpus();
716
}
717

718
static void kmemcg_workfn(struct work_struct *work)
719 720
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
721
					    memcg_params.work);
722 723 724 725 726

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);
727
	s->memcg_params.work_fn(s);
728 729 730 731 732 733
	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();
}

734
static void kmemcg_rcufn(struct rcu_head *head)
735 736
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
737
					    memcg_params.rcu_head);
738 739

	/*
740
	 * We need to grab blocking locks.  Bounce to ->work.  The
741
	 * work item shares the space with the RCU head and can't be
742
	 * initialized earlier.
743
	 */
744 745
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
746 747
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
{
	WARN_ON(shutdown_cache(s));
}

static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
{
	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
					    memcg_params.refcnt);
	unsigned long flags;

	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
	if (s->memcg_params.root_cache->memcg_params.dying)
		goto unlock;

	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);

unlock:
	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
}

static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
{
	__kmemcg_cache_deactivate_after_rcu(s);
	percpu_ref_kill(&s->memcg_params.refcnt);
}

777
static void kmemcg_cache_deactivate(struct kmem_cache *s)
778
{
779
	if (WARN_ON_ONCE(is_root_cache(s)))
780 781
		return;

782
	__kmemcg_cache_deactivate(s);
783
	s->flags |= SLAB_DEACTIVATED;
784

785 786 787 788 789 790
	/*
	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
	 * flag and make sure that no new kmem_cache deactivation tasks
	 * are queued (see flush_memcg_workqueue() ).
	 */
	spin_lock_irq(&memcg_kmem_wq_lock);
791
	if (s->memcg_params.root_cache->memcg_params.dying)
792
		goto unlock;
793

794
	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
795
	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
796 797
unlock:
	spin_unlock_irq(&memcg_kmem_wq_lock);
798 799
}

800 801
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
802 803 804
{
	int idx;
	struct memcg_cache_array *arr;
805
	struct kmem_cache *s, *c;
806
	unsigned int nr_reparented;
807 808 809

	idx = memcg_cache_id(memcg);

810 811 812
	get_online_cpus();
	get_online_mems();

813
	mutex_lock(&slab_mutex);
814
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
815 816
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
817 818 819 820
		c = arr->entries[idx];
		if (!c)
			continue;

821
		kmemcg_cache_deactivate(c);
822 823
		arr->entries[idx] = NULL;
	}
824 825 826 827 828 829 830 831 832 833 834 835
	nr_reparented = 0;
	list_for_each_entry(s, &memcg->kmem_caches,
			    memcg_params.kmem_caches_node) {
		WRITE_ONCE(s->memcg_params.memcg, parent);
		css_put(&memcg->css);
		nr_reparented++;
	}
	if (nr_reparented) {
		list_splice_init(&memcg->kmem_caches,
				 &parent->kmem_caches);
		css_get_many(&parent->css, nr_reparented);
	}
836
	mutex_unlock(&slab_mutex);
837 838 839

	put_online_mems();
	put_online_cpus();
840 841
}

842
static int shutdown_memcg_caches(struct kmem_cache *s)
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
861
		if (shutdown_cache(c))
862 863 864 865 866
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
867
			list_move(&c->memcg_params.children_node, &busy);
868 869 870 871 872 873 874 875 876 877 878 879 880 881
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
882 883
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
884
		shutdown_cache(c);
885

T
Tejun Heo 已提交
886
	list_splice(&busy, &s->memcg_params.children);
887 888 889 890 891

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
892
	if (!list_empty(&s->memcg_params.children))
893 894 895
		return -EBUSY;
	return 0;
}
896

897
static void memcg_set_kmem_cache_dying(struct kmem_cache *s)
898
{
899
	spin_lock_irq(&memcg_kmem_wq_lock);
900
	s->memcg_params.dying = true;
901
	spin_unlock_irq(&memcg_kmem_wq_lock);
902
}
903

904 905
static void flush_memcg_workqueue(struct kmem_cache *s)
{
906
	/*
907
	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
908 909
	 * sure all registered rcu callbacks have been invoked.
	 */
910
	rcu_barrier();
911 912 913 914 915 916

	/*
	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
	 * deactivates the memcg kmem_caches through workqueue. Make sure all
	 * previous workitems on workqueue are processed.
	 */
917 918
	if (likely(memcg_kmem_cache_wq))
		flush_workqueue(memcg_kmem_cache_wq);
919 920 921 922 923 924 925 926 927 928 929 930

	/*
	 * If we're racing with children kmem_cache deactivation, it might
	 * take another rcu grace period to complete their destruction.
	 * At this moment the corresponding percpu_ref_kill() call should be
	 * done, but it might take another rcu grace period to complete
	 * switching to the atomic mode.
	 * Please, note that we check without grabbing the slab_mutex. It's safe
	 * because at this moment the children list can't grow.
	 */
	if (!list_empty(&s->memcg_params.children))
		rcu_barrier();
931
}
932
#else
933
static inline int shutdown_memcg_caches(struct kmem_cache *s)
934 935 936
{
	return 0;
}
937
#endif /* CONFIG_MEMCG_KMEM */
938

939 940
void slab_kmem_cache_release(struct kmem_cache *s)
{
941
	__kmem_cache_release(s);
942
	destroy_memcg_params(s);
943
	kfree_const(s->name);
944 945 946
	kmem_cache_free(kmem_cache, s);
}

947 948
void kmem_cache_destroy(struct kmem_cache *s)
{
949
	int err;
950

951 952 953
	if (unlikely(!s))
		return;

954
	get_online_cpus();
955 956
	get_online_mems();

957
	mutex_lock(&slab_mutex);
958

959
	s->refcount--;
960 961 962
	if (s->refcount)
		goto out_unlock;

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
#ifdef CONFIG_MEMCG_KMEM
	memcg_set_kmem_cache_dying(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	flush_memcg_workqueue(s);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);
#endif

979
	err = shutdown_memcg_caches(s);
980
	if (!err)
981
		err = shutdown_cache(s);
982

983
	if (err) {
J
Joe Perches 已提交
984 985
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
986 987
		dump_stack();
	}
988 989
out_unlock:
	mutex_unlock(&slab_mutex);
990

991
	put_online_mems();
992 993 994 995
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

996 997 998 999 1000 1001
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
1002 1003
 *
 * Return: %0 if all slabs were released, non-zero otherwise
1004 1005 1006 1007 1008 1009 1010
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
1011
	kasan_cache_shrink(cachep);
1012
	ret = __kmem_cache_shrink(cachep);
1013 1014 1015 1016 1017 1018
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/**
 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
 * @s: The cache pointer
 */
void kmem_cache_shrink_all(struct kmem_cache *s)
{
	struct kmem_cache *c;

	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
		kmem_cache_shrink(s);
		return;
	}

	get_online_cpus();
	get_online_mems();
	kasan_cache_shrink(s);
	__kmem_cache_shrink(s);

	/*
	 * We have to take the slab_mutex to protect from the memcg list
	 * modification.
	 */
	mutex_lock(&slab_mutex);
	for_each_memcg_cache(c, s) {
		/*
		 * Don't need to shrink deactivated memcg caches.
		 */
		if (s->flags & SLAB_DEACTIVATED)
			continue;
		kasan_cache_shrink(c);
		__kmem_cache_shrink(c);
	}
	mutex_unlock(&slab_mutex);
	put_online_mems();
	put_online_cpus();
}

1056
bool slab_is_available(void)
1057 1058 1059
{
	return slab_state >= UP;
}
1060

1061 1062
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
1063 1064 1065
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
1066 1067
{
	int err;
1068
	unsigned int align = ARCH_KMALLOC_MINALIGN;
1069 1070 1071

	s->name = name;
	s->size = s->object_size = size;
1072 1073 1074 1075 1076 1077 1078 1079 1080

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

1081 1082
	s->useroffset = useroffset;
	s->usersize = usersize;
1083 1084 1085

	slab_init_memcg_params(s);

1086 1087 1088
	err = __kmem_cache_create(s, flags);

	if (err)
1089
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1090 1091 1092 1093 1094
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

1095 1096 1097
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
1098 1099 1100 1101 1102 1103
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

1104
	create_boot_cache(s, name, size, flags, useroffset, usersize);
1105
	list_add(&s->list, &slab_caches);
1106
	memcg_link_cache(s, NULL);
1107 1108 1109 1110
	s->refcount = 1;
	return s;
}

1111
struct kmem_cache *
1112 1113
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1114 1115
EXPORT_SYMBOL(kmalloc_caches);

1116 1117 1118 1119 1120 1121
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
1122
static u8 size_index[24] __ro_after_init = {
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

1149
static inline unsigned int size_index_elem(unsigned int bytes)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
1160
	unsigned int index;
1161 1162 1163 1164 1165 1166

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
1167
	} else {
1168
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1169
			return NULL;
1170
		index = fls(size - 1);
1171
	}
1172

1173
	return kmalloc_caches[kmalloc_type(flags)][index];
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

1193 1194 1195 1196 1197
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1198
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
	INIT_KMALLOC_INFO(33554432, 32M),
	INIT_KMALLOC_INFO(67108864, 64M)
1226 1227
};

1228
/*
1229 1230 1231 1232 1233 1234 1235 1236 1237
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1238
 */
1239
void __init setup_kmalloc_cache_index_table(void)
1240
{
1241
	unsigned int i;
1242

1243 1244 1245 1246
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1247
		unsigned int elem = size_index_elem(i);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1273 1274
}

1275
static void __init
1276
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
1277
{
1278
	if (type == KMALLOC_RECLAIM)
1279 1280
		flags |= SLAB_RECLAIM_ACCOUNT;

1281 1282
	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
1283 1284
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
1285 1286
}

1287 1288 1289 1290 1291
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1292
void __init create_kmalloc_caches(slab_flags_t flags)
1293
{
1294 1295
	int i;
	enum kmalloc_cache_type type;
1296

1297 1298 1299 1300
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
1314 1315
	}

1316 1317 1318 1319 1320
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1321
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1322 1323

		if (s) {
1324
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1325
				kmalloc_info[i].name[KMALLOC_DMA],
1326
				kmalloc_info[i].size,
1327 1328
				SLAB_CACHE_DMA | flags, 0,
				kmalloc_info[i].size);
1329 1330 1331 1332
		}
	}
#endif
}
1333 1334
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1335 1336 1337 1338 1339
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1340 1341
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
1342
	void *ret = NULL;
V
Vladimir Davydov 已提交
1343 1344 1345
	struct page *page;

	flags |= __GFP_COMP;
1346
	page = alloc_pages(flags, order);
1347 1348 1349 1350 1351
	if (likely(page)) {
		ret = page_address(page);
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    1 << order);
	}
1352
	ret = kasan_kmalloc_large(ret, size, flags);
1353
	/* As ret might get tagged, call kmemleak hook after KASAN. */
1354
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
1355 1356 1357 1358
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1359 1360 1361 1362 1363 1364 1365 1366 1367
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1368

1369 1370 1371
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1372
			       unsigned int count)
1373 1374
{
	unsigned int rand;
1375
	unsigned int i;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1416
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1417
#ifdef CONFIG_SLAB
1418
#define SLABINFO_RIGHTS (0600)
1419
#else
1420
#define SLABINFO_RIGHTS (0400)
1421 1422
#endif

1423
static void print_slabinfo_header(struct seq_file *m)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1434
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1435 1436 1437
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1438
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1439 1440 1441 1442 1443
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1444
void *slab_start(struct seq_file *m, loff_t *pos)
1445 1446
{
	mutex_lock(&slab_mutex);
1447
	return seq_list_start(&slab_root_caches, *pos);
1448 1449
}

1450
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1451
{
1452
	return seq_list_next(p, &slab_root_caches, pos);
1453 1454
}

1455
void slab_stop(struct seq_file *m, void *p)
1456 1457 1458 1459
{
	mutex_unlock(&slab_mutex);
}

1460 1461 1462 1463 1464 1465 1466 1467 1468
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1469
	for_each_memcg_cache(c, s) {
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1481
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1482
{
1483 1484 1485 1486 1487
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1488 1489
	memcg_accumulate_slabinfo(s, &sinfo);

1490
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1491
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1492 1493 1494 1495 1496 1497 1498 1499
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1500 1501
}

1502
static int slab_show(struct seq_file *m, void *p)
1503
{
1504
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1505

1506
	if (p == slab_root_caches.next)
1507
		print_slabinfo_header(m);
1508
	cache_show(s, m);
1509 1510 1511
	return 0;
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

1546
#if defined(CONFIG_MEMCG_KMEM)
1547 1548
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
1549
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1550 1551 1552 1553 1554 1555 1556

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
1557
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1558 1559 1560 1561 1562 1563 1564 1565 1566

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1567 1568
int memcg_slab_show(struct seq_file *m, void *p)
{
1569 1570
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1571
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1572

1573
	if (p == memcg->kmem_caches.next)
1574
		print_slabinfo_header(m);
1575
	cache_show(s, m);
1576
	return 0;
1577
}
1578
#endif
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1594
	.start = slab_start,
1595 1596
	.next = slab_next,
	.stop = slab_stop,
1597
	.show = slab_show,
1598 1599 1600 1601 1602 1603 1604
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

1605
static const struct proc_ops slabinfo_proc_ops = {
1606
	.proc_flags	= PROC_ENTRY_PERMANENT,
1607 1608 1609 1610 1611
	.proc_open	= slabinfo_open,
	.proc_read	= seq_read,
	.proc_write	= slabinfo_write,
	.proc_lseek	= seq_lseek,
	.proc_release	= seq_release,
1612 1613 1614 1615
};

static int __init slab_proc_init(void)
{
1616
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1617 1618 1619
	return 0;
}
module_init(slab_proc_init);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
/*
 * Display information about kmem caches that have child memcg caches.
 */
static int memcg_slabinfo_show(struct seq_file *m, void *unused)
{
	struct kmem_cache *s, *c;
	struct slabinfo sinfo;

	mutex_lock(&slab_mutex);
	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
	seq_puts(m, " <active_slabs> <num_slabs>\n");
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
		/*
		 * Skip kmem caches that don't have any memcg children.
		 */
		if (list_empty(&s->memcg_params.children))
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(s, &sinfo);
		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
			   sinfo.active_slabs, sinfo.num_slabs);

		for_each_memcg_cache(c, s) {
			struct cgroup_subsys_state *css;
			char *status = "";

			css = &c->memcg_params.memcg->css;
			if (!(css->flags & CSS_ONLINE))
				status = ":dead";
			else if (c->flags & SLAB_DEACTIVATED)
				status = ":deact";

			memset(&sinfo, 0, sizeof(sinfo));
			get_slabinfo(c, &sinfo);
			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
				   cache_name(c), css->id, status,
				   sinfo.active_objs, sinfo.num_objs,
				   sinfo.active_slabs, sinfo.num_slabs);
		}
	}
	mutex_unlock(&slab_mutex);
	return 0;
}
DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);

static int __init memcg_slabinfo_init(void)
{
	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
			    NULL, NULL, &memcg_slabinfo_fops);
	return 0;
}

late_initcall(memcg_slabinfo_init);
#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
Y
Yang Shi 已提交
1678
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1679 1680 1681 1682 1683

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
1684
	size_t ks;
1685

1686
	ks = ksize(p);
1687

1688
	if (ks >= new_size) {
1689
		p = kasan_krealloc((void *)p, new_size, flags);
1690
		return (void *)p;
1691
	}
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
1710 1711
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1723
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1724 1725 1726 1727 1728 1729 1730
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
1731
 * kfree_sensitive - Clear sensitive information in memory before freeing
1732 1733 1734
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
1735
 * If @p is %NULL, kfree_sensitive() does nothing.
1736 1737 1738 1739 1740
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
1741
void kfree_sensitive(const void *p)
1742 1743 1744 1745 1746
{
	size_t ks;
	void *mem = (void *)p;

	ks = ksize(mem);
1747 1748
	if (ks)
		memzero_explicit(mem, ks);
1749 1750
	kfree(mem);
}
1751
EXPORT_SYMBOL(kfree_sensitive);
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	size_t size;

	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
1784
	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1785 1786 1787
		return 0;

	size = __ksize(objp);
1788 1789 1790 1791 1792 1793 1794 1795 1796
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(objp, size);
	return size;
}
EXPORT_SYMBOL(ksize);

1797 1798 1799 1800 1801 1802 1803
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1804 1805 1806 1807 1808 1809 1810 1811

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);