extent_io.c 174.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
16
#include "extent_io.h"
17
#include "extent-io-tree.h"
18
#include "extent_map.h"
19 20
#include "ctree.h"
#include "btrfs_inode.h"
21
#include "volumes.h"
22
#include "check-integrity.h"
23
#include "locking.h"
24
#include "rcu-string.h"
25
#include "backref.h"
26
#include "disk-io.h"
27
#include "subpage.h"
28
#include "zoned.h"
29
#include "block-group.h"
30 31 32

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
33
static struct bio_set btrfs_bioset;
34

35 36 37 38 39
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

40
#ifdef CONFIG_BTRFS_DEBUG
41
static LIST_HEAD(states);
C
Chris Mason 已提交
42
static DEFINE_SPINLOCK(leak_lock);
43

44 45 46
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
47 48 49
{
	unsigned long flags;

50
	spin_lock_irqsave(lock, flags);
51
	list_add(new, head);
52
	spin_unlock_irqrestore(lock, flags);
53 54
}

55 56
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
57 58 59
{
	unsigned long flags;

60
	spin_lock_irqsave(lock, flags);
61
	list_del(entry);
62
	spin_unlock_irqrestore(lock, flags);
63 64
}

65
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
66 67
{
	struct extent_buffer *eb;
68
	unsigned long flags;
69

70 71 72 73 74 75 76
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

77 78 79 80
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
81 82 83 84
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
85 86 87
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
88
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
89 90 91 92 93 94
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

95 96
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
97
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
98 99
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
100
		       refcount_read(&state->refs));
101 102 103 104
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
105

106 107
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
108
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
109
		struct extent_io_tree *tree, u64 start, u64 end)
110
{
111 112 113 114 115 116 117 118 119 120 121 122
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
123
}
124
#else
125 126
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
127
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
128
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
129
#endif
130 131 132 133 134 135 136 137 138

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
	struct bio *bio;
139 140 141
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
142 143
	unsigned int extent_locked:1;

144
	/* tells the submit_bio code to use REQ_SYNC */
145
	unsigned int sync_io:1;
146 147
};

148
static int add_extent_changeset(struct extent_state *state, u32 bits,
149 150 151 152 153 154
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
155
		return 0;
156
	if (set && (state->state & bits) == bits)
157
		return 0;
158
	if (!set && (state->state & bits) == 0)
159
		return 0;
160
	changeset->bytes_changed += state->end - state->start + 1;
161
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
162
			GFP_ATOMIC);
163
	return ret;
164 165
}

166 167
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
168 169 170 171 172 173
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

174 175 176 177
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
178 179
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
180 181 182 183

	return blk_status_to_errno(ret);
}

184 185 186 187 188 189 190 191 192 193
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
	if (epd->bio) {
		epd->bio->bi_status = errno_to_blk_status(ret);
		bio_endio(epd->bio);
		epd->bio = NULL;
	}
}

194 195 196 197 198 199 200
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
201
{
202
	int ret = 0;
203

204
	if (epd->bio) {
205
		ret = submit_one_bio(epd->bio, 0, 0);
206 207 208 209 210 211 212
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
213 214
		epd->bio = NULL;
	}
215
	return ret;
216
}
217

218
int __init extent_state_cache_init(void)
219
{
D
David Sterba 已提交
220
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
221
			sizeof(struct extent_state), 0,
222
			SLAB_MEM_SPREAD, NULL);
223 224
	if (!extent_state_cache)
		return -ENOMEM;
225 226
	return 0;
}
227

228 229
int __init extent_io_init(void)
{
D
David Sterba 已提交
230
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
231
			sizeof(struct extent_buffer), 0,
232
			SLAB_MEM_SPREAD, NULL);
233
	if (!extent_buffer_cache)
234
		return -ENOMEM;
235

236 237 238
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_io_bio, bio),
			BIOSET_NEED_BVECS))
239
		goto free_buffer_cache;
240

241
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
242 243
		goto free_bioset;

244 245
	return 0;

246
free_bioset:
247
	bioset_exit(&btrfs_bioset);
248

249 250 251
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
252 253
	return -ENOMEM;
}
254

255 256 257
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
258 259 260
	kmem_cache_destroy(extent_state_cache);
}

261
void __cold extent_io_exit(void)
262
{
263 264 265 266 267
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
268
	kmem_cache_destroy(extent_buffer_cache);
269
	bioset_exit(&btrfs_bioset);
270 271
}

272 273 274 275 276 277 278 279 280
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

281
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
282 283
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
284
{
285
	tree->fs_info = fs_info;
286
	tree->state = RB_ROOT;
287
	tree->dirty_bytes = 0;
288
	spin_lock_init(&tree->lock);
289
	tree->private_data = private_data;
290
	tree->owner = owner;
291 292
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
293 294
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

324
static struct extent_state *alloc_extent_state(gfp_t mask)
325 326 327
{
	struct extent_state *state;

328 329 330 331 332
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
333
	state = kmem_cache_alloc(extent_state_cache, mask);
334
	if (!state)
335 336
		return state;
	state->state = 0;
337
	state->failrec = NULL;
338
	RB_CLEAR_NODE(&state->rb_node);
339
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
340
	refcount_set(&state->refs, 1);
341
	init_waitqueue_head(&state->wq);
342
	trace_alloc_extent_state(state, mask, _RET_IP_);
343 344 345
	return state;
}

346
void free_extent_state(struct extent_state *state)
347 348 349
{
	if (!state)
		return;
350
	if (refcount_dec_and_test(&state->refs)) {
351
		WARN_ON(extent_state_in_tree(state));
352
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
353
		trace_free_extent_state(state, _RET_IP_);
354 355 356 357
		kmem_cache_free(extent_state_cache, state);
	}
}

358 359 360
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
361 362 363
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
364
{
365
	struct rb_node **p;
C
Chris Mason 已提交
366
	struct rb_node *parent = NULL;
367 368
	struct tree_entry *entry;

369 370 371 372 373 374
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

375
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
376
	while (*p) {
377 378 379 380 381 382 383 384 385 386 387
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

388
do_insert:
389 390 391 392 393
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
394
/**
395 396
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
397
 *
398 399 400 401 402 403 404
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
405 406 407 408 409 410 411
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
412
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
413
				      struct rb_node **next_ret,
414
				      struct rb_node **prev_ret,
415 416
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
417
{
418
	struct rb_root *root = &tree->state;
419
	struct rb_node **n = &root->rb_node;
420 421 422 423 424
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

425 426 427
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
428 429 430
		prev_entry = entry;

		if (offset < entry->start)
431
			n = &(*n)->rb_left;
432
		else if (offset > entry->end)
433
			n = &(*n)->rb_right;
C
Chris Mason 已提交
434
		else
435
			return *n;
436 437
	}

438 439 440 441 442
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

443
	if (next_ret) {
444
		orig_prev = prev;
C
Chris Mason 已提交
445
		while (prev && offset > prev_entry->end) {
446 447 448
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
449
		*next_ret = prev;
450 451 452
		prev = orig_prev;
	}

453
	if (prev_ret) {
454
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
455
		while (prev && offset < prev_entry->start) {
456 457 458
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
459
		*prev_ret = prev;
460 461 462 463
	}
	return NULL;
}

464 465 466 467 468
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
469
{
470
	struct rb_node *next= NULL;
471
	struct rb_node *ret;
472

473
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
474
	if (!ret)
475
		return next;
476 477 478
	return ret;
}

479 480 481 482 483 484
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

485 486 487 488 489 490 491 492 493
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
494 495
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
496 497 498 499
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
500
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
501
		return;
502 503 504 505 506 507

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
508 509 510 511
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
512 513
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
514
			RB_CLEAR_NODE(&other->rb_node);
515 516 517 518 519 520 521 522
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
523 524 525 526
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
527 528
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
529
			RB_CLEAR_NODE(&other->rb_node);
530
			free_extent_state(other);
531 532 533 534
		}
	}
}

535
static void set_state_bits(struct extent_io_tree *tree,
536
			   struct extent_state *state, u32 *bits,
537
			   struct extent_changeset *changeset);
538

539 540 541 542 543 544 545 546 547 548 549 550
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
551 552
			struct rb_node ***p,
			struct rb_node **parent,
553
			u32 *bits, struct extent_changeset *changeset)
554 555 556
{
	struct rb_node *node;

557 558 559 560 561
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
562 563
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
564

565
	set_state_bits(tree, state, bits, changeset);
566

567
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
568 569 570
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
571 572
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
573
		       found->start, found->end, start, end);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
598

599 600
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
601

602 603 604 605 606
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

607 608
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
609 610 611 612 613 614 615
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

616 617 618 619 620 621 622 623 624
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

625 626
/*
 * utility function to clear some bits in an extent state struct.
627
 * it will optionally wake up anyone waiting on this state (wake == 1).
628 629 630 631
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
632 633
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
634
					    u32 *bits, int wake,
635
					    struct extent_changeset *changeset)
636
{
637
	struct extent_state *next;
638
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
639
	int ret;
640

641
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
642 643 644 645
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
646 647 648 649

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

650 651
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
652
	state->state &= ~bits_to_clear;
653 654
	if (wake)
		wake_up(&state->wq);
655
	if (state->state == 0) {
656
		next = next_state(state);
657
		if (extent_state_in_tree(state)) {
658
			rb_erase(&state->rb_node, &tree->state);
659
			RB_CLEAR_NODE(&state->rb_node);
660 661 662 663 664 665
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
666
		next = next_state(state);
667
	}
668
	return next;
669 670
}

671 672 673 674 675 676 677 678 679
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

680
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
681
{
682
	btrfs_panic(tree->fs_info, err,
683
	"locking error: extent tree was modified by another thread while locked");
684 685
}

686 687 688 689 690 691 692 693 694 695
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
696
 * This takes the tree lock, and returns 0 on success and < 0 on error.
697
 */
698
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 700 701
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
702 703
{
	struct extent_state *state;
704
	struct extent_state *cached;
705 706
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
707
	u64 last_end;
708
	int err;
709
	int clear = 0;
710

711
	btrfs_debug_check_extent_io_range(tree, start, end);
712
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
713

714 715 716
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

717 718 719
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
720
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
721
		clear = 1;
722
again:
723
	if (!prealloc && gfpflags_allow_blocking(mask)) {
724 725 726 727 728 729 730
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
731 732 733
		prealloc = alloc_extent_state(mask);
	}

734
	spin_lock(&tree->lock);
735 736
	if (cached_state) {
		cached = *cached_state;
737 738 739 740 741 742

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

743 744
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
745
			if (clear)
746
				refcount_dec(&cached->refs);
747
			state = cached;
748
			goto hit_next;
749
		}
750 751
		if (clear)
			free_extent_state(cached);
752
	}
753 754 755 756
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
757
	node = tree_search(tree, start);
758 759 760
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
761
hit_next:
762 763 764
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
765
	last_end = state->end;
766

767
	/* the state doesn't have the wanted bits, go ahead */
768 769
	if (!(state->state & bits)) {
		state = next_state(state);
770
		goto next;
771
	}
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
790 791
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
792
		err = split_state(tree, state, prealloc, start);
793 794 795
		if (err)
			extent_io_tree_panic(tree, err);

796 797 798 799
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
800 801
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
802
			goto next;
803 804 805 806 807 808 809 810 811 812
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
813 814
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
815
		err = split_state(tree, state, prealloc, end + 1);
816 817 818
		if (err)
			extent_io_tree_panic(tree, err);

819 820
		if (wake)
			wake_up(&state->wq);
821

822
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
823

824 825 826
		prealloc = NULL;
		goto out;
	}
827

828
	state = clear_state_bit(tree, state, &bits, wake, changeset);
829
next:
830 831 832
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
833
	if (start <= end && state && !need_resched())
834
		goto hit_next;
835 836 837 838

search_again:
	if (start > end)
		goto out;
839
	spin_unlock(&tree->lock);
840
	if (gfpflags_allow_blocking(mask))
841 842
		cond_resched();
	goto again;
843 844 845 846 847 848 849 850

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

851 852
}

853 854
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
855 856
		__releases(tree->lock)
		__acquires(tree->lock)
857 858 859
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
860
	spin_unlock(&tree->lock);
861
	schedule();
862
	spin_lock(&tree->lock);
863 864 865 866 867 868 869 870
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
871
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
872
			    u32 bits)
873 874 875 876
{
	struct extent_state *state;
	struct rb_node *node;

877
	btrfs_debug_check_extent_io_range(tree, start, end);
878

879
	spin_lock(&tree->lock);
880 881 882 883 884 885
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
886
		node = tree_search(tree, start);
887
process_node:
888 889 890 891 892 893 894 895 896 897
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
898
			refcount_inc(&state->refs);
899 900 901 902 903 904 905 906 907
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

908 909 910 911
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
912 913
	}
out:
914
	spin_unlock(&tree->lock);
915 916
}

917
static void set_state_bits(struct extent_io_tree *tree,
918
			   struct extent_state *state,
919
			   u32 *bits, struct extent_changeset *changeset)
920
{
921
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
922
	int ret;
J
Josef Bacik 已提交
923

924 925 926
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

927
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
928 929 930
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
931 932
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
933
	state->state |= bits_to_set;
934 935
}

936 937
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
938
				 unsigned flags)
939 940
{
	if (cached_ptr && !(*cached_ptr)) {
941
		if (!flags || (state->state & flags)) {
942
			*cached_ptr = state;
943
			refcount_inc(&state->refs);
944 945 946 947
		}
	}
}

948 949 950 951
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
952
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
953 954
}

955
/*
956 957
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
958
 *
959 960 961
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
962
 *
963
 * [start, end] is inclusive This takes the tree lock.
964
 */
965 966
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
967 968
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
969 970 971 972
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
973 974
	struct rb_node **p;
	struct rb_node *parent;
975 976 977
	int err = 0;
	u64 last_start;
	u64 last_end;
978

979
	btrfs_debug_check_extent_io_range(tree, start, end);
980
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
981

982 983 984 985
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
986
again:
987
	if (!prealloc && gfpflags_allow_blocking(mask)) {
988 989 990 991 992 993 994
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
995 996 997
		prealloc = alloc_extent_state(mask);
	}

998
	spin_lock(&tree->lock);
999 1000
	if (cached_state && *cached_state) {
		state = *cached_state;
1001
		if (state->start <= start && state->end > start &&
1002
		    extent_state_in_tree(state)) {
1003 1004 1005 1006
			node = &state->rb_node;
			goto hit_next;
		}
	}
1007 1008 1009 1010
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1011
	node = tree_search_for_insert(tree, start, &p, &parent);
1012
	if (!node) {
1013 1014
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1015
		err = insert_state(tree, prealloc, start, end,
1016
				   &p, &parent, &bits, changeset);
1017 1018 1019
		if (err)
			extent_io_tree_panic(tree, err);

1020
		cache_state(prealloc, cached_state);
1021 1022 1023 1024
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1025
hit_next:
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1036
		if (state->state & exclusive_bits) {
1037 1038 1039 1040
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1041

1042
		set_state_bits(tree, state, &bits, changeset);
1043
		cache_state(state, cached_state);
1044
		merge_state(tree, state);
1045 1046 1047
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1048 1049 1050 1051
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1072
		if (state->state & exclusive_bits) {
1073 1074 1075 1076
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1088 1089
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1090
		err = split_state(tree, state, prealloc, start);
1091 1092 1093
		if (err)
			extent_io_tree_panic(tree, err);

1094 1095 1096 1097
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1098
			set_state_bits(tree, state, &bits, changeset);
1099
			cache_state(state, cached_state);
1100
			merge_state(tree, state);
1101 1102 1103
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1104 1105 1106 1107
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1123
			this_end = last_start - 1;
1124 1125 1126

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1127 1128 1129 1130 1131

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1132
		err = insert_state(tree, prealloc, start, this_end,
1133
				   NULL, NULL, &bits, changeset);
1134 1135 1136
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1137 1138
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1149
		if (state->state & exclusive_bits) {
1150 1151 1152 1153
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1154 1155 1156

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1157
		err = split_state(tree, state, prealloc, end + 1);
1158 1159
		if (err)
			extent_io_tree_panic(tree, err);
1160

1161
		set_state_bits(tree, prealloc, &bits, changeset);
1162
		cache_state(prealloc, cached_state);
1163 1164 1165 1166 1167
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1168 1169 1170 1171 1172 1173 1174
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1175 1176

out:
1177
	spin_unlock(&tree->lock);
1178 1179 1180 1181 1182 1183 1184
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1185
/**
L
Liu Bo 已提交
1186 1187
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1188 1189 1190 1191 1192
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1193
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1194 1195 1196 1197 1198 1199
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1200 1201
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1202 1203
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1204
		       u32 bits, u32 clear_bits,
1205
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1206 1207 1208 1209
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1210 1211
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1212 1213 1214
	int err = 0;
	u64 last_start;
	u64 last_end;
1215
	bool first_iteration = true;
J
Josef Bacik 已提交
1216

1217
	btrfs_debug_check_extent_io_range(tree, start, end);
1218 1219
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1220

J
Josef Bacik 已提交
1221
again:
1222
	if (!prealloc) {
1223 1224 1225 1226 1227 1228 1229
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1230
		prealloc = alloc_extent_state(GFP_NOFS);
1231
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1232 1233 1234 1235
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1236 1237 1238
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1239
		    extent_state_in_tree(state)) {
1240 1241 1242 1243 1244
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1245 1246 1247 1248
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1249
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1250 1251
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1252 1253 1254 1255
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1256
		err = insert_state(tree, prealloc, start, end,
1257
				   &p, &parent, &bits, NULL);
1258 1259
		if (err)
			extent_io_tree_panic(tree, err);
1260 1261
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1276
		set_state_bits(tree, state, &bits, NULL);
1277
		cache_state(state, cached_state);
1278
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1279 1280 1281
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1282 1283 1284
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1306 1307 1308 1309
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1310
		err = split_state(tree, state, prealloc, start);
1311 1312
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1313 1314 1315 1316
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1317
			set_state_bits(tree, state, &bits, NULL);
1318
			cache_state(state, cached_state);
1319 1320
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1321 1322 1323
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1324 1325 1326
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1345 1346 1347 1348
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1349 1350 1351 1352 1353 1354

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1355
				   NULL, NULL, &bits, NULL);
1356 1357
		if (err)
			extent_io_tree_panic(tree, err);
1358
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1371 1372 1373 1374
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1375 1376

		err = split_state(tree, state, prealloc, end + 1);
1377 1378
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1379

1380
		set_state_bits(tree, prealloc, &bits, NULL);
1381
		cache_state(prealloc, cached_state);
1382
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1383 1384 1385 1386 1387 1388 1389 1390
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1391
	cond_resched();
1392
	first_iteration = false;
J
Josef Bacik 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1403
/* wrappers around set/clear extent bit */
1404
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1405
			   u32 bits, struct extent_changeset *changeset)
1406 1407 1408 1409 1410 1411 1412 1413 1414
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1415 1416
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1417 1418
}

1419
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1420
			   u32 bits)
1421
{
1422 1423
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1424 1425
}

1426
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1427
		     u32 bits, int wake, int delete,
1428
		     struct extent_state **cached)
1429 1430
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1431
				  cached, GFP_NOFS, NULL);
1432 1433 1434
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1435
		u32 bits, struct extent_changeset *changeset)
1436 1437 1438 1439 1440 1441 1442
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1443
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1444 1445 1446
				  changeset);
}

C
Chris Mason 已提交
1447 1448 1449 1450
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1451
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1452
		     struct extent_state **cached_state)
1453 1454 1455
{
	int err;
	u64 failed_start;
1456

1457
	while (1) {
1458 1459 1460
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1461
		if (err == -EEXIST) {
1462 1463
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1464
		} else
1465 1466 1467 1468 1469 1470
			break;
		WARN_ON(start > end);
	}
	return err;
}

1471
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1472 1473 1474 1475
{
	int err;
	u64 failed_start;

1476 1477
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1478 1479 1480
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1481
					 EXTENT_LOCKED, 1, 0, NULL);
1482
		return 0;
Y
Yan Zheng 已提交
1483
	}
1484 1485 1486
	return 1;
}

1487
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1488
{
1489 1490
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1491 1492 1493 1494 1495 1496
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1497
		put_page(page);
1498 1499 1500 1501
		index++;
	}
}

1502
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1503
{
1504 1505
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1506 1507 1508 1509 1510 1511
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1512
		account_page_redirty(page);
1513
		put_page(page);
1514 1515 1516 1517
		index++;
	}
}

C
Chris Mason 已提交
1518 1519 1520 1521
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1522
static struct extent_state *
1523
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1533
	if (!node)
C
Chris Mason 已提交
1534 1535
		goto out;

C
Chris Mason 已提交
1536
	while (1) {
C
Chris Mason 已提交
1537
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1538
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1539
			return state;
C
Chris Mason 已提交
1540

C
Chris Mason 已提交
1541 1542 1543 1544 1545 1546 1547 1548
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1549
/*
1550
 * Find the first offset in the io tree with one or more @bits set.
1551
 *
1552 1553 1554 1555
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1556 1557
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1558
			  u64 *start_ret, u64 *end_ret, u32 bits,
1559
			  struct extent_state **cached_state)
1560 1561 1562 1563 1564
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1565 1566
	if (cached_state && *cached_state) {
		state = *cached_state;
1567
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1568
			while ((state = next_state(state)) != NULL) {
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1580
	state = find_first_extent_bit_state(tree, start, bits);
1581
got_it:
1582
	if (state) {
1583
		cache_state_if_flags(state, cached_state, 0);
1584 1585 1586 1587
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1588
out:
1589 1590 1591 1592
	spin_unlock(&tree->lock);
	return ret;
}

1593
/**
1594 1595 1596 1597 1598 1599 1600
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1601 1602 1603 1604 1605 1606 1607 1608 1609
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1610
			       u64 *start_ret, u64 *end_ret, u32 bits)
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1631
/**
1632 1633
 * Find the first range that has @bits not set. This range could start before
 * @start.
1634
 *
1635 1636 1637 1638 1639
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1640 1641 1642 1643 1644 1645 1646
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1647
				 u64 *start_ret, u64 *end_ret, u32 bits)
1648 1649 1650 1651 1652 1653 1654 1655 1656
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1675 1676
			node = next;
		}
1677 1678 1679 1680
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1681
		state = rb_entry(node, struct extent_state, rb_node);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1704
		} else {
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1748 1749 1750 1751
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1752
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1753
 */
J
Josef Bacik 已提交
1754 1755 1756
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1757 1758 1759 1760
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1761
	bool found = false;
1762 1763
	u64 total_bytes = 0;

1764
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1765

1766 1767 1768 1769
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1770
	node = tree_search(tree, cur_start);
1771
	if (!node) {
1772
		*end = (u64)-1;
1773 1774 1775
		goto out;
	}

C
Chris Mason 已提交
1776
	while (1) {
1777
		state = rb_entry(node, struct extent_state, rb_node);
1778 1779
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1780 1781 1782 1783 1784 1785 1786
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1787
		if (!found) {
1788
			*start = state->start;
1789
			*cached_state = state;
1790
			refcount_inc(&state->refs);
1791
		}
1792
		found = true;
1793 1794 1795 1796
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1797
		if (total_bytes >= max_bytes)
1798 1799
			break;
		if (!node)
1800 1801 1802
			break;
	}
out:
1803
	spin_unlock(&tree->lock);
1804 1805 1806
	return found;
}

1807 1808 1809 1810 1811
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret);

1812 1813 1814
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1815
{
1816 1817
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1818

1819
	ASSERT(locked_page);
C
Chris Mason 已提交
1820
	if (index == locked_page->index && end_index == index)
1821
		return;
C
Chris Mason 已提交
1822

1823 1824
	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1825 1826 1827 1828 1829 1830 1831
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1832
	unsigned long index = delalloc_start >> PAGE_SHIFT;
1833
	unsigned long index_ret = index;
1834
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
C
Chris Mason 已提交
1835 1836
	int ret;

1837
	ASSERT(locked_page);
C
Chris Mason 已提交
1838 1839 1840
	if (index == locked_page->index && index == end_index)
		return 0;

1841 1842 1843 1844 1845
	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
				     end_index, PAGE_LOCK, &index_ret);
	if (ret == -EAGAIN)
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
				      (u64)index_ret << PAGE_SHIFT);
C
Chris Mason 已提交
1846 1847 1848 1849
	return ret;
}

/*
1850 1851
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1852
 *
1853 1854
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1855
 */
1856
EXPORT_FOR_TESTS
1857
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1858
				    struct page *locked_page, u64 *start,
1859
				    u64 *end)
C
Chris Mason 已提交
1860
{
1861
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1862
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1863 1864
	u64 delalloc_start;
	u64 delalloc_end;
1865
	bool found;
1866
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1867 1868 1869 1870 1871 1872 1873
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
1874 1875
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
1876
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
1877 1878
		*start = delalloc_start;
		*end = delalloc_end;
1879
		free_extent_state(cached_state);
1880
		return false;
C
Chris Mason 已提交
1881 1882
	}

C
Chris Mason 已提交
1883 1884 1885 1886 1887
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
1888
	if (delalloc_start < *start)
C
Chris Mason 已提交
1889 1890
		delalloc_start = *start;

C
Chris Mason 已提交
1891 1892 1893
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
1894 1895
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
1896

C
Chris Mason 已提交
1897 1898 1899
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
1900
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
1901 1902 1903 1904
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
1905
		free_extent_state(cached_state);
1906
		cached_state = NULL;
C
Chris Mason 已提交
1907
		if (!loops) {
1908
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
1909 1910 1911
			loops = 1;
			goto again;
		} else {
1912
			found = false;
C
Chris Mason 已提交
1913 1914 1915 1916 1917
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
1918
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
1919 1920 1921

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1922
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
1923
	if (!ret) {
1924
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1925
				     &cached_state);
C
Chris Mason 已提交
1926 1927 1928 1929 1930
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
1931
	free_extent_state(cached_state);
C
Chris Mason 已提交
1932 1933 1934 1935 1936 1937
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

1938 1939 1940 1941
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret)
C
Chris Mason 已提交
1942
{
1943
	unsigned long nr_pages = end_index - start_index + 1;
1944
	unsigned long pages_processed = 0;
1945
	pgoff_t index = start_index;
C
Chris Mason 已提交
1946
	struct page *pages[16];
1947
	unsigned ret;
1948
	int err = 0;
C
Chris Mason 已提交
1949
	int i;
1950

1951 1952 1953 1954 1955
	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(index_ret && *index_ret == start_index);
	}

1956
	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1957
		mapping_set_error(mapping, -EIO);
1958

C
Chris Mason 已提交
1959
	while (nr_pages > 0) {
1960
		ret = find_get_pages_contig(mapping, index,
1961 1962
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
1963 1964 1965 1966 1967 1968
		if (ret == 0) {
			/*
			 * Only if we're going to lock these pages,
			 * can we find nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
1969 1970
			err = -EAGAIN;
			goto out;
1971
		}
1972

1973
		for (i = 0; i < ret; i++) {
1974
			if (page_ops & PAGE_SET_PRIVATE2)
1975 1976
				SetPagePrivate2(pages[i]);

1977
			if (locked_page && pages[i] == locked_page) {
1978
				put_page(pages[i]);
1979
				pages_processed++;
C
Chris Mason 已提交
1980 1981
				continue;
			}
1982
			if (page_ops & PAGE_START_WRITEBACK) {
C
Chris Mason 已提交
1983 1984
				clear_page_dirty_for_io(pages[i]);
				set_page_writeback(pages[i]);
1985
			}
1986 1987
			if (page_ops & PAGE_SET_ERROR)
				SetPageError(pages[i]);
1988
			if (page_ops & PAGE_END_WRITEBACK)
C
Chris Mason 已提交
1989
				end_page_writeback(pages[i]);
1990
			if (page_ops & PAGE_UNLOCK)
1991
				unlock_page(pages[i]);
1992 1993 1994 1995 1996
			if (page_ops & PAGE_LOCK) {
				lock_page(pages[i]);
				if (!PageDirty(pages[i]) ||
				    pages[i]->mapping != mapping) {
					unlock_page(pages[i]);
1997 1998
					for (; i < ret; i++)
						put_page(pages[i]);
1999 2000 2001 2002
					err = -EAGAIN;
					goto out;
				}
			}
2003
			put_page(pages[i]);
2004
			pages_processed++;
C
Chris Mason 已提交
2005 2006 2007 2008 2009
		}
		nr_pages -= ret;
		index += ret;
		cond_resched();
	}
2010 2011
out:
	if (err && index_ret)
2012
		*index_ret = start_index + pages_processed - 1;
2013
	return err;
C
Chris Mason 已提交
2014 2015
}

2016
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2017
				  struct page *locked_page,
2018
				  u32 clear_bits, unsigned long page_ops)
2019
{
2020
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2021

2022
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2023
			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2024
			       page_ops, NULL);
2025 2026
}

C
Chris Mason 已提交
2027 2028 2029 2030 2031
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2032 2033
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2034
		     u32 bits, int contig)
2035 2036 2037 2038 2039
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2040
	u64 last = 0;
2041 2042
	int found = 0;

2043
	if (WARN_ON(search_end <= cur_start))
2044 2045
		return 0;

2046
	spin_lock(&tree->lock);
2047 2048 2049 2050 2051 2052 2053 2054
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2055
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2056
	if (!node)
2057 2058
		goto out;

C
Chris Mason 已提交
2059
	while (1) {
2060 2061 2062
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2063 2064 2065
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2066 2067 2068 2069 2070
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2071
				*start = max(cur_start, state->start);
2072 2073
				found = 1;
			}
2074 2075 2076
			last = state->end;
		} else if (contig && found) {
			break;
2077 2078 2079 2080 2081 2082
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2083
	spin_unlock(&tree->lock);
2084 2085
	return total_bytes;
}
2086

C
Chris Mason 已提交
2087 2088 2089 2090
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2091 2092
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2093 2094 2095 2096 2097
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2098
	spin_lock(&tree->lock);
2099 2100 2101 2102
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2103
	node = tree_search(tree, start);
2104
	if (!node) {
2105 2106 2107 2108 2109 2110 2111 2112
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2113
	state->failrec = failrec;
2114
out:
2115
	spin_unlock(&tree->lock);
2116 2117 2118
	return ret;
}

2119
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2120 2121 2122
{
	struct rb_node *node;
	struct extent_state *state;
2123
	struct io_failure_record *failrec;
2124

2125
	spin_lock(&tree->lock);
2126 2127 2128 2129
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2130
	node = tree_search(tree, start);
2131
	if (!node) {
2132
		failrec = ERR_PTR(-ENOENT);
2133 2134 2135 2136
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2137
		failrec = ERR_PTR(-ENOENT);
2138 2139
		goto out;
	}
2140 2141

	failrec = state->failrec;
2142
out:
2143
	spin_unlock(&tree->lock);
2144
	return failrec;
2145 2146 2147 2148
}

/*
 * searches a range in the state tree for a given mask.
2149
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2150 2151 2152 2153
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2154
		   u32 bits, int filled, struct extent_state *cached)
2155 2156 2157 2158 2159
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2160
	spin_lock(&tree->lock);
2161
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2162
	    cached->end > start)
2163 2164 2165
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2185 2186 2187 2188

		if (state->end == (u64)-1)
			break;

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2199
	spin_unlock(&tree->lock);
2200 2201 2202 2203 2204 2205 2206
	return bitset;
}

/*
 * helper function to set a given page up to date if all the
 * extents in the tree for that page are up to date
 */
2207
static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2208
{
M
Miao Xie 已提交
2209
	u64 start = page_offset(page);
2210
	u64 end = start + PAGE_SIZE - 1;
2211
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2212 2213 2214
		SetPageUptodate(page);
}

2215 2216 2217
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2218 2219 2220 2221
{
	int ret;
	int err = 0;

2222
	set_state_failrec(failure_tree, rec->start, NULL);
2223 2224
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2225
				EXTENT_LOCKED | EXTENT_DIRTY);
2226 2227 2228
	if (ret)
		err = ret;

2229
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2230
				rec->start + rec->len - 1,
2231
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2232 2233
	if (ret && !err)
		err = ret;
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2244
 * to avoid any synchronization issues, wait for the data after writing, which
2245 2246 2247 2248
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2249 2250 2251
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
		      u64 length, u64 logical, struct page *page,
		      unsigned int pg_offset, int mirror_num)
2252 2253 2254 2255 2256 2257 2258 2259
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
	struct btrfs_bio *bbio = NULL;
	int ret;

2260
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2261 2262
	BUG_ON(!mirror_num);

2263 2264 2265
	if (btrfs_is_zoned(fs_info))
		return btrfs_repair_one_zone(fs_info, logical);

2266
	bio = btrfs_io_bio_alloc(1);
2267
	bio->bi_iter.bi_size = 0;
2268 2269
	map_length = length;

2270 2271 2272 2273 2274 2275
	/*
	 * Avoid races with device replace and make sure our bbio has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2276
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
				      &map_length, &bbio, 0);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		ASSERT(bbio->mirror_num == 1);
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
				      &map_length, &bbio, mirror_num);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		BUG_ON(mirror_num != bbio->mirror_num);
2300
	}
2301 2302

	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2303
	bio->bi_iter.bi_sector = sector;
2304
	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2305
	btrfs_put_bbio(bbio);
2306 2307
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2308
		btrfs_bio_counter_dec(fs_info);
2309 2310 2311
		bio_put(bio);
		return -EIO;
	}
2312
	bio_set_dev(bio, dev->bdev);
2313
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2314
	bio_add_page(bio, page, length, pg_offset);
2315

2316
	if (btrfsic_submit_bio_wait(bio)) {
2317
		/* try to remap that extent elsewhere? */
2318
		btrfs_bio_counter_dec(fs_info);
2319
		bio_put(bio);
2320
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2321 2322 2323
		return -EIO;
	}

2324 2325
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2326
				  ino, start,
2327
				  rcu_str_deref(dev->name), sector);
2328
	btrfs_bio_counter_dec(fs_info);
2329 2330 2331 2332
	bio_put(bio);
	return 0;
}

2333
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2334
{
2335
	struct btrfs_fs_info *fs_info = eb->fs_info;
2336
	u64 start = eb->start;
2337
	int i, num_pages = num_extent_pages(eb);
2338
	int ret = 0;
2339

2340
	if (sb_rdonly(fs_info->sb))
2341 2342
		return -EROFS;

2343
	for (i = 0; i < num_pages; i++) {
2344
		struct page *p = eb->pages[i];
2345

2346
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2347
					start - page_offset(p), mirror_num);
2348 2349
		if (ret)
			break;
2350
		start += PAGE_SIZE;
2351 2352 2353 2354 2355
	}

	return ret;
}

2356 2357 2358 2359
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2360 2361 2362 2363
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2364 2365 2366 2367 2368 2369 2370 2371
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2372 2373
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2374 2375 2376
	if (!ret)
		return 0;

2377 2378
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2379 2380 2381 2382 2383 2384
		return 0;

	BUG_ON(!failrec->this_mirror);

	if (failrec->in_validation) {
		/* there was no real error, just free the record */
2385 2386 2387
		btrfs_debug(fs_info,
			"clean_io_failure: freeing dummy error at %llu",
			failrec->start);
2388 2389
		goto out;
	}
2390
	if (sb_rdonly(fs_info->sb))
2391
		goto out;
2392

2393 2394
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2395 2396
					    failrec->start,
					    EXTENT_LOCKED);
2397
	spin_unlock(&io_tree->lock);
2398

2399 2400
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2401 2402
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2403
		if (num_copies > 1)  {
2404 2405 2406
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2407 2408 2409 2410
		}
	}

out:
2411
	free_io_failure(failure_tree, io_tree, failrec);
2412

2413
	return 0;
2414 2415
}

2416 2417 2418 2419 2420 2421
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2422
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2423
{
2424
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2441
		failrec = state->failrec;
2442 2443 2444 2445 2446 2447 2448 2449
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2450 2451
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
							     u64 start, u64 end)
2452
{
2453
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2454
	struct io_failure_record *failrec;
2455 2456 2457 2458 2459 2460 2461
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	int ret;
	u64 logical;

2462
	failrec = get_state_failrec(failure_tree, start);
2463
	if (!IS_ERR(failrec)) {
2464 2465 2466 2467
		btrfs_debug(fs_info,
			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
			failrec->logical, failrec->start, failrec->len,
			failrec->in_validation);
2468 2469 2470 2471 2472
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2473 2474

		return failrec;
2475
	}
2476

2477 2478 2479
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	failrec->start = start;
	failrec->len = end - start + 1;
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;
	failrec->in_validation = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
	ret = set_extent_bits(failure_tree, start, end,
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2533 2534
}

2535 2536 2537
static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
				   struct io_failure_record *failrec,
				   int failed_mirror)
2538
{
2539
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2540 2541
	int num_copies;

2542
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2543 2544 2545 2546 2547 2548
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2549 2550 2551
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2552
		return false;
2553 2554 2555 2556 2557 2558 2559
	}

	/*
	 * there are two premises:
	 *	a) deliver good data to the caller
	 *	b) correct the bad sectors on disk
	 */
2560
	if (needs_validation) {
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
		/*
		 * to fulfill b), we need to know the exact failing sectors, as
		 * we don't want to rewrite any more than the failed ones. thus,
		 * we need separate read requests for the failed bio
		 *
		 * if the following BUG_ON triggers, our validation request got
		 * merged. we need separate requests for our algorithm to work.
		 */
		BUG_ON(failrec->in_validation);
		failrec->in_validation = 1;
		failrec->this_mirror = failed_mirror;
	} else {
		/*
		 * we're ready to fulfill a) and b) alongside. get a good copy
		 * of the failed sector and if we succeed, we have setup
		 * everything for repair_io_failure to do the rest for us.
		 */
		if (failrec->in_validation) {
			BUG_ON(failrec->this_mirror != failed_mirror);
			failrec->in_validation = 0;
			failrec->this_mirror = 0;
		}
		failrec->failed_mirror = failed_mirror;
		failrec->this_mirror++;
		if (failrec->this_mirror == failed_mirror)
			failrec->this_mirror++;
	}

2589
	if (failrec->this_mirror > num_copies) {
2590 2591 2592
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2593
		return false;
2594 2595
	}

2596
	return true;
2597 2598
}

2599
static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2600
{
2601
	u64 len = 0;
2602
	const u32 blocksize = inode->i_sb->s_blocksize;
2603

2604 2605 2606 2607 2608 2609 2610
	/*
	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
	 * I/O error. In this case, we already know exactly which sector was
	 * bad, so we don't need to validate.
	 */
	if (bio->bi_status == BLK_STS_OK)
		return false;
2611

2612 2613 2614
	/*
	 * We need to validate each sector individually if the failed I/O was
	 * for multiple sectors.
2615 2616 2617 2618 2619 2620 2621 2622 2623
	 *
	 * There are a few possible bios that can end up here:
	 * 1. A buffered read bio, which is not cloned.
	 * 2. A direct I/O read bio, which is cloned.
	 * 3. A (buffered or direct) repair bio, which is not cloned.
	 *
	 * For cloned bios (case 2), we can get the size from
	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
	 * it from the bvecs.
2624
	 */
2625 2626
	if (bio_flagged(bio, BIO_CLONED)) {
		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2627
			return true;
2628 2629 2630
	} else {
		struct bio_vec *bvec;
		int i;
2631

2632 2633 2634 2635 2636
		bio_for_each_bvec_all(bvec, bio, i) {
			len += bvec->bv_len;
			if (len > blocksize)
				return true;
		}
2637
	}
2638
	return false;
2639 2640
}

2641
blk_status_t btrfs_submit_read_repair(struct inode *inode,
2642
				      struct bio *failed_bio, u32 bio_offset,
2643 2644 2645
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      submit_bio_hook_t *submit_bio_hook)
2646 2647
{
	struct io_failure_record *failrec;
2648
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2649
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2650
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2651
	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2652
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2653
	bool need_validation;
2654 2655
	struct bio *repair_bio;
	struct btrfs_io_bio *repair_io_bio;
2656
	blk_status_t status;
2657

2658 2659
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2660

2661
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2662

2663 2664 2665
	failrec = btrfs_get_io_failure_record(inode, start, end);
	if (IS_ERR(failrec))
		return errno_to_blk_status(PTR_ERR(failrec));
2666

2667
	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2668

2669
	if (!btrfs_check_repairable(inode, need_validation, failrec,
2670
				    failed_mirror)) {
2671
		free_io_failure(failure_tree, tree, failrec);
2672
		return BLK_STS_IOERR;
2673 2674
	}

2675 2676 2677
	repair_bio = btrfs_io_bio_alloc(1);
	repair_io_bio = btrfs_io_bio(repair_bio);
	repair_bio->bi_opf = REQ_OP_READ;
2678
	if (need_validation)
2679 2680 2681 2682
		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2683

2684
	if (failed_io_bio->csum) {
2685
		const u32 csum_size = fs_info->csum_size;
2686 2687 2688 2689 2690

		repair_io_bio->csum = repair_io_bio->csum_inline;
		memcpy(repair_io_bio->csum,
		       failed_io_bio->csum + csum_size * icsum, csum_size);
	}
2691

2692 2693 2694
	bio_add_page(repair_bio, page, failrec->len, pgoff);
	repair_io_bio->logical = failrec->start;
	repair_io_bio->iter = repair_bio->bi_iter;
2695

2696
	btrfs_debug(btrfs_sb(inode->i_sb),
2697 2698
"repair read error: submitting new read to mirror %d, in_validation=%d",
		    failrec->this_mirror, failrec->in_validation);
2699

2700 2701
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2702
	if (status) {
2703
		free_io_failure(failure_tree, tree, failrec);
2704
		bio_put(repair_bio);
2705
	}
2706
	return status;
2707 2708
}

2709 2710
/* lots and lots of room for performance fixes in the end_bio funcs */

2711
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2712 2713
{
	int uptodate = (err == 0);
2714
	int ret = 0;
2715

2716
	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2717 2718 2719 2720

	if (!uptodate) {
		ClearPageUptodate(page);
		SetPageError(page);
2721
		ret = err < 0 ? err : -EIO;
2722
		mapping_set_error(page->mapping, ret);
2723 2724 2725
	}
}

2726 2727 2728 2729 2730 2731 2732 2733 2734
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2735
static void end_bio_extent_writepage(struct bio *bio)
2736
{
2737
	int error = blk_status_to_errno(bio->bi_status);
2738
	struct bio_vec *bvec;
2739 2740
	u64 start;
	u64 end;
2741
	struct bvec_iter_all iter_all;
2742
	bool first_bvec = true;
2743

2744
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2745
	bio_for_each_segment_all(bvec, bio, iter_all) {
2746
		struct page *page = bvec->bv_page;
2747 2748
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2749

2750 2751 2752 2753 2754
		/* We always issue full-page reads, but if some block
		 * in a page fails to read, blk_update_request() will
		 * advance bv_offset and adjust bv_len to compensate.
		 * Print a warning for nonzero offsets, and an error
		 * if they don't add up to a full page.  */
2755 2756
		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2757
				btrfs_err(fs_info,
2758 2759 2760
				   "partial page write in btrfs with offset %u and length %u",
					bvec->bv_offset, bvec->bv_len);
			else
2761
				btrfs_info(fs_info,
J
Jeff Mahoney 已提交
2762
				   "incomplete page write in btrfs with offset %u and length %u",
2763 2764
					bvec->bv_offset, bvec->bv_len);
		}
2765

2766 2767
		start = page_offset(page);
		end = start + bvec->bv_offset + bvec->bv_len - 1;
2768

2769 2770 2771 2772 2773
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2774
		end_extent_writepage(page, error, start, end);
2775
		end_page_writeback(page);
2776
	}
2777

2778 2779 2780
	bio_put(bio);
}

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2791
	/* End of the range in @inode */
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2810 2811
{
	struct extent_state *cached = NULL;
2812 2813 2814 2815 2816
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2817

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2852 2853
}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2865
{
2866 2867 2868 2869 2870
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
		start + len <= page_offset(page) + PAGE_SIZE);

2871
	if (uptodate) {
2872
		btrfs_page_set_uptodate(fs_info, page, start, len);
2873
	} else {
2874 2875
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2876
	}
2877 2878 2879

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
2880 2881 2882 2883 2884 2885
	else if (is_data_inode(page->mapping->host))
		/*
		 * For subpage data, unlock the page if we're the last reader.
		 * For subpage metadata, page lock is not utilized for read.
		 */
		btrfs_subpage_end_reader(fs_info, page, start, len);
2886 2887
}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2899
static void end_bio_extent_readpage(struct bio *bio)
2900
{
2901
	struct bio_vec *bvec;
2902
	int uptodate = !bio->bi_status;
2903
	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2904
	struct extent_io_tree *tree, *failure_tree;
2905
	struct processed_extent processed = { 0 };
2906 2907 2908 2909 2910
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2911
	int mirror;
2912
	int ret;
2913
	struct bvec_iter_all iter_all;
2914

2915
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2916
	bio_for_each_segment_all(bvec, bio, iter_all) {
2917
		struct page *page = bvec->bv_page;
2918
		struct inode *inode = page->mapping->host;
2919
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2920 2921 2922 2923
		const u32 sectorsize = fs_info->sectorsize;
		u64 start;
		u64 end;
		u32 len;
2924

2925 2926
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
2927
			bio->bi_iter.bi_sector, bio->bi_status,
2928
			io_bio->mirror_num);
2929
		tree = &BTRFS_I(inode)->io_tree;
2930
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2931

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2951
		len = bvec->bv_len;
2952

2953
		mirror = io_bio->mirror_num;
2954
		if (likely(uptodate)) {
2955
			if (is_data_inode(inode))
2956 2957 2958
				ret = btrfs_verify_data_csum(io_bio,
						bio_offset, page, start, end,
						mirror);
2959 2960
			else
				ret = btrfs_validate_metadata_buffer(io_bio,
2961
					page, start, end, mirror);
2962
			if (ret)
2963
				uptodate = 0;
2964
			else
2965 2966 2967 2968
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
2969
		}
2970

2971 2972 2973
		if (likely(uptodate))
			goto readpage_ok;

2974
		if (is_data_inode(inode)) {
L
Liu Bo 已提交
2975

2976
			/*
2977 2978 2979 2980 2981 2982 2983 2984
			 * The generic bio_readpage_error handles errors the
			 * following way: If possible, new read requests are
			 * created and submitted and will end up in
			 * end_bio_extent_readpage as well (if we're lucky,
			 * not in the !uptodate case). In that case it returns
			 * 0 and we just go on with the next page in our bio.
			 * If it can't handle the error it will return -EIO and
			 * we remain responsible for that page.
2985
			 */
2986 2987
			if (!btrfs_submit_read_repair(inode, bio, bio_offset,
						page,
2988 2989
						start - page_offset(page),
						start, end, mirror,
2990
						btrfs_submit_data_bio)) {
2991
				uptodate = !bio->bi_status;
2992 2993
				ASSERT(bio_offset + len > bio_offset);
				bio_offset += len;
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
				continue;
			}
		} else {
			struct extent_buffer *eb;

			eb = (struct extent_buffer *)page->private;
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
3006
		}
3007
readpage_ok:
3008
		if (likely(uptodate)) {
3009
			loff_t i_size = i_size_read(inode);
3010
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3011
			unsigned off;
3012 3013

			/* Zero out the end if this page straddles i_size */
3014
			off = offset_in_page(i_size);
3015
			if (page->index == end_index && off)
3016
				zero_user_segment(page, off, PAGE_SIZE);
3017
		}
3018 3019
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3020

3021
		/* Update page status and unlock */
3022
		end_page_read(page, uptodate, start, len);
3023 3024
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
					      start, end, uptodate);
3025
	}
3026 3027
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3028
	btrfs_io_bio_free_csum(io_bio);
3029 3030 3031
	bio_put(bio);
}

3032
/*
3033 3034 3035
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3036
 */
3037
static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3038
{
3039 3040
	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
}
3041

3042
/*
3043 3044 3045
 * The following helpers allocate a bio. As it's backed by a bioset, it'll
 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
 * for the appropriate container_of magic
3046
 */
3047
struct bio *btrfs_bio_alloc(u64 first_byte)
3048 3049 3050
{
	struct bio *bio;

3051
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
3052
	bio->bi_iter.bi_sector = first_byte >> 9;
3053
	btrfs_io_bio_init(btrfs_io_bio(bio));
3054 3055 3056
	return bio;
}

3057
struct bio *btrfs_bio_clone(struct bio *bio)
3058
{
3059 3060
	struct btrfs_io_bio *btrfs_bio;
	struct bio *new;
3061

3062
	/* Bio allocation backed by a bioset does not fail */
3063
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3064
	btrfs_bio = btrfs_io_bio(new);
3065
	btrfs_io_bio_init(btrfs_bio);
3066
	btrfs_bio->iter = bio->bi_iter;
3067 3068
	return new;
}
3069

3070
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3071
{
3072 3073
	struct bio *bio;

3074
	/* Bio allocation backed by a bioset does not fail */
3075
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3076
	btrfs_io_bio_init(btrfs_io_bio(bio));
3077
	return bio;
3078 3079
}

3080
struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3081 3082 3083 3084 3085
{
	struct bio *bio;
	struct btrfs_io_bio *btrfs_bio;

	/* this will never fail when it's backed by a bioset */
3086
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3087 3088 3089
	ASSERT(bio);

	btrfs_bio = btrfs_io_bio(bio);
3090
	btrfs_io_bio_init(btrfs_bio);
3091 3092

	bio_trim(bio, offset >> 9, size >> 9);
3093
	btrfs_bio->iter = bio->bi_iter;
3094 3095
	return bio;
}
3096

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
/**
 * Attempt to add a page to bio
 *
 * @bio:	destination bio
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @pg_offset:	starting offset in the page
 * @size:	portion of page that we want to write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
 * @return:	true if page was added, false otherwise
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
 * Return true if successfully page added. Otherwise, return false.
 */
static bool btrfs_bio_add_page(struct bio *bio, struct page *page,
			       u64 disk_bytenr, unsigned int size,
			       unsigned int pg_offset,
			       unsigned long prev_bio_flags,
			       unsigned long bio_flags)
{
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3122
	int ret;
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136

	if (prev_bio_flags != bio_flags)
		return false;

	if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
		return false;

	if (btrfs_bio_fits_in_stripe(page, size, bio, bio_flags))
		return false;

3137 3138 3139 3140 3141
	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct page *first_page = bio_first_bvec_all(bio)->bv_page;

		if (!btrfs_bio_fits_in_ordered_extent(first_page, bio, size))
			return false;
3142
		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3143
	} else {
3144
		ret = bio_add_page(bio, page, size, pg_offset);
3145
	}
3146 3147

	return ret == size;
3148 3149
}

3150 3151
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3152 3153
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3154 3155
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3156 3157
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3158
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3159 3160 3161 3162
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3163
 */
3164
static int submit_extent_page(unsigned int opf,
3165
			      struct writeback_control *wbc,
3166
			      struct page *page, u64 disk_bytenr,
3167
			      size_t size, unsigned long pg_offset,
3168
			      struct bio **bio_ret,
3169
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3170 3171
			      int mirror_num,
			      unsigned long prev_bio_flags,
3172 3173
			      unsigned long bio_flags,
			      bool force_bio_submit)
3174 3175 3176
{
	int ret = 0;
	struct bio *bio;
3177
	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3178 3179 3180
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &inode->io_tree;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3181

3182 3183 3184
	ASSERT(bio_ret);

	if (*bio_ret) {
3185
		bio = *bio_ret;
3186 3187 3188
		if (force_bio_submit ||
		    !btrfs_bio_add_page(bio, page, disk_bytenr, io_size,
					pg_offset, prev_bio_flags, bio_flags)) {
3189
			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3190 3191
			if (ret < 0) {
				*bio_ret = NULL;
3192
				return ret;
3193
			}
3194 3195
			bio = NULL;
		} else {
3196
			if (wbc)
3197
				wbc_account_cgroup_owner(wbc, page, io_size);
3198 3199 3200
			return 0;
		}
	}
C
Chris Mason 已提交
3201

3202
	bio = btrfs_bio_alloc(disk_bytenr);
3203
	bio_add_page(bio, page, io_size, pg_offset);
3204 3205
	bio->bi_end_io = end_io_func;
	bio->bi_private = tree;
3206
	bio->bi_write_hint = page->mapping->host->i_write_hint;
3207
	bio->bi_opf = opf;
3208
	if (wbc) {
3209 3210
		struct block_device *bdev;

3211
		bdev = fs_info->fs_devices->latest_bdev;
3212
		bio_set_dev(bio, bdev);
3213
		wbc_init_bio(wbc, bio);
3214
		wbc_account_cgroup_owner(wbc, page, io_size);
3215
	}
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct extent_map *em;
		struct map_lookup *map;

		em = btrfs_get_chunk_map(fs_info, disk_bytenr, io_size);
		if (IS_ERR(em))
			return PTR_ERR(em);

		map = em->map_lookup;
		/* We only support single profile for now */
		ASSERT(map->num_stripes == 1);
		btrfs_io_bio(bio)->device = map->stripes[0].dev;

		free_extent_map(em);
	}
3231

3232
	*bio_ret = bio;
3233 3234 3235 3236

	return ret;
}

3237 3238 3239
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3240
{
3241 3242 3243
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3244 3245 3246 3247 3248 3249 3250 3251 3252
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3270
	else
3271 3272 3273 3274
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3275 3276
}

3277
int set_page_extent_mapped(struct page *page)
3278
{
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3301
	if (!PagePrivate(page))
3302 3303 3304 3305 3306 3307 3308
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3309 3310
}

3311 3312
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3313
		 u64 start, u64 len, struct extent_map **em_cached)
3314 3315 3316 3317 3318
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3319
		if (extent_map_in_tree(em) && start >= em->start &&
3320
		    start < extent_map_end(em)) {
3321
			refcount_inc(&em->refs);
3322 3323 3324 3325 3326 3327 3328
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3329
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3330 3331
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3332
		refcount_inc(&em->refs);
3333 3334 3335 3336
		*em_cached = em;
	}
	return em;
}
3337 3338 3339 3340
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3341
 * XXX JDM: This needs looking at to ensure proper page locking
3342
 * return 0 on success, otherwise return error
3343
 */
3344 3345 3346
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
		      struct bio **bio, unsigned long *bio_flags,
		      unsigned int read_flags, u64 *prev_em_start)
3347 3348
{
	struct inode *inode = page->mapping->host;
3349
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3350
	u64 start = page_offset(page);
3351
	const u64 end = start + PAGE_SIZE - 1;
3352 3353 3354 3355 3356 3357
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3358
	int ret = 0;
3359
	int nr = 0;
3360
	size_t pg_offset = 0;
3361 3362
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3363
	unsigned long this_bio_flag = 0;
3364
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3365

3366 3367 3368
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3369 3370
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3371 3372
		goto out;
	}
3373

D
Dan Magenheimer 已提交
3374 3375 3376
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3377
			unlock_extent(tree, start, end);
3378
			unlock_page(page);
D
Dan Magenheimer 已提交
3379 3380 3381 3382
			goto out;
		}
	}

3383
	if (page->index == last_byte >> PAGE_SHIFT) {
C
Chris Mason 已提交
3384
		char *userpage;
3385
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3386 3387

		if (zero_offset) {
3388
			iosize = PAGE_SIZE - zero_offset;
3389
			userpage = kmap_atomic(page);
C
Chris Mason 已提交
3390 3391
			memset(userpage + zero_offset, 0, iosize);
			flush_dcache_page(page);
3392
			kunmap_atomic(userpage);
C
Chris Mason 已提交
3393 3394
		}
	}
3395
	begin_page_read(fs_info, page);
3396
	while (cur <= end) {
3397
		bool force_bio_submit = false;
3398
		u64 disk_bytenr;
3399

3400 3401
		if (cur >= last_byte) {
			char *userpage;
3402 3403
			struct extent_state *cached = NULL;

3404
			iosize = PAGE_SIZE - pg_offset;
3405
			userpage = kmap_atomic(page);
3406
			memset(userpage + pg_offset, 0, iosize);
3407
			flush_dcache_page(page);
3408
			kunmap_atomic(userpage);
3409
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3410
					    &cached, GFP_NOFS);
3411
			unlock_extent_cached(tree, cur,
3412
					     cur + iosize - 1, &cached);
3413
			end_page_read(page, true, cur, iosize);
3414 3415
			break;
		}
3416
		em = __get_extent_map(inode, page, pg_offset, cur,
3417
				      end - cur + 1, em_cached);
3418
		if (IS_ERR_OR_NULL(em)) {
3419
			unlock_extent(tree, cur, end);
3420
			end_page_read(page, false, cur, end + 1 - cur);
3421 3422 3423 3424 3425 3426
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3427
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3428
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3429 3430 3431
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3432

3433 3434
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3435
		iosize = ALIGN(iosize, blocksize);
3436
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3437
			disk_bytenr = em->block_start;
3438
		else
3439
			disk_bytenr = em->block_start + extent_offset;
3440
		block_start = em->block_start;
Y
Yan Zheng 已提交
3441 3442
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3443 3444 3445

		/*
		 * If we have a file range that points to a compressed extent
3446
		 * and it's followed by a consecutive file range that points
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3480
		    *prev_em_start != em->start)
3481 3482 3483
			force_bio_submit = true;

		if (prev_em_start)
3484
			*prev_em_start = em->start;
3485

3486 3487 3488 3489 3490 3491
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
			char *userpage;
3492 3493
			struct extent_state *cached = NULL;

3494
			userpage = kmap_atomic(page);
3495
			memset(userpage + pg_offset, 0, iosize);
3496
			flush_dcache_page(page);
3497
			kunmap_atomic(userpage);
3498 3499

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3500
					    &cached, GFP_NOFS);
3501
			unlock_extent_cached(tree, cur,
3502
					     cur + iosize - 1, &cached);
3503
			end_page_read(page, true, cur, iosize);
3504
			cur = cur + iosize;
3505
			pg_offset += iosize;
3506 3507 3508
			continue;
		}
		/* the get_extent function already copied into the page */
3509 3510
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3511
			check_page_uptodate(tree, page);
3512
			unlock_extent(tree, cur, cur + iosize - 1);
3513
			end_page_read(page, true, cur, iosize);
3514
			cur = cur + iosize;
3515
			pg_offset += iosize;
3516 3517
			continue;
		}
3518 3519 3520 3521
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3522
			unlock_extent(tree, cur, cur + iosize - 1);
3523
			end_page_read(page, false, cur, iosize);
3524
			cur = cur + iosize;
3525
			pg_offset += iosize;
3526 3527
			continue;
		}
3528

3529
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3530
					 page, disk_bytenr, iosize,
3531
					 pg_offset, bio,
3532
					 end_bio_extent_readpage, 0,
C
Chris Mason 已提交
3533
					 *bio_flags,
3534 3535
					 this_bio_flag,
					 force_bio_submit);
3536 3537 3538 3539
		if (!ret) {
			nr++;
			*bio_flags = this_bio_flag;
		} else {
3540
			unlock_extent(tree, cur, cur + iosize - 1);
3541
			end_page_read(page, false, cur, iosize);
3542
			goto out;
3543
		}
3544
		cur = cur + iosize;
3545
		pg_offset += iosize;
3546
	}
D
Dan Magenheimer 已提交
3547
out:
3548
	return ret;
3549 3550
}

3551
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3552
					     u64 start, u64 end,
3553
					     struct extent_map **em_cached,
3554
					     struct bio **bio,
3555
					     unsigned long *bio_flags,
3556
					     u64 *prev_em_start)
3557
{
3558
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3559 3560
	int index;

3561
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3562 3563

	for (index = 0; index < nr_pages; index++) {
3564 3565
		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
				  REQ_RAHEAD, prev_em_start);
3566
		put_page(pages[index]);
3567 3568 3569
	}
}

3570
static void update_nr_written(struct writeback_control *wbc,
3571
			      unsigned long nr_written)
3572 3573 3574 3575
{
	wbc->nr_to_write -= nr_written;
}

3576
/*
3577 3578
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3579
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3580 3581 3582 3583 3584
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3585
 */
3586
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3587 3588
		struct page *page, struct writeback_control *wbc,
		u64 delalloc_start, unsigned long *nr_written)
3589
{
3590
	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3591
	bool found;
3592 3593 3594 3595 3596 3597 3598
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3599
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3600
					       &delalloc_start,
3601
					       &delalloc_end);
3602
		if (!found) {
3603 3604 3605
			delalloc_start = delalloc_end + 1;
			continue;
		}
3606
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3607
				delalloc_end, &page_started, nr_written, wbc);
3608 3609
		if (ret) {
			SetPageError(page);
3610 3611 3612 3613 3614
			/*
			 * btrfs_run_delalloc_range should return < 0 for error
			 * but just in case, we use > 0 here meaning the IO is
			 * started, so we don't want to return > 0 unless
			 * things are going well.
3615
			 */
3616
			return ret < 0 ? ret : -EIO;
3617 3618
		}
		/*
3619 3620
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3621 3622
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3623
				      PAGE_SIZE) >> PAGE_SHIFT;
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3648
	return 0;
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
}

/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3659
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3660 3661 3662 3663 3664
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3665
				 int *nr_ret)
3666
{
3667
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3668
	struct extent_io_tree *tree = &inode->io_tree;
M
Miao Xie 已提交
3669
	u64 start = page_offset(page);
3670
	u64 end = start + PAGE_SIZE - 1;
3671 3672 3673 3674
	u64 cur = start;
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3675 3676
	int ret = 0;
	int nr = 0;
3677
	u32 opf = REQ_OP_WRITE;
3678
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3679
	bool compressed;
C
Chris Mason 已提交
3680

3681
	ret = btrfs_writepage_cow_fixup(page, start, end);
3682 3683
	if (ret) {
		/* Fixup worker will requeue */
3684
		redirty_page_for_writepage(wbc, page);
3685 3686 3687
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3688 3689
	}

3690 3691 3692 3693
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3694
	update_nr_written(wbc, nr_written + 1);
3695

3696
	while (cur <= end) {
3697
		u64 disk_bytenr;
3698
		u64 em_end;
3699
		u32 iosize;
3700

3701
		if (cur >= i_size) {
3702
			btrfs_writepage_endio_finish_ordered(page, cur, end, 1);
3703 3704
			break;
		}
3705
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3706
		if (IS_ERR_OR_NULL(em)) {
3707
			SetPageError(page);
3708
			ret = PTR_ERR_OR_ZERO(em);
3709 3710 3711 3712
			break;
		}

		extent_offset = cur - em->start;
3713
		em_end = extent_map_end(em);
3714 3715 3716 3717
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3718
		block_start = em->block_start;
C
Chris Mason 已提交
3719
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3720 3721 3722 3723
		disk_bytenr = em->block_start + extent_offset;

		/* Note that em_end from extent_map_end() is exclusive */
		iosize = min(em_end, end + 1) - cur;
3724 3725 3726 3727

		if (btrfs_use_zone_append(inode, em))
			opf = REQ_OP_ZONE_APPEND;

3728 3729 3730
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3731 3732 3733 3734 3735
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3736
		    block_start == EXTENT_MAP_INLINE) {
3737
			if (compressed)
C
Chris Mason 已提交
3738
				nr++;
3739 3740 3741
			else
				btrfs_writepage_endio_finish_ordered(page, cur,
							cur + iosize - 1, 1);
C
Chris Mason 已提交
3742
			cur += iosize;
3743 3744
			continue;
		}
C
Chris Mason 已提交
3745

3746
		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3747
		if (!PageWriteback(page)) {
3748
			btrfs_err(inode->root->fs_info,
3749 3750
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3751
		}
3752

3753 3754
		ret = submit_extent_page(opf | write_flags, wbc, page,
					 disk_bytenr, iosize,
3755
					 cur - page_offset(page), &epd->bio,
3756 3757
					 end_bio_extent_writepage,
					 0, 0, 0, false);
3758
		if (ret) {
3759
			SetPageError(page);
3760 3761 3762
			if (PageWriteback(page))
				end_page_writeback(page);
		}
3763

3764
		cur += iosize;
3765 3766
		nr++;
	}
3767 3768 3769 3770 3771 3772 3773 3774 3775
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
3776 3777 3778
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
3779 3780
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3781
			      struct extent_page_data *epd)
3782 3783 3784
{
	struct inode *inode = page->mapping->host;
	u64 start = page_offset(page);
3785
	u64 page_end = start + PAGE_SIZE - 1;
3786 3787
	int ret;
	int nr = 0;
3788
	size_t pg_offset;
3789
	loff_t i_size = i_size_read(inode);
3790
	unsigned long end_index = i_size >> PAGE_SHIFT;
3791 3792 3793 3794 3795 3796 3797 3798
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

	ClearPageError(page);

3799
	pg_offset = offset_in_page(i_size);
3800 3801
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
3802
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3803 3804 3805 3806 3807 3808 3809 3810 3811
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
		char *userpage;

		userpage = kmap_atomic(page);
		memset(userpage + pg_offset, 0,
3812
		       PAGE_SIZE - pg_offset);
3813 3814 3815 3816
		kunmap_atomic(userpage);
		flush_dcache_page(page);
	}

3817 3818 3819 3820 3821
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
3822

3823
	if (!epd->extent_locked) {
3824 3825
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
					 &nr_written);
3826
		if (ret == 1)
3827
			return 0;
3828 3829 3830
		if (ret)
			goto done;
	}
3831

3832 3833
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
3834
	if (ret == 1)
3835
		return 0;
3836

3837 3838 3839 3840 3841 3842
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
3843 3844 3845 3846
	if (PageError(page)) {
		ret = ret < 0 ? ret : -EIO;
		end_extent_writepage(page, ret, start, page_end);
	}
3847
	unlock_page(page);
3848
	ASSERT(ret <= 0);
3849
	return ret;
3850 3851
}

3852
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3853
{
3854 3855
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
3856 3857
}

3858 3859 3860 3861 3862 3863 3864
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

3865
/*
3866
 * Lock extent buffer status and pages for writeback.
3867
 *
3868 3869 3870 3871 3872 3873
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
3874
 */
3875
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3876
			  struct extent_page_data *epd)
3877
{
3878
	struct btrfs_fs_info *fs_info = eb->fs_info;
3879
	int i, num_pages, failed_page_nr;
3880 3881 3882 3883
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
3884
		ret = flush_write_bio(epd);
3885 3886 3887
		if (ret < 0)
			return ret;
		flush = 1;
3888 3889 3890 3891 3892 3893 3894 3895
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
3896
			ret = flush_write_bio(epd);
3897 3898
			if (ret < 0)
				return ret;
3899 3900
			flush = 1;
		}
C
Chris Mason 已提交
3901 3902 3903 3904 3905
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
3906 3907 3908 3909
			btrfs_tree_unlock(eb);
		}
	}

3910 3911 3912 3913 3914 3915
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
3916 3917
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3918
		spin_unlock(&eb->refs_lock);
3919
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3920 3921 3922
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
3923
		ret = 1;
3924 3925
	} else {
		spin_unlock(&eb->refs_lock);
3926 3927 3928 3929 3930 3931 3932
	}

	btrfs_tree_unlock(eb);

	if (!ret)
		return ret;

3933
	num_pages = num_extent_pages(eb);
3934
	for (i = 0; i < num_pages; i++) {
3935
		struct page *p = eb->pages[i];
3936 3937 3938

		if (!trylock_page(p)) {
			if (!flush) {
3939 3940 3941 3942 3943
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
3944 3945 3946
					failed_page_nr = i;
					goto err_unlock;
				}
3947 3948 3949 3950 3951 3952 3953
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
3954 3955 3956 3957
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
3972
	return ret;
3973 3974
}

3975 3976 3977
static void set_btree_ioerr(struct page *page)
{
	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3978
	struct btrfs_fs_info *fs_info;
3979 3980 3981 3982 3983

	SetPageError(page);
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

3984 3985 3986 3987 3988 3989 3990 3991
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	fs_info = eb->fs_info;
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4032
		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
4033 4034
		break;
	case 0:
4035
		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
4036 4037
		break;
	case 1:
4038
		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
4039 4040 4041 4042 4043 4044
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4045
static void end_bio_extent_buffer_writepage(struct bio *bio)
4046
{
4047
	struct bio_vec *bvec;
4048
	struct extent_buffer *eb;
4049
	int done;
4050
	struct bvec_iter_all iter_all;
4051

4052
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4053
	bio_for_each_segment_all(bvec, bio, iter_all) {
4054 4055 4056 4057 4058 4059
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4060
		if (bio->bi_status ||
4061
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4062
			ClearPageUptodate(page);
4063
			set_btree_ioerr(page);
4064 4065 4066 4067 4068 4069 4070 4071
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4072
	}
4073 4074 4075 4076

	bio_put(bio);
}

4077
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4078 4079 4080
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4081
	u64 disk_bytenr = eb->start;
4082
	u32 nritems;
4083
	int i, num_pages;
4084
	unsigned long start, end;
4085
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4086
	int ret = 0;
4087

4088
	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4089
	num_pages = num_extent_pages(eb);
4090
	atomic_set(&eb->io_pages, num_pages);
4091

4092 4093
	/* set btree blocks beyond nritems with 0 to avoid stale content. */
	nritems = btrfs_header_nritems(eb);
4094 4095 4096
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);

4097
		memzero_extent_buffer(eb, end, eb->len - end);
4098 4099 4100 4101 4102 4103
	} else {
		/*
		 * leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
4104
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4105
		memzero_extent_buffer(eb, start, end - start);
4106 4107
	}

4108
	for (i = 0; i < num_pages; i++) {
4109
		struct page *p = eb->pages[i];
4110 4111 4112

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4113
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4114
					 p, disk_bytenr, PAGE_SIZE, 0,
4115
					 &epd->bio,
4116
					 end_bio_extent_buffer_writepage,
4117
					 0, 0, 0, false);
4118
		if (ret) {
4119
			set_btree_ioerr(p);
4120 4121
			if (PageWriteback(p))
				end_page_writeback(p);
4122 4123 4124 4125 4126
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4127
		disk_bytenr += PAGE_SIZE;
4128
		update_nr_written(wbc, 1);
4129 4130 4131 4132 4133
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4134
			struct page *p = eb->pages[i];
4135
			clear_page_dirty_for_io(p);
4136 4137 4138 4139 4140 4141 4142
			unlock_page(p);
		}
	}

	return ret;
}

4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4168
	struct btrfs_block_group *cache = NULL;
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4214 4215 4216 4217
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4218 4219 4220
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4221 4222 4223
		free_extent_buffer(eb);
		return ret;
	}
4224 4225
	if (cache)
		btrfs_put_block_group(cache);
4226 4227 4228 4229 4230 4231 4232
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4233 4234 4235
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4236
	struct extent_buffer *eb_context = NULL;
4237 4238 4239 4240 4241
	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4242
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4243 4244 4245 4246 4247 4248 4249 4250
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4251
	xa_mark_t tag;
4252

4253
	pagevec_init(&pvec);
4254 4255 4256
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4257 4258 4259 4260 4261
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4262
	} else {
4263 4264
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4265 4266 4267 4268 4269 4270
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4271
	btrfs_zoned_meta_io_lock(fs_info);
4272 4273 4274 4275
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4276
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4277
			tag))) {
4278 4279 4280 4281 4282
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4283 4284
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4285
				continue;
4286
			if (ret < 0) {
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4310 4311
	if (ret < 0) {
		end_write_bio(&epd, ret);
4312
		goto out;
4313
	}
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4344
		ret = -EROFS;
4345 4346
		end_write_bio(&epd, ret);
	}
4347 4348
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4349 4350 4351
	return ret;
}

4352
/**
4353 4354
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4355
 * @mapping: address space structure to write
4356 4357
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4358 4359 4360 4361 4362 4363 4364 4365 4366
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4367
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4368
			     struct writeback_control *wbc,
4369
			     struct extent_page_data *epd)
4370
{
4371
	struct inode *inode = mapping->host;
4372 4373
	int ret = 0;
	int done = 0;
4374
	int nr_to_write_done = 0;
4375 4376 4377 4378
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4379 4380
	pgoff_t done_index;
	int range_whole = 0;
4381
	int scanned = 0;
M
Matthew Wilcox 已提交
4382
	xa_mark_t tag;
4383

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4396
	pagevec_init(&pvec);
4397 4398 4399
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4400 4401 4402 4403 4404
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4405
	} else {
4406 4407
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4408 4409
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4410 4411
		scanned = 1;
	}
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4426 4427 4428
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4429
retry:
4430
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4431
		tag_pages_for_writeback(mapping, index, end);
4432
	done_index = index;
4433
	while (!done && !nr_to_write_done && (index <= end) &&
4434 4435
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4436 4437 4438 4439 4440
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4441
			done_index = page->index + 1;
4442
			/*
M
Matthew Wilcox 已提交
4443 4444 4445 4446 4447
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4448
			 */
4449
			if (!trylock_page(page)) {
4450 4451
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4452
				lock_page(page);
4453
			}
4454 4455 4456 4457 4458 4459

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4460
			if (wbc->sync_mode != WB_SYNC_NONE) {
4461 4462 4463 4464
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
4465
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4466
			}
4467 4468 4469 4470 4471 4472 4473

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4474
			ret = __extent_writepage(page, wbc, epd);
4475 4476 4477 4478
			if (ret < 0) {
				done = 1;
				break;
			}
4479 4480 4481 4482 4483 4484 4485

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4486 4487 4488 4489
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4490
	if (!scanned && !done) {
4491 4492 4493 4494 4495 4496
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
4507
	}
4508 4509 4510 4511

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

4512
	btrfs_add_delayed_iput(inode);
4513
	return ret;
4514 4515
}

4516
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4517 4518 4519 4520
{
	int ret;
	struct extent_page_data epd = {
		.bio = NULL,
4521
		.extent_locked = 0,
4522
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4523 4524 4525
	};

	ret = __extent_writepage(page, wbc, &epd);
4526 4527 4528 4529 4530
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4531

4532 4533
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
4534 4535 4536
	return ret;
}

4537
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4538 4539 4540 4541 4542
			      int mode)
{
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
4543 4544
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
4545 4546 4547 4548

	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 1,
4549
		.sync_io = mode == WB_SYNC_ALL,
4550 4551 4552 4553 4554 4555
	};
	struct writeback_control wbc_writepages = {
		.sync_mode	= mode,
		.nr_to_write	= nr_pages * 2,
		.range_start	= start,
		.range_end	= end + 1,
4556 4557 4558
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
4559 4560
	};

4561
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
C
Chris Mason 已提交
4562
	while (start <= end) {
4563
		page = find_get_page(mapping, start >> PAGE_SHIFT);
4564 4565 4566
		if (clear_page_dirty_for_io(page))
			ret = __extent_writepage(page, &wbc_writepages, &epd);
		else {
4567
			btrfs_writepage_endio_finish_ordered(page, start,
4568
						    start + PAGE_SIZE - 1, 1);
4569 4570
			unlock_page(page);
		}
4571 4572
		put_page(page);
		start += PAGE_SIZE;
4573 4574
	}

4575
	ASSERT(ret <= 0);
4576 4577 4578
	if (ret == 0)
		ret = flush_write_bio(&epd);
	else
4579
		end_write_bio(&epd, ret);
4580 4581

	wbc_detach_inode(&wbc_writepages);
4582 4583
	return ret;
}
4584

4585
int extent_writepages(struct address_space *mapping,
4586 4587 4588 4589 4590
		      struct writeback_control *wbc)
{
	int ret = 0;
	struct extent_page_data epd = {
		.bio = NULL,
4591
		.extent_locked = 0,
4592
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4593 4594
	};

4595
	ret = extent_write_cache_pages(mapping, wbc, &epd);
4596 4597 4598 4599 4600 4601
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
4602 4603 4604
	return ret;
}

4605
void extent_readahead(struct readahead_control *rac)
4606 4607
{
	struct bio *bio = NULL;
C
Chris Mason 已提交
4608
	unsigned long bio_flags = 0;
L
Liu Bo 已提交
4609
	struct page *pagepool[16];
4610
	struct extent_map *em_cached = NULL;
4611
	u64 prev_em_start = (u64)-1;
4612
	int nr;
4613

4614 4615 4616
	while ((nr = readahead_page_batch(rac, pagepool))) {
		u64 contig_start = page_offset(pagepool[0]);
		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4617

4618
		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4619

4620 4621
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
				&em_cached, &bio, &bio_flags, &prev_em_start);
4622
	}
L
Liu Bo 已提交
4623

4624 4625 4626
	if (em_cached)
		free_extent_map(em_cached);

4627 4628 4629 4630
	if (bio) {
		if (submit_one_bio(bio, 0, bio_flags))
			return;
	}
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
4641
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
4642
	u64 start = page_offset(page);
4643
	u64 end = start + PAGE_SIZE - 1;
4644 4645
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

4646 4647 4648
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

4649
	start += ALIGN(offset, blocksize);
4650 4651 4652
	if (start > end)
		return 0;

4653
	lock_extent_bits(tree, start, end, &cached_state);
4654
	wait_on_page_writeback(page);
4655 4656 4657 4658 4659 4660 4661

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
4662 4663 4664
	return 0;
}

4665 4666 4667 4668 4669
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
4670
static int try_release_extent_state(struct extent_io_tree *tree,
4671
				    struct page *page, gfp_t mask)
4672
{
M
Miao Xie 已提交
4673
	u64 start = page_offset(page);
4674
	u64 end = start + PAGE_SIZE - 1;
4675 4676
	int ret = 1;

N
Nikolay Borisov 已提交
4677
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4678
		ret = 0;
N
Nikolay Borisov 已提交
4679
	} else {
4680
		/*
4681 4682 4683 4684
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
4685
		 */
4686
		ret = __clear_extent_bit(tree, start, end,
4687 4688
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
4689 4690 4691 4692 4693 4694 4695 4696

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
4697 4698 4699 4700
	}
	return ret;
}

4701 4702 4703 4704 4705
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
4706
int try_release_extent_mapping(struct page *page, gfp_t mask)
4707 4708
{
	struct extent_map *em;
M
Miao Xie 已提交
4709
	u64 start = page_offset(page);
4710
	u64 end = start + PAGE_SIZE - 1;
4711 4712 4713
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4714

4715
	if (gfpflags_allow_blocking(mask) &&
4716
	    page->mapping->host->i_size > SZ_16M) {
4717
		u64 len;
4718
		while (start <= end) {
4719 4720 4721
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

4722
			len = end - start + 1;
4723
			write_lock(&map->lock);
4724
			em = lookup_extent_mapping(map, start, len);
4725
			if (!em) {
4726
				write_unlock(&map->lock);
4727 4728
				break;
			}
4729 4730
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
4731
				write_unlock(&map->lock);
4732 4733 4734
				free_extent_map(em);
				break;
			}
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
4762 4763 4764 4765 4766 4767 4768 4769
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
4770 4771 4772
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
4773
next:
4774
			start = extent_map_end(em);
4775
			write_unlock(&map->lock);
4776 4777

			/* once for us */
4778
			free_extent_map(em);
4779 4780

			cond_resched(); /* Allow large-extent preemption. */
4781 4782
		}
	}
4783
	return try_release_extent_state(tree, page, mask);
4784 4785
}

4786 4787 4788 4789
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
4790
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4791
						u64 offset, u64 last)
4792
{
4793
	u64 sectorsize = btrfs_inode_sectorsize(inode);
4794 4795 4796 4797 4798 4799
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

4800
	while (1) {
4801 4802 4803
		len = last - offset;
		if (len == 0)
			break;
4804
		len = ALIGN(len, sectorsize);
4805
		em = btrfs_get_extent_fiemap(inode, offset, len);
4806
		if (IS_ERR_OR_NULL(em))
4807 4808 4809
			return em;

		/* if this isn't a hole return it */
4810
		if (em->block_start != EXTENT_MAP_HOLE)
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
4856
	 * fiemap extent won't overlap with cached one.
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
4908
 * Emit last fiemap cache
4909
 *
4910 4911 4912 4913 4914 4915 4916
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
4917
 */
4918
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4919
				  struct fiemap_cache *cache)
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

4934
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4935
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
4936
{
J
Josef Bacik 已提交
4937
	int ret = 0;
Y
Yehuda Sadeh 已提交
4938 4939 4940
	u64 off = start;
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
4941 4942
	u32 found_type;
	u64 last;
4943
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
4944
	u64 disko = 0;
4945
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
4946
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
4947
	struct extent_map *em = NULL;
4948
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
4949
	struct btrfs_path *path;
4950
	struct btrfs_root *root = inode->root;
4951
	struct fiemap_cache cache = { 0 };
4952 4953
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
4954
	int end = 0;
4955 4956 4957
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
4958 4959 4960 4961

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
4962 4963 4964 4965
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4966 4967 4968 4969 4970 4971 4972
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

4973 4974
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4975

4976 4977 4978 4979
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
4980 4981
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
4982
	if (ret < 0) {
4983
		goto out_free_ulist;
4984 4985 4986 4987
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
4988
	}
4989

J
Josef Bacik 已提交
4990 4991
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4992
	found_type = found_key.type;
J
Josef Bacik 已提交
4993

4994
	/* No extents, but there might be delalloc bits */
4995
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
4996
	    found_type != BTRFS_EXTENT_DATA_KEY) {
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5008
	}
5009
	btrfs_release_path(path);
J
Josef Bacik 已提交
5010

5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5021
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5022
			 &cached_state);
5023

5024
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5025 5026 5027 5028 5029 5030
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5031

Y
Yehuda Sadeh 已提交
5032
	while (!end) {
5033
		u64 offset_in_extent = 0;
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5046

5047 5048
		/*
		 * record the offset from the start of the extent
5049 5050 5051
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5052
		 */
5053 5054
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5055
		em_end = extent_map_end(em);
5056
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5057
		flags = 0;
5058 5059 5060 5061
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5062

5063 5064 5065 5066 5067 5068 5069
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5070
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5071 5072
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5073
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5074 5075
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5076
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5077 5078
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5079 5080 5081
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5082 5083 5084 5085

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5086 5087 5088
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5089
			 */
5090
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5091
						 bytenr, roots, tmp_ulist);
5092
			if (ret < 0)
5093
				goto out_free;
5094
			if (ret)
5095
				flags |= FIEMAP_EXTENT_SHARED;
5096
			ret = 0;
Y
Yehuda Sadeh 已提交
5097 5098 5099
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5100 5101
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5102 5103 5104

		free_extent_map(em);
		em = NULL;
5105 5106
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5107 5108 5109 5110
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5111
		/* now scan forward to see if this is really the last extent. */
5112
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5113 5114 5115 5116 5117
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5118 5119 5120
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5121 5122
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5123 5124 5125
		if (ret) {
			if (ret == 1)
				ret = 0;
5126
			goto out_free;
5127
		}
Y
Yehuda Sadeh 已提交
5128 5129
	}
out_free:
5130
	if (!ret)
5131
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5132 5133
	free_extent_map(em);
out:
5134
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5135
			     &cached_state);
5136 5137

out_free_ulist:
5138
	btrfs_free_path(path);
5139 5140
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5141 5142 5143
	return ret;
}

5144 5145 5146 5147 5148
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5149
int extent_buffer_under_io(const struct extent_buffer *eb)
5150 5151 5152 5153 5154 5155
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5156
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5157
{
5158
	struct btrfs_subpage *subpage;
5159

5160
	lockdep_assert_held(&page->mapping->private_lock);
5161

5162 5163 5164 5165 5166 5167 5168
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
	}
	return false;
}
5169

5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5183
		if (mapped)
5184 5185 5186 5187 5188
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5201
			/*
5202 5203
			 * We need to make sure we haven't be attached
			 * to a new eb.
5204
			 */
5205
			detach_page_private(page);
5206
		}
5207 5208
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
	 * page range.
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5250

5251
		/* One for when we allocated the page */
5252
		put_page(page);
5253
	}
5254 5255 5256 5257 5258 5259 5260
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5261
	btrfs_release_extent_buffer_pages(eb);
5262
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5263 5264 5265
	__free_extent_buffer(eb);
}

5266 5267
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5268
		      unsigned long len)
5269 5270 5271
{
	struct extent_buffer *eb = NULL;

5272
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5273 5274
	eb->start = start;
	eb->len = len;
5275
	eb->fs_info = fs_info;
5276
	eb->bflags = 0;
5277
	init_rwsem(&eb->lock);
5278

5279 5280
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5281
	INIT_LIST_HEAD(&eb->release_list);
5282

5283
	spin_lock_init(&eb->refs_lock);
5284
	atomic_set(&eb->refs, 1);
5285
	atomic_set(&eb->io_pages, 0);
5286

5287
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5288 5289 5290 5291

	return eb;
}

5292
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5293
{
5294
	int i;
5295 5296
	struct page *p;
	struct extent_buffer *new;
5297
	int num_pages = num_extent_pages(src);
5298

5299
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5300 5301 5302
	if (new == NULL)
		return NULL;

5303 5304 5305 5306 5307 5308 5309
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5310
	for (i = 0; i < num_pages; i++) {
5311 5312
		int ret;

5313
		p = alloc_page(GFP_NOFS);
5314 5315 5316 5317
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5318 5319 5320 5321 5322 5323
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5324 5325
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5326
		copy_page(page_address(p), page_address(src->pages[i]));
5327
	}
5328
	set_extent_buffer_uptodate(new);
5329 5330 5331 5332

	return new;
}

5333 5334
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5335 5336
{
	struct extent_buffer *eb;
5337 5338
	int num_pages;
	int i;
5339

5340
	eb = __alloc_extent_buffer(fs_info, start, len);
5341 5342 5343
	if (!eb)
		return NULL;

5344
	num_pages = num_extent_pages(eb);
5345
	for (i = 0; i < num_pages; i++) {
5346 5347
		int ret;

5348
		eb->pages[i] = alloc_page(GFP_NOFS);
5349 5350
		if (!eb->pages[i])
			goto err;
5351 5352 5353
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5354 5355 5356
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5357
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5358 5359 5360

	return eb;
err:
5361 5362
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5363
		__free_page(eb->pages[i - 1]);
5364
	}
5365 5366 5367 5368
	__free_extent_buffer(eb);
	return NULL;
}

5369
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5370
						u64 start)
5371
{
5372
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5373 5374
}

5375 5376
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5377
	int refs;
5378 5379 5380 5381
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5382
	 *
5383 5384 5385
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5386
	 *
5387 5388 5389 5390 5391
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5392
	 *
5393 5394 5395 5396 5397 5398 5399
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5400
	 */
5401 5402 5403 5404
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5405 5406
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5407
		atomic_inc(&eb->refs);
5408
	spin_unlock(&eb->refs_lock);
5409 5410
}

5411 5412
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5413
{
5414
	int num_pages, i;
5415

5416 5417
	check_buffer_tree_ref(eb);

5418
	num_pages = num_extent_pages(eb);
5419
	for (i = 0; i < num_pages; i++) {
5420 5421
		struct page *p = eb->pages[i];

5422 5423
		if (p != accessed)
			mark_page_accessed(p);
5424 5425 5426
	}
}

5427 5428
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5429 5430 5431 5432
{
	struct extent_buffer *eb;

	rcu_read_lock();
5433
	eb = radix_tree_lookup(&fs_info->buffer_radix,
5434
			       start >> fs_info->sectorsize_bits);
5435 5436
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
		/*
		 * Lock our eb's refs_lock to avoid races with
		 * free_extent_buffer. When we get our eb it might be flagged
		 * with EXTENT_BUFFER_STALE and another task running
		 * free_extent_buffer might have seen that flag set,
		 * eb->refs == 2, that the buffer isn't under IO (dirty and
		 * writeback flags not set) and it's still in the tree (flag
		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
		 * of decrementing the extent buffer's reference count twice.
		 * So here we could race and increment the eb's reference count,
		 * clear its stale flag, mark it as dirty and drop our reference
		 * before the other task finishes executing free_extent_buffer,
		 * which would later result in an attempt to free an extent
		 * buffer that is dirty.
		 */
		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
			spin_lock(&eb->refs_lock);
			spin_unlock(&eb->refs_lock);
		}
5456
		mark_extent_buffer_accessed(eb, NULL);
5457 5458 5459 5460 5461 5462 5463
		return eb;
	}
	rcu_read_unlock();

	return NULL;
}

5464 5465
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5466
					u64 start)
5467 5468 5469 5470 5471 5472 5473
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
5474
	eb = alloc_dummy_extent_buffer(fs_info, start);
5475
	if (!eb)
5476
		return ERR_PTR(-ENOMEM);
5477 5478
	eb->fs_info = fs_info;
again:
5479
	ret = radix_tree_preload(GFP_NOFS);
5480 5481
	if (ret) {
		exists = ERR_PTR(ret);
5482
		goto free_eb;
5483
	}
5484 5485
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5486
				start >> fs_info->sectorsize_bits, eb);
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

5506 5507
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
5508 5509 5510
{
	struct extent_buffer *exists;

5511 5512 5513 5514 5515 5516 5517 5518
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

5538
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5539
					  u64 start, u64 owner_root, int level)
5540
{
5541
	unsigned long len = fs_info->nodesize;
5542 5543
	int num_pages;
	int i;
5544
	unsigned long index = start >> PAGE_SHIFT;
5545
	struct extent_buffer *eb;
5546
	struct extent_buffer *exists = NULL;
5547
	struct page *p;
5548
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5549
	int uptodate = 1;
5550
	int ret;
5551

5552
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5553 5554 5555 5556
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

5557 5558 5559 5560 5561 5562 5563 5564
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

5565
	eb = find_extent_buffer(fs_info, start);
5566
	if (eb)
5567 5568
		return eb;

5569
	eb = __alloc_extent_buffer(fs_info, start, len);
5570
	if (!eb)
5571
		return ERR_PTR(-ENOMEM);
5572
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5573

5574
	num_pages = num_extent_pages(eb);
5575
	for (i = 0; i < num_pages; i++, index++) {
5576 5577
		struct btrfs_subpage *prealloc = NULL;

5578
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5579 5580
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
5581
			goto free_eb;
5582
		}
J
Josef Bacik 已提交
5583

5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
		ret = btrfs_alloc_subpage(fs_info, &prealloc,
					  BTRFS_SUBPAGE_METADATA);
		if (ret < 0) {
			unlock_page(p);
			put_page(p);
			exists = ERR_PTR(ret);
			goto free_eb;
		}

J
Josef Bacik 已提交
5603
		spin_lock(&mapping->private_lock);
5604
		exists = grab_extent_buffer(fs_info, p);
5605 5606 5607 5608 5609
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
5610
			btrfs_free_subpage(prealloc);
5611
			goto free_eb;
5612
		}
5613 5614 5615
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
5626
		spin_unlock(&mapping->private_lock);
5627

5628
		WARN_ON(PageDirty(p));
5629
		eb->pages[i] = p;
5630 5631
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
5632 5633

		/*
5634 5635 5636 5637 5638
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
5639
		 */
5640 5641
	}
	if (uptodate)
5642
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5643
again:
5644
	ret = radix_tree_preload(GFP_NOFS);
5645 5646
	if (ret) {
		exists = ERR_PTR(ret);
5647
		goto free_eb;
5648
	}
5649

5650 5651
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5652
				start >> fs_info->sectorsize_bits, eb);
5653
	spin_unlock(&fs_info->buffer_lock);
5654
	radix_tree_preload_end();
5655
	if (ret == -EEXIST) {
5656
		exists = find_extent_buffer(fs_info, start);
5657 5658 5659
		if (exists)
			goto free_eb;
		else
5660
			goto again;
5661 5662
	}
	/* add one reference for the tree */
5663
	check_buffer_tree_ref(eb);
5664
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
5665 5666

	/*
5667 5668 5669
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
5670
	 */
5671 5672
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
5673 5674
	return eb;

5675
free_eb:
5676
	WARN_ON(!atomic_dec_and_test(&eb->refs));
5677 5678 5679 5680
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
5681

5682
	btrfs_release_extent_buffer(eb);
5683
	return exists;
5684 5685
}

5686 5687 5688 5689 5690 5691 5692 5693
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

5694
static int release_extent_buffer(struct extent_buffer *eb)
5695
	__releases(&eb->refs_lock)
5696
{
5697 5698
	lockdep_assert_held(&eb->refs_lock);

5699 5700
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
5701
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5702
			struct btrfs_fs_info *fs_info = eb->fs_info;
5703

5704
			spin_unlock(&eb->refs_lock);
5705

5706 5707
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
5708
					  eb->start >> fs_info->sectorsize_bits);
5709
			spin_unlock(&fs_info->buffer_lock);
5710 5711
		} else {
			spin_unlock(&eb->refs_lock);
5712
		}
5713

5714
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5715
		/* Should be safe to release our pages at this point */
5716
		btrfs_release_extent_buffer_pages(eb);
5717
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5718
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5719 5720 5721 5722
			__free_extent_buffer(eb);
			return 1;
		}
#endif
5723
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5724
		return 1;
5725 5726
	}
	spin_unlock(&eb->refs_lock);
5727 5728

	return 0;
5729 5730
}

5731 5732
void free_extent_buffer(struct extent_buffer *eb)
{
5733 5734
	int refs;
	int old;
5735 5736 5737
	if (!eb)
		return;

5738 5739
	while (1) {
		refs = atomic_read(&eb->refs);
5740 5741 5742
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
5743 5744 5745 5746 5747 5748
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

5749 5750 5751
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5752
	    !extent_buffer_under_io(eb) &&
5753 5754 5755 5756 5757 5758 5759
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
5760
	release_extent_buffer(eb);
5761 5762 5763 5764 5765
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
5766 5767
		return;

5768 5769 5770
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

5771
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5772 5773
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
5774
	release_extent_buffer(eb);
5775 5776
}

5777
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5778
{
5779 5780
	int i;
	int num_pages;
5781 5782
	struct page *page;

5783
	num_pages = num_extent_pages(eb);
5784 5785

	for (i = 0; i < num_pages; i++) {
5786
		page = eb->pages[i];
5787
		if (!PageDirty(page))
C
Chris Mason 已提交
5788 5789
			continue;

5790
		lock_page(page);
C
Chris Mason 已提交
5791 5792
		WARN_ON(!PagePrivate(page));

5793
		clear_page_dirty_for_io(page);
M
Matthew Wilcox 已提交
5794
		xa_lock_irq(&page->mapping->i_pages);
5795 5796 5797
		if (!PageDirty(page))
			__xa_clear_mark(&page->mapping->i_pages,
					page_index(page), PAGECACHE_TAG_DIRTY);
M
Matthew Wilcox 已提交
5798
		xa_unlock_irq(&page->mapping->i_pages);
5799
		ClearPageError(page);
5800
		unlock_page(page);
5801
	}
5802
	WARN_ON(atomic_read(&eb->refs) == 0);
5803 5804
}

5805
bool set_extent_buffer_dirty(struct extent_buffer *eb)
5806
{
5807 5808
	int i;
	int num_pages;
5809
	bool was_dirty;
5810

5811 5812
	check_buffer_tree_ref(eb);

5813
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5814

5815
	num_pages = num_extent_pages(eb);
5816
	WARN_ON(atomic_read(&eb->refs) == 0);
5817 5818
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

5819 5820 5821
	if (!was_dirty)
		for (i = 0; i < num_pages; i++)
			set_page_dirty(eb->pages[i]);
5822 5823 5824 5825 5826 5827

#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

5828
	return was_dirty;
5829 5830
}

5831
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5832
{
5833
	struct btrfs_fs_info *fs_info = eb->fs_info;
5834
	struct page *page;
5835
	int num_pages;
5836
	int i;
5837

5838
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5839
	num_pages = num_extent_pages(eb);
5840
	for (i = 0; i < num_pages; i++) {
5841
		page = eb->pages[i];
C
Chris Mason 已提交
5842
		if (page)
5843 5844
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
5845 5846 5847
	}
}

5848
void set_extent_buffer_uptodate(struct extent_buffer *eb)
5849
{
5850
	struct btrfs_fs_info *fs_info = eb->fs_info;
5851
	struct page *page;
5852
	int num_pages;
5853
	int i;
5854

5855
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5856
	num_pages = num_extent_pages(eb);
5857
	for (i = 0; i < num_pages; i++) {
5858
		page = eb->pages[i];
5859
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
5860 5861 5862
	}
}

5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
	struct bio *bio = NULL;
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
		ret = try_lock_extent(io_tree, eb->start,
				      eb->start + eb->len - 1);
		if (ret <= 0)
			return ret;
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, page, eb->start,
				 eb->len, eb->start - page_offset(page), &bio,
				 end_bio_extent_readpage, mirror_num, 0, 0,
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
	if (bio) {
		int tmp;

		tmp = submit_one_bio(bio, mirror_num, 0);
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

5930
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5931
{
5932
	int i;
5933 5934 5935
	struct page *page;
	int err;
	int ret = 0;
5936 5937
	int locked_pages = 0;
	int all_uptodate = 1;
5938
	int num_pages;
5939
	unsigned long num_reads = 0;
5940
	struct bio *bio = NULL;
C
Chris Mason 已提交
5941
	unsigned long bio_flags = 0;
5942

5943
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5944 5945
		return 0;

5946 5947 5948
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

5949
	num_pages = num_extent_pages(eb);
5950
	for (i = 0; i < num_pages; i++) {
5951
		page = eb->pages[i];
5952
		if (wait == WAIT_NONE) {
5953 5954 5955 5956 5957 5958 5959
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
5960
			if (!trylock_page(page))
5961
				goto unlock_exit;
5962 5963 5964
		} else {
			lock_page(page);
		}
5965
		locked_pages++;
5966 5967 5968 5969 5970 5971
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
5972
	for (i = 0; i < num_pages; i++) {
5973
		page = eb->pages[i];
5974 5975
		if (!PageUptodate(page)) {
			num_reads++;
5976
			all_uptodate = 0;
5977
		}
5978
	}
5979

5980
	if (all_uptodate) {
5981
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5982 5983 5984
		goto unlock_exit;
	}

5985
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5986
	eb->read_mirror = 0;
5987
	atomic_set(&eb->io_pages, num_reads);
5988 5989 5990 5991 5992
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
5993
	for (i = 0; i < num_pages; i++) {
5994
		page = eb->pages[i];
5995

5996
		if (!PageUptodate(page)) {
5997 5998 5999 6000 6001 6002
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6003
			ClearPageError(page);
6004 6005 6006 6007
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
					 page, page_offset(page), PAGE_SIZE, 0,
					 &bio, end_bio_extent_readpage,
					 mirror_num, 0, 0, false);
6008 6009
			if (err) {
				/*
6010 6011 6012
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6013
				 */
6014 6015 6016
				ret = err;
				SetPageError(page);
				unlock_page(page);
6017 6018
				atomic_dec(&eb->io_pages);
			}
6019 6020 6021 6022 6023
		} else {
			unlock_page(page);
		}
	}

6024
	if (bio) {
6025
		err = submit_one_bio(bio, mirror_num, bio_flags);
6026 6027
		if (err)
			return err;
6028
	}
6029

6030
	if (ret || wait != WAIT_COMPLETE)
6031
		return ret;
C
Chris Mason 已提交
6032

6033
	for (i = 0; i < num_pages; i++) {
6034
		page = eb->pages[i];
6035
		wait_on_page_locked(page);
C
Chris Mason 已提交
6036
		if (!PageUptodate(page))
6037 6038
			ret = -EIO;
	}
C
Chris Mason 已提交
6039

6040
	return ret;
6041 6042

unlock_exit:
C
Chris Mason 已提交
6043
	while (locked_pages > 0) {
6044
		locked_pages--;
6045 6046
		page = eb->pages[locked_pages];
		unlock_page(page);
6047 6048
	}
	return ret;
6049 6050
}

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6081 6082
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6083 6084 6085 6086 6087 6088
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6089
	unsigned long i = get_eb_page_index(start);
6090

6091
	if (check_eb_range(eb, start, len))
6092
		return;
6093

6094
	offset = get_eb_offset_in_page(eb, start);
6095

C
Chris Mason 已提交
6096
	while (len > 0) {
6097
		page = eb->pages[i];
6098

6099
		cur = min(len, (PAGE_SIZE - offset));
6100
		kaddr = page_address(page);
6101 6102 6103 6104 6105 6106 6107 6108 6109
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6110 6111 6112
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6113 6114 6115 6116 6117 6118
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6119
	unsigned long i = get_eb_page_index(start);
6120 6121 6122 6123 6124
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6125
	offset = get_eb_offset_in_page(eb, start);
6126 6127

	while (len > 0) {
6128
		page = eb->pages[i];
6129

6130
		cur = min(len, (PAGE_SIZE - offset));
6131
		kaddr = page_address(page);
6132
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6146 6147
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6148 6149 6150 6151 6152 6153
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6154
	unsigned long i = get_eb_page_index(start);
6155 6156
	int ret = 0;

6157 6158
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6159

6160
	offset = get_eb_offset_in_page(eb, start);
6161

C
Chris Mason 已提交
6162
	while (len > 0) {
6163
		page = eb->pages[i];
6164

6165
		cur = min(len, (PAGE_SIZE - offset));
6166

6167
		kaddr = page_address(page);
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6180
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6181 6182 6183 6184 6185
		const void *srcv)
{
	char *kaddr;

	WARN_ON(!PageUptodate(eb->pages[0]));
6186
	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
6187 6188 6189 6190
	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
			BTRFS_FSID_SIZE);
}

6191
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6192 6193 6194 6195
{
	char *kaddr;

	WARN_ON(!PageUptodate(eb->pages[0]));
6196
	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
6197 6198 6199 6200
	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
			BTRFS_FSID_SIZE);
}

6201
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6202 6203 6204 6205 6206 6207 6208
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6209
	unsigned long i = get_eb_page_index(start);
6210

6211 6212
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6213 6214
	if (check_eb_range(eb, start, len))
		return;
6215

6216
	offset = get_eb_offset_in_page(eb, start);
6217

C
Chris Mason 已提交
6218
	while (len > 0) {
6219
		page = eb->pages[i];
6220 6221
		WARN_ON(!PageUptodate(page));

6222
		cur = min(len, PAGE_SIZE - offset);
6223
		kaddr = page_address(page);
6224 6225 6226 6227 6228 6229 6230 6231 6232
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6233
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6234
		unsigned long len)
6235 6236 6237 6238 6239
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6240
	unsigned long i = get_eb_page_index(start);
6241

6242 6243
	if (check_eb_range(eb, start, len))
		return;
6244

6245
	offset = get_eb_offset_in_page(eb, start);
6246

C
Chris Mason 已提交
6247
	while (len > 0) {
6248
		page = eb->pages[i];
6249 6250
		WARN_ON(!PageUptodate(page));

6251
		cur = min(len, PAGE_SIZE - offset);
6252
		kaddr = page_address(page);
6253
		memset(kaddr + offset, 0, cur);
6254 6255 6256 6257 6258 6259 6260

		len -= cur;
		offset = 0;
		i++;
	}
}

6261 6262
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6263 6264
{
	int i;
6265
	int num_pages;
6266 6267 6268

	ASSERT(dst->len == src->len);

6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6283 6284
}

6285 6286
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6287 6288 6289 6290 6291 6292 6293 6294
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6295
	unsigned long i = get_eb_page_index(dst_offset);
6296

6297 6298 6299 6300
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6301 6302
	WARN_ON(src->len != dst_len);

6303
	offset = get_eb_offset_in_page(dst, dst_offset);
6304

C
Chris Mason 已提交
6305
	while (len > 0) {
6306
		page = dst->pages[i];
6307 6308
		WARN_ON(!PageUptodate(page));

6309
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6310

6311
		kaddr = page_address(page);
6312 6313 6314 6315 6316 6317 6318 6319 6320
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6334
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6347
	offset = start + offset_in_page(eb->start) + byte_offset;
6348

6349
	*page_index = offset >> PAGE_SHIFT;
6350
	*page_offset = offset_in_page(offset);
6351 6352 6353 6354 6355 6356 6357 6358
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
6359
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6360 6361
			   unsigned long nr)
{
6362
	u8 *kaddr;
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
6381
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6382 6383
			      unsigned long pos, unsigned long len)
{
6384
	u8 *kaddr;
6385 6386 6387 6388 6389
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6390
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6401
		mask_to_set = ~0;
6402
		if (++offset >= PAGE_SIZE && len > 0) {
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
			offset = 0;
			page = eb->pages[++i];
			WARN_ON(!PageUptodate(page));
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
6423 6424 6425
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
6426
{
6427
	u8 *kaddr;
6428 6429 6430 6431 6432
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6433
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6444
		mask_to_clear = ~0;
6445
		if (++offset >= PAGE_SIZE && len > 0) {
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
			offset = 0;
			page = eb->pages[++i];
			WARN_ON(!PageUptodate(page));
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

6458 6459 6460 6461 6462 6463
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

6464 6465 6466 6467
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
6468
	char *dst_kaddr = page_address(dst_page);
6469
	char *src_kaddr;
6470
	int must_memmove = 0;
6471

6472
	if (dst_page != src_page) {
6473
		src_kaddr = page_address(src_page);
6474
	} else {
6475
		src_kaddr = dst_kaddr;
6476 6477
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
6478
	}
6479

6480 6481 6482 6483
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6484 6485
}

6486 6487 6488
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
6489 6490 6491 6492 6493 6494 6495
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

6496 6497 6498
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6499

C
Chris Mason 已提交
6500
	while (len > 0) {
6501 6502
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6503

6504 6505
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
6506

6507
		cur = min(len, (unsigned long)(PAGE_SIZE -
6508 6509
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
6510
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6511

6512
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6513 6514 6515 6516 6517 6518 6519 6520
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

6521 6522 6523
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
6524 6525 6526 6527 6528 6529 6530 6531 6532
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

6533 6534 6535
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6536
	if (dst_offset < src_offset) {
6537 6538 6539
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
6540
	while (len > 0) {
6541 6542
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
6543

6544 6545
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
6546 6547 6548

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
6549
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6550 6551 6552 6553 6554 6555 6556 6557
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
6558

6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
	int ret;
	int i;

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
	lockdep_assert_held(&fs_info->buffer_lock);

	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
			bytenr >> fs_info->sectorsize_bits,
			PAGE_SIZE / fs_info->nodesize);
	for (i = 0; i < ret; i++) {
		/* Already beyond page end */
		if (gang[i]->start >= page_start + PAGE_SIZE)
			break;
		/* Found one */
		if (gang[i]->start >= bytenr) {
			found = gang[i];
			break;
		}
	}
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

6658
int try_release_extent_buffer(struct page *page)
6659
{
6660 6661
	struct extent_buffer *eb;

6662 6663 6664
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

6665
	/*
6666 6667
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
6668 6669 6670 6671
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
6672
		return 1;
6673
	}
6674

6675 6676
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
6677 6678

	/*
6679 6680 6681
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
6682
	 */
6683
	spin_lock(&eb->refs_lock);
6684
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6685 6686 6687
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
6688
	}
6689
	spin_unlock(&page->mapping->private_lock);
6690

6691
	/*
6692 6693
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
6694
	 */
6695 6696 6697
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
6698
	}
6699

6700
	return release_extent_buffer(eb);
6701
}
6702 6703 6704 6705 6706

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
6707
 * @owner_root: objectid of the root that owns this eb
6708
 * @gen:	generation for the uptodate check, can be 0
6709
 * @level:	level for the eb
6710 6711 6712 6713 6714 6715
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
6716
				u64 bytenr, u64 owner_root, u64 gen, int level)
6717 6718 6719 6720
{
	struct extent_buffer *eb;
	int ret;

6721
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
6749 6750 6751
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
6752
}